Associations between Low-Carbohydrate Diets and Low-Fat Diets with Frailty in Community-Dwelling Aging Chinese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. General Information and Anthropometric Measurement
2.3. Biochemical Measurements
2.4. Dietary Surveys and Assessment of LCD and LFD Scores
2.5. Definition of FI
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Association between LCD and LFD Scores and Pre-Frail or Frail
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef]
- Walston, J.D.; Bandeen-Roche, K. Frailty: A tale of two concepts. BMC Med. 2015, 13, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, G.; Iliffe, S.; Walters, K. Frailty index as a predictor of mortality: A systematic review and meta-analysis. Age Ageing 2018, 47, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Yu, C.; Guo, Y.; Bian, Z.; Sun, Z.; Yang, L.; Chen, Y.; Du, H.; Li, Z.; Lei, Y.; et al. Frailty index and all-cause and cause-specific mortality in Chinese adults: A prospective cohort study. Lancet Public Health 2020, 5, e650–e660. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, Z.; Li, X.; Chen, C.; Hoogendijk, E.O.; Zhang, J.; Yao, N.A.; Ma, L.; Zhang, Y.; Zhu, Y.; et al. Association of frailty with the incidence risk of cardiovascular disease and type 2 diabetes mellitus in long-term cancer survivors: A prospective cohort study. BMC Med. 2023, 21, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Simpson, F.R.; Justice, J.N.; Pilla, S.J.; Kritchevsky, S.B.; Boyko, E.J.; Munshi, M.N.; Ferris, C.K.; Espeland, M.A. An Examination of Whether Diabetes Control and Treatments Are Associated With Change in Frailty Index Across 8 Years: An Ancillary Exploratory Study From the Action for Health in Diabetes (Look AHEAD) Trial. Diabetes Care 2023, 46, 519–525. [Google Scholar] [CrossRef]
- He, D.; Qiu, Y.; Yan, M.; Zhou, T.; Cheng, Z.; Li, J.; Wu, Q.; Liu, Z.; Zhu, Y. Associations of metabolic heterogeneity of obesity with frailty progression: Results from two prospective cohorts. J. Cachexia Sarcopenia Muscle 2023, 14, 632–641. [Google Scholar] [CrossRef]
- Ni Lochlainn, M.; Cox, N.J.; Wilson, T.; Hayhoe, R.P.G.; Ramsay, S.E.; Granic, A.; Isanejad, M.; Roberts, H.C.; Wilson, D.; Welch, C.; et al. Nutrition and Frailty: Opportunities for Prevention and Treatment. Nutrients 2021, 13, 2349. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhong, W.F.; Li, Z.H.; Chen, P.L.; Zhang, Y.J.; Ren, J.J.; Liu, D.; Shen, Q.Q.; Yang, P.; Song, W.Q.; et al. Dietary diversity and frailty among older Chinese people: Evidence from the Chinese Longitudinal Healthy Longevity Study. Am. J. Clin. Nutr. 2023, 117, 383–391. [Google Scholar] [CrossRef]
