The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans
Abstract
:1. Introduction
2. Materials and Methods
3. Healthy Human Intestinal Microbiota
4. Development of the Human Gastrointestinal Microbiota
5. The Role of the Digestive System Microbiota in the Host’s Energy Balance
6. A High-Fat, High-Protein Diet Effects on Gut Microbiota
7. The Interaction of Metabolism and Diet in Relation to Gut Microbiota
8. Examples of Research Results
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B.; Galla, S.; Chakraborty, S.; Cheng, X.; Yeo, J.; Mell, B.; Zhang, H.; et al. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Millán, M.J.; Pérez-Matute, P.; Oteo, J.A. Gut microbiota: A key player in health and disease. A review focused on obesity. J. Physiol. Biochem. 2015, 71, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, J.L.; Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Bellissimo, N.; Akhavan, T. Effect of macronutrient composition on short-term food intake and weight loss. Adv. Nutr. Int. Rev. J. 2015, 6, 302S–308S. [Google Scholar] [CrossRef] [Green Version]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phy-logeny and within humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. The Human gut microbiome is viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G.; Turroni, S.; Biagi, E.; Peano, C.; Severgnini, M.; et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 2014, 5, 3654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, R.N.; Gerber, G.K.; Luevano, J.M., Jr.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host Microbe 2015, 17, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar] [CrossRef]
- Korem, T.; Zeevi, D.; Suez, J.; Weinberger, A.; Avnit-Sagi, T.; Pompan-Lotan, M.; Matot, E.; Jona, G.; Harmelin, A.; Cohen, N.; et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 2015, 349, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Godneva, A.; Bar, N.; Kurilshikov, A.; Lotan-Pompan, M.; Weinberger, A.; Fu, J.; Wijmenga, C.; Zhernakova, A.; et al. Structural variation in the gut microbiome associates with host health. Nature 2019, 568, 43–48. [Google Scholar] [CrossRef] [Green Version]
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, I.; Kalka, I.N.; Bar, N.; et al. The environment dominates over host genetics in shaping the human gut mi-crobiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Falony, G.; Vieira-Silva, S.; Raes, J. Richness and ecosystem development across fecal snapshots of the gut microbiota. Nat. Microbiol. 2018, 3, 526–528. [Google Scholar] [CrossRef]
- Moore, W.E.C.; Holdeman, L.V. Human fecal flora—Normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 1974, 27, 961–979. [Google Scholar] [CrossRef] [PubMed]
- Poretsky, R.; Rodriguez-R, L.M.; Luo, C.; Tsementzi, D.; Konstantinidis, K.T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 2014, 9, e93827. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi-Man, O.; Davenport, E.R.; Gilad, Y. taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 2013, 8, e53608. [Google Scholar] [CrossRef] [Green Version]
- Suau, A.; Bonnet, R.; Sutren, M.; Godon, J.-J.; Gibson, G.R.; Collins, M.D.; Doré, J. Direct analysis of genes encoding 16s rrna from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 1999, 65, 4799–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugon, P.; Dufour, J.-C.; Colson, P.; Fournier, P.-E.; Sallah, K.; Raoult, D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 2015, 15, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef]
- Schluter, J.; Foster, K.R.; Ellner, S.P. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 2012, 10, e1001424. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Moya, A.; Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbes Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef] [PubMed]
- Campisciano, G.; Zanotta, N.; Quadrifoglio, M.; Careri, A.; Torresani, A.; Cason, C.; De Seta, F.; Ricci, G.; Comar, M.; Stampalija, T. The bacterial DNA profiling of chorionic villi and amniotic fluids reveals overlaps with maternal oral, vaginal, and gut microbiomes. Int. J. Mol. Sci. 2023, 24, 2873. [Google Scholar] [CrossRef]
- Koenig, J.E.; Spor, A.; Scalfone, N.; Fricker, A.D.; Stombaugh, J.; Knight, R.; Angenent, L.T.; Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4578–4585. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.; Typas, A. Systematically investigating the impact of medication on the gut microbiome. Curr. Opin. Microbiol. 2017, 39, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Wu, L.; Luo, J.; Liang, X.; Xiao, B.; Zhu, Y. The impacts of delivery mode on infant’s oral microflora. Sci. Rep. 2018, 8, 11938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avershina, E.; Storrø, O.; Øien, T.; Johnsen, R.; Pope, P.; Rudi, K. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol. Ecol. 2014, 87, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.-A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Veyver, I.V.D.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36466. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 2014, 63, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Salminen, S.; Gibson, G.R.; McCartney, A.L.; Isolauri, E. Influence of the mode of delivery on gut microbiota composition in seven year old children. Gut 2004, 53, 1388–1389. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [Green Version]
