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Abstract: The relationship between gut microbiota and obesity is well documented in humans and
animal models. Dietary factors can change the intestinal microbiota composition and influence
obesity development. However, knowledge of how diet, metabolism, and intestinal microbiota
interact and modulate energy metabolism and obesity development is still limited. Epidemiological
studies show a link between consuming dietary proteins and fats from specific sources and obesity.
Animal studies confirm that proteins and fats of different origins differ in their ability to prevent or
induce obesity. Protein sources, such as meat, dairy products, vegetables, pulses, and seafood, vary
in their amino acid composition. In addition, the type and level of other factors, such as fatty acids
or persistent organic pollutants, vary depending on the source of dietary protein. All these factors
can modulate the intestinal microbiota composition and, thus, may influence obesity development.
This review summarizes selected evidence of how proteins and fats of different origins affect energy
efficiency, obesity development, and intestinal microbiota, linking protein and fat-dependent changes
in the intestinal microbiota with obesity.
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1. Introduction

The gut is inhabited by about 100 trillion organisms, including 35,000 species of bacte-
ria [1], that create a specific ecosystem that helps maintain the health of the intestines, as
well as the entire individual [2]. The importance of gut microbiota is well documented [3,4],
and increasingly, the role of the gastrointestinal tract in the etiology and influence on
treating metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), and cardio-
vascular diseases (CVD), is emphasized [1,2]. One of the pathophysiologic links between
obesity and gut microbiota is a leaky gut syndrome. The gut mucosa in leaky gut syndrome
can trigger an inflammatory response that enables the development of peripheral insulin
resistance. Moreover, the leaky gut syndrome may result from the disturbed secretion of
tissue hormones responsible for the satiety feeling and the non-digestible food ingredients
influencing the gastrointestinal microbiota. The leaky gut syndrome manifests in impaired
glucose uptake and utilization in skeletal muscles, intensified fat deposition in adipose
tissue, and an increased release of free fatty acids. In consequence, hyperglycemia increases,
and the non-alcoholic fatty liver disease (NAFLD) develops [5]. Nevertheless, the increased
consumption of high-calorie foods and increased total energy consumption are possibly
major factors responsible for the obesity epidemic [6,7]. Dietary patterns play an important
role in obesity development [8] and in shaping the intestinal microbiota in humans [9–15].

2. Materials and Methods

The systematic literature research was conducted using the Pubmed and Google Scholar
databases. The following keywords were used individually or in combination: obesity,
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gut microbiota, large intestine, colon, diet, fat, and proteins. The database search focused
on original research and review articles presenting studies conducted on animals and
humans, published between May 1974 and February 2023. The non-English publications
were excluded from the search results.

3. Healthy Human Intestinal Microbiota

The basic assumption regarding changes in the composition of the intestinal micro-
biota in metabolic disorders states is the knowledge about the composition and function
of the intestinal microbiota in metabolically healthy people. However, the normal human
intestinal microbiota has not been thoroughly defined regarding its taxonomic diversity.
The relative distribution of gut bacteria and archaea is partially unique to individuals in
terms of microbial species differences, microbial development [16], and genome [17,18].
The environment and lifestyle also influence the diversity of the human gut microbiota [19].
However, healthy individuals generally are characterized by a high diversity of taxa, high
genetic diversity of microorganisms, and a functionally stable microbiome [18]. However, it
is worth noting that the gut bacteria’s high diversity and species richness are not objective
indicators of a healthy microbiome, since intestinal transit time also affects the richness
of microorganisms [20]. Extended transit time may increase species diversity but not nec-
essarily in a healthy gut microbiota. In the past, most of the knowledge on adult human
gut microbiota was derived from labor-intensive methods based on culturing bacterial
cultures [21]. The ability to study intestinal microbiota has improved significantly due to
the emergence of high-throughput and low-cost methods for genetic code sequencing. The
identification of the bacterial 16S rRNA gene is a popular approach [22,23], because this
gene is present in all bacteria and archaea and contains nine highly variable regions (V1–V9),
which allows distinguishing the species easily. Early studies using the entire 16S rRNA gene
sequencing emphasized the extreme insensitivity and bias of culturing methods, as 76% of
the rRNA sequences indicated new and uncharacterized species [24]. Recently, the empha-
sis on 16S rRNA sequencing has shifted to the analysis of shorter gene sub-regions [23], but
it can also be misleading [22]. It seems that genome-wide metagenomics can provide more
reliable estimates for the composition and diversity of microbiota [22]. So far, data from
the MetaHit and Human Microbiome projects have produced the most comprehensive
picture of the microbial spectrum associated with the human gut microbiota [25,26]. The
data collected in these studies allowed for identifying 2172 species isolated from humans,
classified into 12 groups, 93.5% of which were Proteobacteria, Bacteroidetes, Firmicutes, and
Actinobacteria.