- Jayanama, K.; Theou, O.; Godin, J.; Cahill, L.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Park, Y.M.; Fung, T.T.; Rockwood, K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 2021, 19, 64. [Google Scholar] [CrossRef]
- Tanaka, T.; Talegawkar, S.A.; Jin, Y.; Bandinelli, S.; Ferrucci, L. Association of Adherence to the Mediterranean-Style Diet with Lower Frailty Index in Older Adults. Nutrients 2021, 13, 1129. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Martins, B.A.; Okada, K.; Matsushita, E.; Uno, C.; Satake, S.; Kuzuya, M. A 3-year prospective cohort study of dietary patterns and frailty risk among community-dwelling older adults. Clin. Nutr. 2021, 40, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Q.; Hao, W.; Zhu, D. Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients 2022, 14, 4279. [Google Scholar] [CrossRef]
- Tanaka, T.; Kafyra, M.; Jin, Y.; Chia, C.W.; Dedoussis, G.V.; Talegawkar, S.A.; Ferrucci, L. Quality Specific Associations of Carbohydrate Consumption and Frailty Index. Nutrients 2022, 14, 5072. [Google Scholar] [CrossRef]
- Akter, S.; Mizoue, T.; Nanri, A.; Goto, A.; Noda, M.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsugane, S. Low carbohydrate diet and all cause and cause-specific mortality. Clin. Nutr. 2021, 40, 2016–2024. [Google Scholar] [CrossRef]
- Meng, Y.; Bai, H.; Wang, S.; Li, Z.; Wang, Q.; Chen, L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2017, 131, 124–131. [Google Scholar] [CrossRef]
- Wang, H.; Lv, Y.; Ti, G.; Ren, G. Association of low-carbohydrate-diet score and cognitive performance in older adults: National Health and Nutrition Examination Survey (NHANES). BMC Geriatr. 2022, 22, 983. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Yin, J.; Ma, X.; Mo, Y.; Li, C.; Lu, W.; Bao, Y.; Zhou, J.; Jia, W. Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: A randomized clinical trial. Front. Med. 2021, 15, 460–471. [Google Scholar] [CrossRef]
- Chuy, V.; Gentreau, M.; Artero, S.; Berticat, C.; Rigalleau, V.; Pérès, K.; Helmer, C.; Samieri, C.; Féart, C. Simple Carbohydrate Intake and Higher Risk for Physical Frailty Over 15 Years in Community-Dwelling Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 10–18. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Jiang, H.; Wang, H.; Wang, Z.; Zhang, B.; Ding, G. Trends in Dietary Carbohydrates, Protein, and Fat Intake and Diet Quality Among Chinese Adults, 1991–2015: Results from the China Health and Nutrition Survey. Public Health Nutr. 2022, 26, 834–843. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Li, J.; Yan, N.; Dang, Y.; Chang, Z.; Wang, K.; Liu, X.; Zhao, Y.; Zhang, Y. Association of Serum Vitamin D and Estradiol Levels with Metabolic Syndrome in Rural Women of Northwest China: A Cross-Sectional Study. Metab. Syndr. Relat. Disord. 2022, 20, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Z.; Guo, Y.; Hu, F.B.; Liu, L.; Qi, Q. Association of Low-Carbohydrate and Low-Fat Diets With Mortality Among US Adults. JAMA Intern. Med. 2020, 180, 513–523. [Google Scholar] [CrossRef]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verspoor, E.; Voortman, T.; van Rooij, F.J.A.; Rivadeneira, F.; Franco, O.H.; Kiefte-de Jong, J.C.; Schoufour, J.D. Macronutrient intake and frailty: The Rotterdam Study. Eur. J. Nutr. 2020, 59, 2919–2928. [Google Scholar] [CrossRef] [Green Version]
- Schoufour, J.D.; Franco, O.H.; Kiefte-de Jong, J.C.; Trajanoska, K.; Stricker, B.; Brusselle, G.; Rivadeneira, F.; Lahousse, L.; Voortman, T. The association between dietary protein intake, energy intake and physical frailty: Results from the Rotterdam Study. Br. J. Nutr. 2019, 121, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Buhl, S.F.; Beck, A.M.; Olsen, P.; Kock, G.; Christensen, B.; Wegner, M.; Vaarst, J.; Caserotti, P. Relationship between physical frailty, nutritional risk factors and protein intake in community-dwelling older adults. Clin. Nutr. ESPEN 2022, 49, 449–458. [Google Scholar] [CrossRef]
- Konglevoll, D.M.; Hjartåker, A.; Hopstock, L.A.; Strand, B.H.; Thoresen, M.; Andersen, L.F.; Carlsen, M.H. Protein Intake and the Risk of Pre-Frailty and Frailty in Norwegian Older Adults. The Tromsø Study 1994–2016. J. Frailty Aging 2022, 11, 256–266. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Pérez-Tasigchana, R.F.; López-García, E.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Macronutrients Intake and Incident Frailty in Older Adults: A Prospective Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1329–1334. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Protein Intake and Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2767. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.L.; Costa, E.; Jacques, P.F.; Dufour, A.B.; Kiel, D.P.; Hannan, M.T.; Sahni, S. Adherence to the Mediterranean-style diet and high intake of total carotenoids reduces the odds of frailty over 11 years in older adults: Results from the Framingham Offspring Study. Am. J. Clin. Nutr. 2022, 116, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, J.; Theou, O.; Kirkland, S.; Andreou, P.; Rockwood, K. Frailty in NHANES: Comparing the frailty index and phenotype. Arch. Gerontol. Geriatr. 2015, 60, 464–470. [Google Scholar] [CrossRef]