- Ho, N.T.; Li, F.; Lee-Sarwar, K.A.; Tun, H.M.; Brown, B.; Pannaraj, P.S.; Bender, J.M.; Azad, M.B.; Thompson, A.L.; Weiss, S.T.; et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 2018, 9, 4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäckhed, F. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 2011, 58 (Suppl. 2), 44–52. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.; Bik, E.M.; DiGiulio, D.B.; Relman, D.A.; Brown, P.O. Development of the human infant intestinal microbiota. PLoS Biol. 2007, 5, e177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, A.; Skov, T.H.; Bahl, M.I.; Roager, H.M.; Christensen, L.B.; Ejlerskov, K.T.; Mølgaard, C.; Michaelsen, K.F.; Licht, T.R. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of danish infants. Appl. Environ. Microbiol. 2014, 80, 2889–2900. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108, 4554–4561. [Google Scholar] [CrossRef]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; De Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.G.; Fitzgerald, G.F.; et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4586–4591. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Bian, G.; Gloor, G.B.; Gong, A.; Jia, C.; Zhang, W.; Hu, J.; Zhang, H.; Zhang, Y.; Zhou, Z.; Zhang, J.; et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young. Msphere 2017, 2, e00327-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Woodmansey, E.J.; McMurdo, M.E.T.; Macfarlane, G.T.; Macfarlane, S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl. Environ. Microbiol. 2004, 70, 6113–6122. [Google Scholar] [CrossRef] [Green Version]
- Biagi, E.; Candela, M.; Turroni, S.; Garagnani, P.; Franceschi, C.; Brigidi, P. Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacol. Res. 2013, 69, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zeng, T.; Zinellu, A.; Rubino, S.; Kelvin, D.J.; Carru, C. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. Msystems 2019, 4, e00325-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuikhar, N.; Keisam, S.; Labala, R.K.; Ramakrishnan, P.; Arunkumar, M.C.; Ahmed, G.; Biagi, E.; Jeyaram, K. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech. Ageing Dev. 2019, 179, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; McCoy, K.D. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Semin. Immunol. 2013, 25, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2015, 14, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Chen, D.; Zhang, J.-N.; Lv, X.; Wang, K.; Duan, L.-P.; Nie, Y.; Wu, X.-L. Bacterial Community Mapping of the Mouse Gastrointestinal Tract. PLoS ONE 2013, 8, e74957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, A.; Lennon, G.; O’Sullivan, O.; Docherty, N.; Balfe, A.; Maguire, A.; Mulcahy, H.E.; Doherty, G.; O’Donoghue, D.; Hyland, J.; et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 2015, 64, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Van den Abbeele, P.; Belzer, C.; Goossens, M.; Kleerebezem, M.; De Vos, W.M.; Thas, O.; De Weirdt, R.; Kerckhof, F.M.; Van De Wiele, T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013, 7, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Limenitakis, J.P.; Fuhrer, T.; Geuking, M.B.; Lawson, M.A.; Wyss, M.; Brugiroux, S.; Keller, I.; Macpherson, J.A.; Rupp, S.; et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 2015, 6, 8292. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, T.; Schloss, P.D. Dynamics and associations of microbial community types across the human body. Nature 2014, 509, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, I.B.; Claesson, M.J.; O’Toole, P.W.; Shanahan, F. Categorization of the gut microbiota: Enterotypes or gradients? Nat. Rev. Microbiol. 2012, 10, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Vajro, P.; Paolella, G.; Fasano, A. Microbiota and gut-liver axis: Their influences on obesity and obesity-related liver disease. J. Pedriatic Gastroenterol. Nutr. 2013, 56, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Woting, A.; Blaut, M. The intestinal microbiota in metabolic disease. Nutrients 2016, 8, 202. [Google Scholar] [CrossRef]
- Asadi, A.; Mehr, N.S.; Mohamadi, M.H.; Shokri, F.; Heidary, M.; Sadeghifard, N.; Khoshnood, S. Obesity and gut–microbiota–brain axis: A narrative review. J. Clin. Lab. Anal. 2022, 36, e24420. [Google Scholar] [CrossRef]
- Boerner, B.P.; Sarvetnick, N.E. Type 1 diabetes: Role of intestinal microbiome in humans and mice. Ann. N. Y. Acad. Sci. 2011, 1243, 103–118. [Google Scholar] [CrossRef]
- Bonder, M.J.; Kurilshikov, A.; Tigchelaar, E.F.; Mujagic, Z.; Imhann, F.; Vila, A.V.; Deelen, P.; Vatanen, T.; Schirmer, M.; Smeekens, S.P.; et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016, 48, 1407–1412. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohira, H.; Tsutsui, W.; Fujioka, Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb. 2017, 24, 660–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-L.; Guo, H.-H.; Huang, S.; Feng, C.-L.; Han, Y.-X.; Jiang, J.-D. Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1057, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Albenberg, L.G.; Wu, G.D. Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology 2014, 146, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