Three out of the twelve groups contained only one species isolated from humans,
including the intestinal species Akkermansia muciniphila, the only known member of Verru-
comicrobia sp. In humans, 386 of the identified bacterial species are strictly anaerobic, and
their number varies depending on the part of the body. Lower concentrations of anaerobes
are observed on the skin, in the mouth, or in the vagina, while higher concentrations are
observed in the intestine. In addition, the concentration of anaerobes increases along the
digestive tract, from the stomach to the colon [25]. The gut microbiota is diverse and
exhibits high functional redundancy [27,28]. Schluter et al. [27] combined 249 new and
1018 already published bacterial sequences and, based on 9,879,896 genes, estimated the
functional capacity of the human gut microbiome [27]. They identified the presence of
country-specific microbial signatures, suggesting that the gut microbiota composition is
influenced by environmental factors such as diet and possibly also by host genetics [27,29].
However, the microorganisms that differ in composition may show a certain degree of
functional redundancy, resulting in a similar profile of proteins or metabolites [29]. This
information is critical to the researchers developing therapeutic strategies to modify and
profile microbes in disease states.
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4. Development of the Human Gastrointestinal Microbiota

It is generally believed that the human gastrointestinal microbiota development begins
at birth, although some studies reported microbes presence in uterine tissues, placenta,
chorionic villi, and amniotic fluid [30–32]. The newborn’s digestive tract is rapidly colo-
nized at or shortly after birth, and life events such as disease, medication usage—in partic-
ular, antibiotics—and dietary changes cause chaotic changes in the microbiota [31,33,34]. A
key determinant of the neonatal microbiome is the route of delivery [35]. The microbiome
of naturally born infants contains a large number of Lactobacilli in the first few days of life,
reflecting the high Lactobacilli load of the vaginal flora [36,37]. In contrast, the microbiota of
infants born via cesarean section is depleted, and the colonization with Bacteroides sp. and
facultative anaerobes such as Clostridium sp. is delayed [38,39]. It was also shown that 72%
of vaginal infants have fecal microbiota similar to that of their mothers, while in cesarean-
section infants, this percentage is reduced to just 41% [40]. Furthermore, the method of
infant feeding is also of great importance for intestinal microbiota development. Exclusive
breastfeeding is associated with a lower bacterial diversity and richness, lower abundance
of Bacteroides and Firmicutes, and redirecting the microbial pathways to lipid and vitamin
metabolism rather than carbohydrates [41]. Additionally, human milk oligosaccharides
have an immunomodulatory effect and act as prebiotics in establishing the infant’s gut
microbiota [42].

In the early stages of development, the microbiota is generally poorly differentiated
and dominated by two major clusters, Actinobacteria and Proteobacteria [31,42]. It increases in
the first year of life, when the microbial diversity develops and the microbiota composition
approaches an adult-like microbial profile, with temporal patterns unique to each infant [43].
These changes result from introducing solid foods into the diet. The changes are particularly
associated with an increase in the number of species related to Bacteroidetes, while the
number of Bifidobacterium, Lactobacillus, and Enterobacteriaceae decreases [44]. By the middle
of the third year of life, an infant’s microbiota composition, diversity, and functional
capacity resemble that of an adult individual [31,33]. Although the composition of the
intestinal microbiota in adulthood is relatively stable, it is still disturbed by various life
events [45]. In people over 65 years of age, the bacterial flora changes: the Bacteroidetes
phyla and Clostridium Phyla IV become more abundant compared to younger individuals,
in which Clostridium Cluster XIVa predominates [46]. On the other hand, another study
reported that the microbiota of younger and older participants (70 years of age) were
relatively comparable, while the diversity of the centenarians’ microbiota was significantly
reduced [47]. The microbiota of centenarians participating in the study also showed
group-specific differences, such as an increase in facultative anaerobes (e.g., Escherichia
coli) and a rearrangement of the profile of butyrate-producing species (e.g., a decline in
Faecalibacterium prausnitzii) [47]. However, a study on the Chinese population showed
that the fecal microbiota of active centenarians (94 years of age and above) did not differ
significantly compared to middle-aged adults (30–50 years of age) [48]. In the elderly
population, the microbiota diversity correlated with living conditions, such as community
living or long-term home care [49]. Another study found that the ability of the microbiota
to carry out metabolic processes, such as the production of short-chain fatty acids (SCFA)
and amylolysis, is reduced in the elderly while, in turn, proteolytic activity is increased [50].