- Cesari, M.; Gambassi, G.; Abellan van Kan, G.; Vellas, B. The frailty phenotype and the frailty index: Different instruments for different purposes. Age Ageing 2014, 43, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Gonçalves, I.O.; Landi, F.; Bernabei, R.; Cesari, M.; Uchida, M.C.; Marzetti, E. Protein-Related Dietary Parameters and Frailty Status in Older Community-Dwellers across Different Frailty Instruments. Nutrients 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Lee, Y.; Kim, M.K.; Kim, K. The Impact of High Carbohydrate Intake on Physical Frailty in Older Korean Adults: A Cohort-based Cross-Sectional Study; Research Square: Durham, NC, USA, 2022. [Google Scholar] [CrossRef]
- Gregersen, S.; Samocha-Bonet, D.; Heilbronn, L.K.; Campbell, L.V. Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans. J. Nutr. Metab. 2012, 2012, 238056. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, A.; Shang, L.; Sun, C.; Jia, X.; Hou, L.; Xu, R.; Wang, X. Study on the Association Between Dietary Habits, Patterns and Frailty of the Elderly: A Cross-Sectional Survey from Communities in China. Clin. Interv. Aging 2022, 17, 1527–1538. [Google Scholar] [CrossRef]
- Otsuka, R.; Tange, C.; Tomida, M.; Nishita, Y.; Kato, Y.; Yuki, A.; Ando, F.; Shimokata, H.; Arai, H. Dietary factors associated with the development of physical frailty in community-dwelling older adults. J. Nutr. Health Aging 2019, 23, 89–95. [Google Scholar] [CrossRef]
- Struijk, E.A.; Fung, T.T.; Sotos-Prieto, M.; Rodriguez-Artalejo, F.; Willett, W.C.; Hu, F.B.; Lopez-Garcia, E. Red meat consumption and risk of frailty in older women. J. Cachexia Sarcopenia Muscle 2022, 13, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.J.; Papachristou, E.; Atkins, J.L.; Papacosta, O.; Ash, S.; Lennon, L.T.; Whincup, P.H.; Ramsay, S.E.; Wannamethee, S.G. Physical frailty in older men: Prospective associations with diet quality and patterns. Age Ageing 2019, 48, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Li, N.; Liu, W.; Li, X.; Liu, X.; Zhang, P.; Liu, C.; Li, J.; Qiu, J.; Zhang, Y.; et al. Validity and reliability of a semi-quantitative food frequency questionnaire in groups at high risk for cardiovascular diseases. Nutr. J. 2022, 21, 63. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 6414) | Robust (n = 3152) | Pre-Frail (n = 2475) | Frail (n = 787) | p Value |
---|---|---|---|---|---|
Age (years) | 66.60 ± 4.15 | 66.24 ± 4.09 | 66.87 ± 4.25 | 67.208 ± 3.99 | <0.001 |
Age (years), n (%) | <0.001 | ||||
60–64 | 2205 (34.4) | 1211 (38.4) | 784 (31.7) | 210 (26.7) | |
65–69 | 2602 (40.5) | 1224 (38.8) | 1031 (41.7) | 347 (44.1) | |
70–74 | 1403 (21.9) | 639 (20.3) | 558 (22.5) | 206 (26.2) | |
≥75 | 204 (3.2) | 78 (2.5) | 102 (4.1) | 24 (3.0) | |