- Daïen, C.I.; Pinget, G.V.; Tan, J.K.; Macia, L. Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: An overview. Front. Immunol. 2017, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Heianza, Y.; Qi, L. Gene-diet interaction and precision nutrition in obesity. Int. J. Mol. Sci. 2017, 18, E787. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.-D.; Zhang, Q.-Y.; Mi, M.-T. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 2016, 7, e00210–e00215. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, D.; Thiele, I.; Ferguson, L.R. Editorial: The human gutome: Nutrigenomics of host-microbiome interactions. Front. Genet. 2016, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Su, C.; Jiang, Z.; Yang, Y.; Zhang, Y.; Yang, M.; Zhang, X.; Du, Y.; Zhang, J.; Wang, L.; et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. npj Biofilms Microbiomes 2021, 7, 36. [Google Scholar] [CrossRef]
- Fiorucci, S.; Distrutti, E. Bile Acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol. Med. 2015, 21, 702–714. [Google Scholar] [CrossRef]
- Katsuma, S.; Hirasawa, A.; Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 2005, 329, 386–390. [Google Scholar] [CrossRef]
- Makishima, M.; Lu, T.T.; Xie, W.; Whitfield, G.K.; Domoto, H.; Evans, R.M.; Haussler, M.R.; Mangelsdorf, D.J. Vitamin D receptor as an intestinal bile acid sensor. Science 2002, 296, 1313–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: Messengers between the microbiota and the immune system. Genes Dev. 2016, 30, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Bek, M.K.; Prince, N.Z.; Marzal, L.N.P.; Garssen, J.; Pardo, P.P.; Kraneveld, A.D. The role of bacterial-derived aromatic amino acids metabolites relevant in autism spectrum disorders: A comprehensive review. Front. Neurosci. 2021, 15, 738220. [Google Scholar] [CrossRef] [PubMed]
- Opdebeeck, B.; D’haese, P.C.; Verhulst, A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef]
- Heiss, C.N.; Olofsson, L.E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 2018, 10, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tome, D.; Soenen, S.; Westerterp, K.R. Dietary protein, weight loss, and weight maintenance. Ann. Rev. Nutr. 2009, 29, 21–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesta, D.H.; Samuel, V.T. A high-protein diet for reducing body fat: Mechanisms and possible caveats. Nutr. Metab. 2014, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasiakos, S.M. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone. J. Food Sci. 2015, 80 (Suppl. 1), A2–A7. [Google Scholar] [CrossRef]
- Lepe, M.; Gascón, M.B.; Cruz, A.J. Long-term efficacy of high-protein diets: A systematic review. Nutr. Hosp. 2011, 26, 1256–1259. [Google Scholar] [PubMed]
- Lacroix, M.; Gaudichon, C.; Martin, A.; Morens, C.; Mathé, V.; Tomé, D.; Huneau, J.-F. A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R934–R942. [Google Scholar] [CrossRef]
- Fromentin, G.; Tomé, D.; Bensaid, A.; Makkarios, L.; Even, P.C.; Marsset-Baglieri, A. Increasing the protein content in a carbohydrate-free diet enhances fat loss during 35% but not 75% energy restriction in rats. J. Nutr. 2004, 134, 2646–2652. [Google Scholar] [CrossRef] [Green Version]
- Morens, C.; Keijzer, M.; De Vries, K.; Scheurink, A.; Van Dijk, G. Effects of high-fat diets with different carbohydrate-to-protein ratios on energy homeostasis in rats with impaired brain melanocortin receptor activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R156–R163. [Google Scholar] [CrossRef]
- Pichon, L.; Huneau, J.-F.; Fromentin, G.; Tomé, D. A High-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats. J. Nutr. 2006, 136, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Madsen, L.; Pedersen, L.M.; Liaset, B.; Ma, T.; Petersen, R.K.; van den Berg, S.; Pan, J.; Muller-Decker, K.; Dulsner, E.D.; Kleemann, R.; et al. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids. J. Biol. Chem. 2008, 283, 7196–7205. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Liaset, B.; Hao, Q.; Petersen, R.K.; Fjære, E.; Ngo, H.T.; Lillefosse, H.H.; Ringholm, S.; Sonne, S.B.; Treebak, J.T.; et al. Sucrose counteracts the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PLoS ONE 2011, 6, e21647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudenberg, A.; Petzke, K.J.; Klaus, S. Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J. Nutr. Biochem. 2012, 23, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Freudenberg, A.; Petzke, K.J.; Klaus, S. Dietary L-leucine and L-alanine supplementation have similar acute effects in the pre-vention of high-fat diet-induced obesity. Amino Acids 2013, 44, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Lillefosse, H.H.; Fjære, E.; Myrmel, L.S.; Midtbø, L.K.; Jarlsby, R.H.; Ma, T.; Jia, B.; Petersen, R.K.; Sonne, S.B.; et al. High-glycemic index carbohydrates abrogate the antiobesity effect of fish oil in mice. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1097–E1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllan, L.; Skuse, P.; Cotter, P.D.; O’Connor, P.O.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.; Roche, H.M.; Nilaweera, K.N. Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLoS ONE 2014, 9, e88904. [Google Scholar] [CrossRef] [Green Version]