Sex, n (%) | <0.001 | ||||
Male | 3065 (47.8) | 1645 (52.2) | 1149 (46.4) | 271 (34.4) | |
Female | 3349 (52.2) | 1507 (47.8) | 1326 (53.6) | 516 (65.6) | |
Education level n (%) | <0.001 | ||||
Primary school or lower | 5611 (87.4) | 2732 (86.6) | 2141 (86.5) | 738 (93.8) | |
Junior high school | 668 (10.4) | 339 (10.8) | 287 (11.6) | 42 (5.3) | |
Senior high school or above | 135 (2.2) | 81 (2.6) | 47 (1.9) | 7 (0.9) | |
Current smoker, n (%) | <0.001 | ||||
Yes | 927 (14.5) | 519 (16.5) | 339 (13.7) | 69 (8.8) | |
No | 5487 (85.5) | 2633 (83.5) | 2136 (86.3) | 718 (91.2) | |
Current drinker, n (%) | <0.001 | ||||
Yes | 1323 (20.6) | 679 (21.5) | 550 (22.2) | 94 (11.9) | |
No | 5091 (79.4) | 2473 (78.5) | 1925 (77.8) | 693 (88.1) | |
WC (cm) | 86.22 ± 9.85 | 83.61 ± 9.30 | 88.15 ± 9.57 | 90.60 ± 9.95 | <0.001 |
WHR | 0.92 ± 0.66 | 0.90 ± 0.06 | 0.93 ± 0.06 | 0.95 ± 0.07 | <0.001 |
BMI (kg/m2) | 24.88 ± 3.46 | 23.99 ± 3.28 | 25.54 ± 3.33 | 26.36 ± 3.59 | <0.001 |
SBP (mmHg) | 141 ± 20 | 130 ± 16 | 151 ± 17 | 150 ± 18 | <0.001 |
DBP (mmHg) | 84 ± 12 | 78 ± 11 | 89 ± 12 | 89 ± 12 | <0.001 |
FBG (mmol/L) | 5.96 ± 5.26 | 5.92 ± 5.40 | 5.87 ± 2.15 | 6.42 ± 4.27 | 0.006 |
TG (mmol/L) | 1.65 ± 1.12 | 1.53 ± 1.05 | 1.74 ± 1.18 | 1.84 ± 1.20 | <0.001 |
TC (mmol/L) | 4.88 ± 1.49 | 4.81 ± 1.05 | 4.94 ± 1.99 | 4.97 ± 1.10 | 0.001 |
HDL-C (mmol/L) | 1.31 ± 0.35 | 1.33 ± 0.35 | 1.29 ± 0.35 | 1.29 ± 0.31 | <0.001 |
LDL-C (mmol/L) | 2.88 ± 0.87 | 2.87 ± 0.87 | 2.85 ± 0.87 | 3.01 ± 0.90 | 0.001 |
LCD score | 14.4 ± 8.4 | 14.7 ± 8.4 | 14.0 ± 8.4 | 14.1 ± 8.7 | 0.006 |
LFD Score | 10.4 ± 8.3 | 10.5 ± 8.3 | 10.1 ± 8.2 | 10.9 ± 8.4 | 0.047 |
Energy (kcal/d) | 1957 ± 650 | 1974 ± 674 | 1949± 638 | 1912 ± 585 | 0.046 |
Total carbohydrate (g/d) | 235 ± 79 | 236 ± 82 | 235 ± 78 | 230 ± 77 | 0.098 |
Total protein (g/d) | 63 ± 37 | 65 ± 38 | 61 ± 35 | 63 ± 37 | <0.001 |
Total fat (g/d) | 77 ± 36 | 77 ± 36 | 77 ± 36 | 75 ± 35 | 0.227 |
Total carbohydrate (% of energy) | 48.9 ± 8.6 | 48.8 ± 8.5 | 49.1 ± 8.7 | 48.8 ± 9.0 | 0.415 |
Total protein (% of energy) | 12.5 ± 4.4 | 12.7 ± 4.5 | 12.2 ± 4.3 | 12.7 ± 4.7 | <0.001 |
Total fat (% of energy) | 35.0 ± 9.9 | 34.9 ± 9.8 | 35.2 ± 9.9 | 34.9 ± 10.3 | 0.404 |
SFA (g/d) | 12 ± 6 | 12 ± 7 | 12 ± 6 | 12 ± 6 | 0.292 |
MUFA (g/d) | 26 ± 12 | 26 ± 13 | 27 ± 12 | 26 ± 12 | 0.159 |
PUFA (g/d) | 28 ± 16 | 28 ± 16 | 28 ± 16 | 27 ± 16 | 0.540 |
Variables | LCD Score | LFD Score | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 (<8) | Q2 (8–17) | Q3 (18–20) | Q4 (≥21) | p Trend | Q1 (<1) | Q2 (1–10) | Q3 (11–19) | Q4 (≥20) | p Trend | |
Robust n (%) | 726 (45.7) | 906 (50.4) | 960 (48.2) | 560 (53.9) | 0.003 | 646 (48.9) | 1074 (49.2) | 751 (48.0) | 681 (50.6) | 0.607 |
Prefrail n (%) | 635 (40.0) | 700 (39.0) | 792 (39.8) | 348 (33.5) | 533 (40.3) | 856 (39.2) | 584 (37.3) | 502 (37.3) | ||
Frail n (%) | 228 (14.3) | 191 (10.6) | 238 (12.0) | 130 (12.5) | 142 (10.8) | 252 (11.6) | 230 (14.7) | 163 (12.1) | ||
WC (cm) | 86.66 ± 9.93 | 86.37 ± 9.87 | 85.87 ± 9.81 | 85.96 ± 9.76 | 0.035 | 85.63 ± 9.78 | 86.20 ± 9.88 | 86.39 ± 9.99 | 86.64 ± 9.71 | 0.007 |
WHR | 0.92 ± 0.07 | 0.92 ± 0.07 | 0.91 ± 0.07 | 0.91 ± 0.06 | 0.062 | 0.91 ± 0.07 | 0.92 ± 0.07 | 0.92 ± 0.07 | 0.92 ± 0.07 | 0.005 |
BMI (kg/m2) | 25.07 ± 3.50 | 24.93 ± 3.48 | 24.76 ± 3.41 | 24.72 ± 3.46 | 0.004 | 24.72 ± 3.34 | 24.84 ± 3.48 | 24.98 ± 3.56 | 24.97 ± 3.44 | 0.035 |
SBP (mmHg) | 142 ± 20 | 141 ± 20 | 142 ± 20 | 137 ± 18 | <0.001 | 142 ± 20 | 142 ± 20 | 139 ± 20 | 140 ± 20 | 0.004 |
DBP (mmHg) | 84 ± 12 | 84 ± 13 | 84 ± 13 | 82 ± 11 | <0.001 | 83 ± 13 | 84 ± 12 | 83 ± 12 | 84 ± 12 | 0.940 |
FBG (mmol/L) | 6.22 ± 6.21 | 5.81 ± 2.81 | 5.95 ± 3.78 | 5.86 ± 3.46 | 0.076 | 5.86 ± 3.06 | 5.97 ± 4.22 | 6.21 ± 6.23 | 5.77 ± 1.85 | 0.964 |
TG (mmol/L) | 1.61 ± 1.00 | 1.70 ± 1.21 | 1.60 ± 1.15 | 1.71 ± 1.08 | 0.135 | 1.55 ± 1.13 | 1.65 ± 1.13 | 1.68 ± 1.08 | 1.70 ± 1.15 | 0.001 |
TC (mmol/L) | 4.86 ± 1.00 | 4.94 ± 1.70 | 4.87 ± 1.76 | 4.81 ± 1.12 | 0.235 | 4.85 ± 1.99 | 4.91 ± 1.13 | 4.89 ± 1.77 | 4.84 ± 1.03 | 0.834 |
HDL-C (mmol/L) | 1.30 ± 0.32 | 1.34 ± 0.36 | 1.31 ± 0.36 | 1.30 ± 0.35 | 0.366 | 1.30 ± 0.38 | 1.34 ± 0.32 | 1.31 ± 0.37 | 1.29 ± 0.31 | 0.071 |
LDL-C (mmol/L) | 2.78 ± 0.81 | 2.95 ± 0.86 | 2.81 ± 0.88 | 3.07 ± 0.93 | <0.001 | 2.70 ± 0.82 | 2.94 ± 0.89 | 2.94 ± 0.89 | 2.90 ± 0.84 | <0.001 |
Energy (kcal/d) | 1761 ± 647 | 1849 ± 612 | 2030 ± 575 | 2303 ± 694 | <0.001 | 2026 ± 569 | 1952 ± 681 | 2010 ± 641 | 1833 ± 667 | <0.001 |
Total carbohydrate (g/d) | 260 ± 94 | 235 ± 75 | 212 ± 64 | 240 ± 75 | <0.001 | 198 ± 57 | 222 ± 68 | 259 ± 80 | 265 ± 94 | <0.001 |
Total protein (g/d) | 51 ± 22 | 58 ± 30 | 54 ± 29 | 110 ± 44 | <0.001 | 47 ± 22 | 63 ± 38 | 73 ± 40 | 69 ± 38 | <0.001 |
Total fat (g/d) | 49 ± 20 | 64 ± 20 | 101 ± 36 | 97 ± 35 | <0.001 | 111 ± 36 | 81 ± 33 | 66 ± 23 | 49 ± 21 | <0.001 |
Total carbohydrate (% of energy) | 59.3 ± 4.2 | 51.3 ± 4.1 | 42.1 ± 5.8 | 41.9 ± 5.0 | <0.001 | 39.4 ± 5.0 | 46.5 ± 6.1 | 52.1 ± 5.3 | 58.5 ± 5.9 | <0.001 |
Total protein (% of energy) | 11.4 ± 1.8 | 12.2 ± 3.6 | 10.5 ± 3.8 | 18.9 ± 4.0 | <0.001 | 9.0 ± 2.2 | 12.4 ± 3.8 | 14.1 ± 4.9 | 14.5 ± 4.3 | <0.001 |
Total fat (% of energy) | 25.0 ± 4.0 | 31.7 ± 4.9 | 44.6 ± 8.7 | 37.8 ± 6.0 | <0.001 | 49.0 ± 6.3 | 37.4 ± 4.9 | 29.6 ± 3.6 | 23.8 ± 3.4 | <0.001 |