- Liisberg, U.; Myrmel, L.S.; Fjære, E.; Rønnevik, A.K.; Bjelland, S.; Fauske, K.R.; Holm, J.B.; Basse, A.L.; Hansen, J.B.; Liaset, B.; et al. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte 2016, 5, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Fogelholm, M.; Anderssen, S.; Gunnarsdottir, I.; Lahti-Koski, M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: A systematic literature review. Food Nutr. Res. 2012, 56, 19103. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D.; Hou, T.; Ludwig, D.S.; Rimm, E.B.; Willett, W.; Hu, F.B.; Mozaffarian, D. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: Results from 3 prospective cohorts. Am. J. Clin. Nutr. 2015, 101, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Cir-culation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Martínez-López, L.M.; Pepper, A.; Pilla, R.; Woodward, A.P.; Suchodolski, J.S.; Mansfield, C. Effect of sequentially fed high protein, hydrolyzed protein, and high fiber diets on the fecal microbiota of healthy dogs: A cross-over study. Anim. Microbiome 2021, 3, 42. [Google Scholar] [CrossRef]
- Moreno-Pérez, D.; Bressa, C.; Bailén, M.; Hamed-Bousdar, S.; Naclerio, F.; Carmona, M.; Pérez, M.; González-Soltero, R.; Montalvo-Lominchar, M.G.; Carabaña, C. Effect of a protein supplement on the gut microbiota of endurance athletes: A ran-domized, controlled, double-blind pilot study. Nutrients 2018, 10, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, C.F.; Salvador, A.F.; Hughes, R.L.; Scaroni, S.E.; Alamilla, R.A.; Askow, A.T.; Paluska, S.A.; Dilger, A.C.; Holscher, H.D.; Lisio, M.D.; et al. Higher protein intake during resistance training does not potentiate strength but modulates gut mi-crobiota in middle-aged adults: A randomized control trial. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E900–E913. [Google Scholar] [CrossRef]
- Cronin, O.; Barton, W.; Skuse, P.; Penney, N.C.; Garcia-Perez, I.; Murphy, E.F.; Woods, T.; Nugent, H.; Fanning, A.; Melgar, S.; et al. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems 2018, 3, e00044-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 2018, 9, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, H.M.; Wright, M.L.; Anil Kumar, N.V.; Qawasmeh, A.; Hassan, S.T.; Mocan, A.; Nabavi, S.M.; Rastrelli, L.; Atanasov, A.G.; Haddad, P.S. Significance of microbiota in obesity and metabolic diseases and the modu-latory potential by medicinal plant and food ingredients. Front. Pharmacol. 2017, 8, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. Meat, dairy, and plant proteins alter the bacterial composition of rat gut bacteria. Sci. Rep. 2015, 5, 15220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Li, H.; Xu, X.; Li, C.; Zhou, G. The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet. BMC Microbiol. 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.; Daviglus, M.L.; Garside, D.B.; Dyer, A.R.; Greenland, P.; Neaton, J.D. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 2000, 284, 311–318. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Reddy, B.S.; Weisburger, J.H.; Wynder, E.L. Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 1975, 105, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Drasar, B.S.; Crowther, J.S.; Goddard, P.; Hawksworth, G.; Hill, M.J.; Peach, S.; Williams, R.E.O.; Renwich, A. The relation between diet and the gut microflora in man. Proc. Nutr. Soc. 1973, 32, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Fava FR, G.R.; Gitau, R.; Griffin, B.A.; Gibson, G.R.; Tuohy, K.M.; Lovegrove, J.A. The type and quantity of dietary fat and carbohydrate alter the fecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int. J. Obes. 2013, 37, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Gaskins, H.R.; McIntosh, M.K. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem. 2014, 25, 270–280. [Google Scholar] [CrossRef]
- Wolters, M.; Ahrens, J.; Romani-Perez, M.; Watkins, C.; Sanz, Y.; Benitez-Paez, A.; Stanton, C.; Gunther, K. Dietary fat, the gut microbiota, and metabolic health—A systematic review conducted within the MyNewGut project. Clin. Nutr. 2019, 38, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020, 181, 1263–1275.e16. [Google Scholar] [CrossRef]
- Urwin, H.J.; Miles, E.A.; Noakes, P.S.; Kremmyda, L.S.; Vlachava, M.; Diaper, N.D.; Godfrey, K.M.; Calder, P.C.; Yaqoob, J.V.P. Effect of salmon consumption during pregnancy on maternal and infant fecal microbiota, secretory IgA, and calprotectin. Br. J. Nutr. 2014, 111, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, V.; Kaakoush, N.O.; Maloney, C.A.; Raipuria, M.; Huinao, K.D.; Mitchell, H.M.; Morris, M.J. Changes in gut microbiota in rats fed a high-fat diet correlate with obesi-ty-associated metabolic parameters. PLoS ONE 2015, 10, e0126931. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Caesar, R.; Tremaroli, V.; Kovatcheva-Datchary, P.; Cani, P.D.; Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015, 22, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Shenderov, B.A. Gut indigenous microbiota and epigenetics. Microb. Ecol. Health Dis. 2012, 23, 17195. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Z.; Lin, X.; Yao, S.; Xian, M.; Ning, X.; Fu, W.; Jiang, M.; Li, N.; Xiao, X.; et al. Rural environment reduces allergic inflammation by modulating the gut microbiota. Gut Microbes 2022, 14, e2125733. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Arregui, M.; Coltell, O.; Portolés, O.; Guillem-Sáiz, P.; Carrasco, P.; Sorlí, J.V.; Ortega-Azorín, C.; González, J.I.; Ordovás, J.M. Association of the LCT-13910C>T Polymorphism With Obesity and Its Modulation by Dairy Products in a Mediterranean Population. Obesity 2011, 19, 1707–1714. [Google Scholar] [CrossRef] [Green Version]
- Bonder, M.J.; Tigchelaar, E.F.; Cai, X.; Trynka, G.; Cenit, M.C.; Hrdlickova, B.; Zhong, H.; Vatanen, T.; Gevers, D.; Wijmenga, C.; et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Buitrago-Lopez, A.; Sanderson, J.; Johnson, L.; Warnakula, S.; Wood, A.; Di Angelantonio, E.; Franco, O.H. Chocolate consumption and cardiometabolic disorders: Systematic review and meta-analysis. BMJ 2011, 343, d4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burcelin, R. The hologenome theory of metabolic diversity. Mol. Metab. 2016, 5, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Wade, P.A. Crosstalk between the microbiome and epigenome: Messages from bugs. J. Biochem. 2018, 163, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Gogulamudi, V.R.; Periasamy, R.; Raghavaraju, G.; Subramanian, U.; Pandey, K.N. Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and suppresses the renal inflammation and fibrosis in Npr1 haplotype male mice. Am. J. Physiol. Renal Physiol. 2017, 313, F781–F795. [Google Scholar] [CrossRef] [Green Version]
- Schulz, P.; Hryhorowicz, S.; Rychter, A.M.; Zawada, A.; Słomski, R.; Dobrowolska, A.; Krela-Kaźmierczak, I. What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021, 13, 373. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Ahmad, M.I.; Hussain, M.; Khan, I.A.; Zhao, D.; Li, C. Meat protein in high-fat diet induces adipogensis and dyslipidemia by altering gut microbiota and endocannabinoid dysregulation in the adipose tissue of mice. J. Agric. Food Chem. 2020, 68, 3933–3946. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 2006, 13, 35–37. [Google Scholar] [CrossRef]
- Castonguay-Paradis, S.; Lacroix, S.; Rochefort, G.; Parent, L.; Perron, J.; Martin, C.; Lamarche, B.; Raymond, F.; Flamand, N.; Di Marzo, V.; et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 2020, 10, 15975. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kong, Q.; Li, X.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients 2020, 12, 3197. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H.; Gholami, A.M.; Berry, D.; Desmarchelier, C.; Hahne, H.; Loh, G.; Mondot, S.; Lepage, P.; Rothballer, M.; Walker, A.; et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2013, 8, 295–308. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Ahmed, M.I.; Zou, X.; Hussain, M.; Zhang, M.; Zhao, F.; Xu, X.; Zhou, G.; Li, C. Beef, casein, and soy proteins differentially affect lipid metabolism, triglycerides accumulation and gut microbiota of high-fat diet-fed C57BL/6J mice. Front. Microbiol. 2018, 9, 2200. [Google Scholar] [CrossRef]
- Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2011, 36, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Shi, X.; Lin, X.; Ye, K.; Xu, X.; Li, C.; Zhou, G. Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Front. Microbiol. 2017, 8, 1395. [Google Scholar] [CrossRef] [Green Version]
- Lukkari, T.A.; Järveläinen, H.A.; Oinonen, T.; Kettunen, E.; Lindros, K.O. Short-term ethanol exposure increases the expression of kupffer cell cd14 receptor and lipopolysaccharide binding protein in rat liver. Alcohol Alcohol. 1999, 34, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Chen, L.; Lv, J.; Pang, Y.; Guo, Y.; Pei, P.; Du, H.; Yang, L.; Millwood, I.Y.; Walters, R.G.; et al. Association of red meat consumption, metabolic markers, and risk of cardiovascular diseases. Front. Nutr. 2022, 9, 833271. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Research Model | Timeframe | Protein or Fat Source | Microbiota Changes | Comment | Ref. |
---|---|---|---|---|---|
Human N = 27 | Mediterranean diet | greater Bacteroidetes presence associated with lower animal protein intake | [114] | ||
higher Bifidobacterium spp. levels associated with more vegetal proteins intake; lower Bacteroidetes presence and higher F/B ratio associated with higher animal protein intake | |||||
lower relative abundance of Parabacteroides and Butyricimonas related to higher animal proteins and saturated fats intake; lower relative abundance of Oscillospira related to high protein intake; Roseburia associated with vegetal proteins intake | |||||
Human, male N = 24 | 10 weeks | whey isolate (10 g) and beef hydrolysate (10 g) vs. maltodextrin; once a day | protein group presenting higher abundance of Bacteroidetes and lower abundance of Firmicutes | [111] | |
protein group presented a higher percentage of Bacteroides genus and a lower presence of Citrobacter and Klebsiella genera | |||||
Human, overweight N = 50 | 10 weeks | isocaloric meal of minimally processed beef (97.4% lean): moderate protein consumption (16 g protein, MOD) vs. high protein consumption (32 g protein, HIGH) of the minced beef steak | 1st week of dietary habituation: decreased abundance of Veillonellaceae, Akkermansia, Eggerthellaceae, and Ruminococcaceae in the HIGH group; Final result: Erysipelotrichaceae decreased in MOD and HIGH groups, increased abundance of Eggerthellaceae, Veillonellaceae, and Akkermansia in HIGH group, increased abundance of Veillonellaceae in MOD group | whole body resistance training (3 days/week) during the diet intervention | [112] |