SFA (g/d) | 7.5 ± 3.3 | 9.9 ± 4.1 | 14.0 ± 5.7 | 18.6 ± 7.8 | <0.001 | 14.6 ± 6.0 | 12.8 ± 7.4 | 11.4 ± 5.5 | 8.9 ± 4.9 | <0.001 |
MUFA (g/d) | 16.9 ± 6.9 | 21.9 ± 7.2 | 34.3 ± 12.3 | 33.4 ± 12.7 | <0.001 | 37.8 ± 12.5 | 28.0 ± 11.6 | 22.7 ± 8.0 | 16.9 ± 7.2 | <0.001 |
PUFA (g/d) | 15.9 ± 7.9 | 22.4 ± 8.6 | 40.3 ± 17.2 | 32.5 ± 14.5 | <0.001 | 46.0 ± 16.9 | 29.8 ± 12.5 | 21.8 ± 8.8 | 14.2 ± 7.2 | <0.001 |
Robust/Pre-Frail total n/n | Pre-Frail OR (95%CI) | Robust/Frail Total n/n | Frail OR (95%CI) | |||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |||
LCD score | ||||||
Q1 | 1361 (726/635) | 1.00 (Ref) | 1.00 (Ref) | 954 (726/228) | 1.00 (Ref) | 1.00 (Ref) |
Q2 | 1606 (906/700) | 0.88 (0.76–1.02) | 0.88 (0.76–1.03) | 1097 (906/191) | 0.68 (0.55–0.84) | 0.65 (0.52–0.82) |
Q3 | 1752 (960/792) | 0.93 (0.81–1.08) | 0.96 (0.82–1.11) | 1198 (960/238) | 0.78 (0.63–0.96) | 0.85 (0.68–1.06) |
Q4 | 908 (560/348) | 0.71 (0.60–0.84) | 0.73 (0.61–0.88) | 690 (560/130) | 0.74 (0.58–0.94) | 0.73 (0.55–0.95) |
p for trend | 0.003 | 0.017 | 0.008 | 0.035 | ||
LFD score | ||||||
Q1 | 1179 (646/533) | 1.00 (Ref) | 1.00 (Ref) | 788 (646/142) | 1.00 (Ref) | 1.00 (Ref) |
Q2 | 1930 (1074/856) | 0.98 (0.84–1.13) | 0.96 (0.83–1.12) | 1326 (1074/252) | 1.10 (0.88–1.38) | 1.04 (0.82–1.33) |
Q3 | 1335 (751/584) | 0.96 (0.82–1.12) | 0.95 (0.81–1.12) | 981 (751/230) | 1.43 (1.13–1.81) | 1.31 (1.02–1.68) |
Q4 | 1183 (681/502) | 0.92 (0.78–1.08) | 0.89 (0.75–1.05) | 844 (681/163) | 1.12 (0.87–1.44) | 1.01 (0.77–1.32) |
p for trend | 0.291 | 0.203 | 0.039 | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Q.; Guo, L.; Xue, Y.; Dang, Y.; Liu, W.; Yin, T.; Zhang, Y.; Zhao, Y. Associations between Low-Carbohydrate Diets and Low-Fat Diets with Frailty in Community-Dwelling Aging Chinese Adults. Nutrients 2023, 15, 3084. https://doi.org/10.3390/nu15143084
Li X, Wang Q, Guo L, Xue Y, Dang Y, Liu W, Yin T, Zhang Y, Zhao Y. Associations between Low-Carbohydrate Diets and Low-Fat Diets with Frailty in Community-Dwelling Aging Chinese Adults. Nutrients. 2023; 15(14):3084. https://doi.org/10.3390/nu15143084
Chicago/Turabian StyleLi, Xiaoxia, Qingan Wang, Linfeng Guo, Yixuan Xue, Yuanyuan Dang, Wanlu Liu, Ting Yin, Yuhong Zhang, and Yi Zhao. 2023. "Associations between Low-Carbohydrate Diets and Low-Fat Diets with Frailty in Community-Dwelling Aging Chinese Adults" Nutrients 15, no. 14: 3084. https://doi.org/10.3390/nu15143084
APA StyleLi, X., Wang, Q., Guo, L., Xue, Y., Dang, Y., Liu, W., Yin, T., Zhang, Y., & Zhao, Y. (2023). Associations between Low-Carbohydrate Diets and Low-Fat Diets with Frailty in Community-Dwelling Aging Chinese Adults. Nutrients, 15(14), 3084. https://doi.org/10.3390/nu15143084