Human, predominantly overweight or obese, N = 90 | 8 weeks | daily 30-g protein supplement containing 24 g of whey protein (P group) | increased alpha diversity of Archaea sp. in the P group; moderately enhanced archaeal diversity in the P group compared to the EP group; greater bacterial diversity in the EP group than in the P group | P group vs. EP group (exercise + diet of P group) vs. E group (exercise only) | [113] |
E and EP groups with separate Prevotella copri-related clusters; P group composed of Bacteroides vulgatus pathways; no significant separations for alterations in diversity resulting from the intervention (P, EP, E) | |||||
Human, pregnant women N = 123 | ca. 18 weeks | two 150 g portions of farmed salmon/week | no effects of increased oily fish consumption on any of the bacteria enumerated in maternal fecal samples | sampled at 38 weeks gestation | [127] |
Rat, Sprague-Dawley, male N = 66 | 90 days | proteins from pork, beef, chicken, fish, soy, or casein | chicken and fish proteins-fed groups presented higher Firmicutes but lower Bacteroidetes abundance than groups fed with other proteins; soy protein-fed group presented higher Bacteroidetes abundance; chicken protein-fed group presented greater Actinobacteria abundance; beef protein-fed group presented greater Proteobacteria abundance | [117] | |
Lachnospiraceae characteristic of soy protein and casein-fed groups (average: 17% and 18%, respectively); Ruminococcaceae (average: 18% and 27%, respectively) and Lactobacillaceae (average: 20% and 19%, respectively) characteristic of beef and pork proteins-fed groups; Lactobacillaceae (average: 46% and 36%, respectively) characteristic of chicken and fish proteins-fed groups | |||||
36 OTUs difference between non-meat and red meat protein groups: 22 OTUs higher in non-meat protein groups and 14 OTUs higher in red meat protein groups; relative abundance of Alloprevotella higher in non-meat protein groups, Roseburia one of the most predominant in non-meat protein groups, Prevotellaceae uncultured detected in non-meat protein groups but not in red meat protein groups | |||||
56 OTUs difference between non-meat and white meat protein groups: 33 OTUs higher in non-meat protein groups, 23 OTUs higher in white meat protein groups; Roseburia and Prevotellaceae uncultured typical of non-meat protein groups; Bacteroides characteristic of non-meat protein groups; 5 OTUs representing genus Lactobacillus more abundant in white meat protein groups | |||||
105 OTUs difference between red and white meat protein groups: 83 OTUs higher in red meat protein groups; 22 OTUs higher in white meat protein groups but only 16 OTUs significantly diverse; relative abundance of Lactobacillus genus higher in white meat protein groups; relative abundance of Oscillibacter was higher in red meat protein groups; Bacteroides differed between the red and white meat protein groups; chicken protein-fed group with the highest, and casein-fed group with the lowest Lactobacillus abundance (multiple comparison); soy protein-fed group with lower Lactobacillus abundance compared to meat proteins-fed groups | |||||
Rat, Sprague Dawley, 6-week old, male N = 20 | 16 weeks | control chow (11 kJ/g, 12% fat, 21% protein, 65% carbohydrate), free choice HFD in 3 variants: (1) control chow (2) commercial HF pelleted diet SF03-020 (20 kJ/g, 43% fat, 17% protein, 40% carbohydrate) (3) modified chow (powdered chow with sweetened condensed milk and saturated animal fat (lard); 15.4 kJ/g; 51% fat, 10% protein, 38% carbohydrate) | HFD decreased abundance of Lactobacillales and lowered abundance of Clostridiales, Bacteroidales, Enterobacteriales, Erysipelotrichales and Desulfovibrionales | fecal sample/animal; harvested from the terminal part of the cecum | [118] |
HFD lowered abundance of Lactobacillaceae and increased abundance of other important groups including Bacteroidaceae, Lachnospiraceae, Enterobacteriaceae | |||||
Ruminococcaceae, Veillonellaceae, Porphyromonadaceae, and Erysipelotrichaceae | |||||
Lactobacillus, specifically Lactobacillus intestinalis, dominated in chow-fed groups; HFD decreased Lactobacillus intestinalis but increased Blautia, Morganella, Bacteroides, Phascolarctobacterium, and Parabacteroides | |||||
Rat, Sprague-Dawley, male N = 32; n = 8 per group | 90 days | casein, beef proteins, chicken proteins, soy proteins | no differences in ACE, Chao, Shannon, Simpson, and Good’s coverage indices; different response to chicken protein than to casein, beef protein, and soy protein; soy and casein-fed groups showed similarity in microbiota; Firmicutes and Bacteroidetes the most dominant phyla; Bacteroidetes the most and Firmicutes the least abundant in chicken protein-fed group; F/B ratio was lower in casein, beef, and soy protein-fed groups | [148] | |
Fusobacterium higher in casein and beef protein-fed groups; chicken protein-fed group with the highest relative abundance of Lactobacillus sp. OTUs and higher level of beneficial Lactobacillus sp.; soy protein-fed group with the highest relative abundance of Ruminococcaceae OTUs and the lowest level of beneficial Lactobacillus sp. | |||||
Mouse, 12-week-old, male | 11 weeks | lard vs. fish oil | Bacteroides, Turicibacter, and Bilophila higher in lard-fed group; Actinobacteria (Bifidobacterium and Adlercreutzia), lactic acid bacteria (Lactobacillus and Streptococcus), Verrucomicrobia (Akkermansia muciniphila), Alphaproteobacteria, and Deltaproteobacteria higher in fish-oil-fed group | gut microbiota transplantation with cecal content followed by 200 μL antibiotic cocktail treatment (ampicillin + metronidazole + vancomycin + neomycin) administrated by oral gavage once a day for 3 days | [130] |
Akkermansia and Lactobacillus presence increased in the cecal contents of fish oil-fed group compared to lard-fed group; Lactobacillus, but not Akkermansia, presence increased in fish-oil-fed group after 3 weeks; Akkermansia taxa increased in the cecum of mice that received fish-oil microbiota; Lactobacillus increased in mice that received a lard microbiota after gut microbiota transplant | |||||
Mouse C57BL/6J, 7-week old, male N = 80 | 14 weeks | high-fat diet (HFD, 60% kcal from lard) vs. low fat diet (LFD, 12% kcal from lard) containing casein, or meat proteins from chicken, beef, or pork | Dietary proteins had no effect on microbiota richness (Chao and Good coverage) or the diversity (Shannon and Simpson indices) in LFD groups; beef and pork protein diet groups with lower Chao and Good coverage values than casein diet group among HFD groups | [141] | |
HFD increased Firmicutes and reduced Deferribacteres abundance compared with LDF groups; HF chicken protein diet group with the highest, and HF beef protein diet group with the lowest, Verrucomicrobia abundance compared with other HFD groups | |||||
HF beef protein diet group with higher Proteobacteria abundance than casein and pork protein diet groups; LF casein diet group with the highest Actinobacteria abundance, but not the relative Actinobacteria abundance, remained similar to HF group; Firmicutes, Bacteroidetes, and Verrucomicrobia the most abundant in LF diet groups; HFD increased the abundance of Firmicutes, Proteobacteria, and Deferribacteres but reduced the abundance of Verrucomicrobia; Bacteroidales S24-7, Akkermansia, Desulfovibrio, Rikenellaceae RC9 gut group, Faecalibaculum, Alistipes, and Ruminiclostridium 9 the most abundant in LFD groups | |||||
chicken, beef, and pork protein diet groups with higher abundance of Akkermanisa but lower abundances of Faecalibaculum, Lachnospiraceae uncultured, Blautia, and Lachnospiraceae NK4A136 group than the casein diet group; HFD increased the relative abundances of Desulfovibrio, Lachnospiraceae uncultured, Ruminiclostridium 9, and Lactobacillus, but decreased the relative abundance of Akkermansia; HF beef protein group with relatively higher abundances of genera Mollicutes, Oscillibacter, Escherichia, Shigella, and Mucispirillum and decreased relative abundances of Blautia, Anaerotruncus, and Bacteroides | |||||
Corynebacteriaceae, Micrococcaceae, Actinobacteria, Staphylococcaceae, and Lactobacillales the most abundant taxa in LF casein diet group; Peptococcaceae, Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, and Anaeroplasmataceae dominant in the chicken protein diet group; Defluviitaleaceae and Verrucomicrobiaceae more abundant in LF beef protein diet group; Deferribacteraceae and Lactobacillales rich in LF pork protein diet group; Peptococcaceae, Ruminococcaceae, Clostridia, Alcaligenaceae, and Halomonadaceae the most abundant in HF casein diet group; Lactobacillales, Bacilli, Christensenellaceae, and Clostridialesvadin bb60 group more specific for HF chicken protein diet group; Porphyromonadaceae, Peptostreptococcaceae, and Burkholderiaceae specific for HF beef protein diet group; Rhodospirillaceae specific for HF pork protein diet group | |||||
Mouse C57BL/6J, male | 14 weeks | high-fat diet (HFD, lard) vs. low-fat, high-carbohydrate diet (corn starch) (LFD) | no difference in Firmicutes abundance or F/B ratio between HFD and LFD groups; relative abundances of Lactobacillus, Faecalibaculum, Lachnoclostridium, Bacteroides, Desulfovibrio, Eubacterium fissicatena group, and Bifidobacterium higher in LFD group; Lachnospiraceae, Blautia, Rikenellaceae RC9 gut group, Oscillibacter, an uncultured Bacteroidales bacterium, Lachnospiraceae UCG-006 more abundant in HFD group; Rikenellaceae RC9 gut group, Rikenellaceae, Clostridiales, and Peptococcaceae higher in HFD group; Lactobacillae more abundant in LFD group | cecum | [144] |
alpha-diversity higher in the HFD group; relative abundances of Bacteroidetes and Proteobacteria higher in HFD group; relative abundances of Firmicutes and Verrucomicrobia lower in HFD group; F/B ratio significantly higher in LFD group | colon | ||||
HFD increased alpha diversity in cecum and colon compared to LFD; F/B ratio significantly decreased in HFD group HFD group: Desulfovibrionaceae bacterium the most abundant in cecum; uncultured Muribaculaceae bacterium was the most abundant in colon LFD-fed group: Lactobacillus was the most abundant in cecum and colon | |||||
Muribaculaceae, Rikenellaceae RC9 gut group, Odoribacter, Mucispirillum, Alistipes, uncultured Muribaculaceae bacteria (two OTUs), and an uncultured Bacteroidales bacterium more abundant in HFD group; Faecalibaculum, Blautia, Bifidobacterium, Akkermansia, and uncultured Muribaculaceae bacterium less abundant in HFD group; Muribaculaceae was more abundant in HFD group in the cecum and colon; HFD increased Mucispirillum in cecum and colon; Lactobacillus and Bifidobacterium abundance decreased in HFD group | |||||
Mouse C57BL/6NCrl, male n = 6 per group | 12 weeks | carbohydrate (corn starch) vs. high-fat (HF, beef tallow) | HF diet did not affect taxa richness; Ruminococcaceae (phylum Firmicutes) proportionally lower and Rikenellaceae (phylum Bacteroidetes) proportionally higher in HF-fed group; Lactobacilli in higher proportions in HF-fed group; HF-fed group with increased relative Rikenellaceae abundance; mean Lactobacillus relative abundances higher (but not statistically significant due to inter-individual variations) in HF-fed group | [145] | |
Mouse, C57BL/6J, male N = 60 | 12 weeks | low-fat diet (LFD: 12% kcal from lard) vs. high-fat diet (HFD: 60% kcal from lard); each diet with different protein source: casein (C), soy (S), beef (B) | no differences in HFD and LFD groups in alpha diversity; microbiota responded differently to beef protein in LFD and HFD groups HFD increased F/B ratio compared to LFD; Firmicutes, Bacteroidetes, and Verrucomicrobia the most abundant in LFD and HFD groups | [146] | |
relative abundances of Firmicutes and Bacteroidetes unchanged in all HFD groups in soy, casein, and beef protein-fed subgroups; Verrucomicrobia abundance reduced in HFB group compared with LFB group and other HFD groups; relative abundance of Proteobacteria higher in HFS group than in HFB and HFC groups | |||||
Bacteroidales S24-7 the most predominant genus in LFD-fed groups; HFD reduced the abundance of Bacteroidales S24-7 group compared with LFD; HFD increased the abundance of Mucispirillum, Escherichia, Shigella, Mollicutes, and Oscillibacter and their relative abundances were highest in HFB group; HFB reduced the relative abundance of Akkermansia but induced an increase in relative abundance of Anaerotruncus, Bacteroides, and Blautia; LFS-fed group with higher relative abundance of Rikenellaceae than LFB-fed group; Akkermansia was most abundant in LFB-fed group and least abundant in LFC-fed group; LFB increased the relative abundances of Mucispirillum, Deferribacteraceae, Desulfovibrionaceae, and Bacteroidaceae LFC group showed the highest relative abundances of Firmicutes, Actinobacteria, Bacilli, and Lactobacillus, but lower relative abundances of Akkermansia, Deferribacters, and Ruminiclostridium | |||||
Lachnospiraceae NK4A136 group the most predominant in HFS-fed group and the least abundant in the HFB-fed group; HFB-fed group with the highest relative abundances of Blautia, Romboutsia, and Odoribacter; HFC-fed group with the highest relative abundances of Ruminiclostridium 9, Lactobacillus, Anaerotruncus, and Actinobacteria | |||||
Dog N = 50 | 18 weeks | diet A = hydrolyzed diet (protein source: hydrolyzed chicken liver, carbohydrate source: corn starch and cellulose) diet B = high-insoluble fiber diet (protein source: soybean meal, carbohydrate source: soybean meal) diet C = high-protein diet (all meat/carcass, raw diet) | Firmicutes represented 44% (range: 18–91%) in diet C, 62% (range: 29–93%) in diet B, and 55% (range: 30–95%) in diet A; Bacteroidetes represented 14% (range: 0.22–50%) in diet C, 16% (range: 0.44–41%) in diet B, and 16% (range: 0.34–51%) in diet A; Fusobacteria represented 24% (range: 4–72%) in diet C, 8% (range: 1–45%) in diet B, and 17% (range: 2–34%) in diet A | Group 1 = dogs fed ACB diet sequence Group 2 = dogs fed BCA diet sequence each feeding period = 6 weeks; all dogs fed with diet C at baseline | [110] |
after 6 weeks on diet A, relative abundance of Bacteroidetes was 24% (range: 0.71–51) in group 1 and 7% (range: 0.34–29) in group 2; Bacteroidetes presented 3–50% (median: 23%) at baseline (diet C) in group 1 and 0.5–33% (median: 8%) at the end of the washout (diet C) period in group 2 | |||||
diet C enriched with Fusobacteria in group 1; diets B and A enriched Firmicutes phylum; Firmicutes increased in the washout period but not during the baseline; Bacteroidetes increased at baseline but not during the washout period; Actinobacteria increased on diet B only in group 1 | |||||
Turicibacteraceae, Lactobacillaceae, Bifidobacteriaceae and Erysipelotrichaceae higher on diet B only in group 1; Peptostreptococcaceae and Clostridiaceae higher on diet C only during the washout period; Bacteroidaceae higher only at baseline; Fusobacteriaceae more abundant at baseline and during the washout period in both groups; Veillonellaceae was more abundant on diet A only in group 1 and on diet B; Prevotella to Bacteroides ratio higher on diet A and B compared to diet C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazura, W.; Michalczyk, K.; Stygar, D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients 2023, 15, 3082. https://doi.org/10.3390/nu15143082
Kazura W, Michalczyk K, Stygar D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients. 2023; 15(14):3082. https://doi.org/10.3390/nu15143082
Chicago/Turabian StyleKazura, Wojciech, Katarzyna Michalczyk, and Dominika Stygar. 2023. "The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans" Nutrients 15, no. 14: 3082. https://doi.org/10.3390/nu15143082
APA StyleKazura, W., Michalczyk, K., & Stygar, D. (2023). The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients, 15(14), 3082. https://doi.org/10.3390/nu15143082