Given the increasing evidence on the role of SCFA as key metabolic and immune
mediators, which promote the expansion and differentiation of regulatory T cells, it has
been postulated that reduced SCFA levels may promote the development of intestinal
inflammation in the elderly [51]. On the other hand, some studies show that the older
adults had a greater functional potential for SCFA fermentation than young adults [52,53].

The chemical, nutritional, and immunological gradients along the gut also affect the
density and composition of the gut microbiota. The small intestine usually presents high
levels of acids and antimicrobial agents. The small intestine environment is aerobic, and
the food content passes quickly [54]. These conditions limit bacterial growth, and only
rapidly growing facultative anaerobes able to adhere to epithelium or mucus are thought
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to survive [55]. In mice, the microbial flora of the small intestine is largely dominated by
Lactobacillaceae [56]. In turn, conditions in the colon favor a dense and diverse community
of bacteria—primarily anaerobes-capable of using complex carbohydrates that are undi-
gested in the small intestine. The colon is dominated by Prevotellaceae, Lachnospiraceae, and
Rikenellaceae [54,56].

Contrary to the diverse composition of the microbiota in different sections of the
gastrointestinal tract, the microbiota of different regions of the colon mucosa in the same
individual is spatially homogeneous, both in terms of composition and diversity [57,58].
Conversely, stool/lumen and mucosa composition are variable [57,58]. For example,
Bacteroidetes appear to be more abundant in stool samples than in the mucosa [57,59].
In contrast, Firmicutes, especially Clostridium XIVa, are more numerous in the mucous
layer than in the lumen [59]. Interestingly, experiments on mice colonized by a variety
of pathogen-free microbiota showed that the external ingrowth of the mucus of the large
intestine creates a unique microbial niche. The bacterial species in the mucus showed
differentiated proliferation and used more diverse resources than the same species in the
lumen of the intestine [60]. These observations indicated that sampling methods should be
carefully selected when analyzing the gastrointestinal microbiota composition.

Interindividual differences in the species and subspecies system of the intestinal micro-
biota outweigh the differences in the community system within the individual [57,61,62].
Earlier studies suggested the presence of ‘indigenous microbiota’—i.e., a set of the same
abundant microorganisms in all individuals. However, it turns out that the microbial
gene repertoire shows greater similarity between individuals than at the taxonomic level,
which suggests that the basal microbiota may be better defined at the functional level than
at the organism level [61]. More recently, individual microbiota differences have been
classified according to ‘community types’ that predict changes and are environmentally
dependent [63]. Multidimensional analysis of 33 samples of people of different nationalities
revealed the presence of three enterotypes that can be identified based on differences in
the level of one of the three types: Bacteroides (enterotype 1), Prevotella (enterotype 2), and
Ruminococcus (enterotype 3) [64]. However, the evidence for the existence and formation of
these enterotypes is controversial, as discussed in detail by Jeffery et al. [65].

5. The Role of the Digestive System Microbiota in the Host’s Energy Balance

The gastrointestinal microbiota plays a significant role in human health and disease [1].
Microbiota is involved in energy production and metabolic functions such as bile acid
and choline metabolism, fermentation and absorption of undigested carbohydrates, or
vitamins and exogenous amino acids supplementation [66,67]. Research shows that the gut
microbiota can influence weight gain and obesity through several interconnected pathways,
producing metabolites that influence inflammatory responses and modulating metabolic
pathways and eating behaviors of the host through the gut–brain axis [68].

One of the essential metabolic activities of the microbiota is the production of non-
volatile short-chain fatty acids (SCFAs) by fermentation of prebiotics—i.e., compound
carbohydrates (e.g., resistant starches, pectins, gums, oligosaccharides, and plant cells),
proteins, peptides, and glycoproteins [69–71]. SCFAs are fatty acids with fewer than
six carbon atoms. The most important SCFAs are acetate, propionate, and butyrate [72].
The dominant SCFA-producing commensals are Akkermansia muciniphilia, Prevotella spp.,
Ruminococus spp., Coprococcus spp., Faecalibacterium prausnitzii, Eubacterium rectale, and
Roseburia spp. [73]. Absorbable SCFAs modulate gut health and immune processes [74],
hormone synthesis, and lipogenesis [75]. They also partake in numerous interactions with
the host. Short-chain fatty acids affect key processes (e.g., inflammation, gap junctions
protein expression, and enteroendocrine regulation) through G-protein coupled receptors,
such as the GPR41 and GPR43 receptors, and favor the proliferation of certain bacteria
species by maintaining an acidic pH [76,77]. Acetate, butyrate, and propionate induce the
enteroendocrine L cells to release the YY peptide (PYY) and glucagon-like neuropeptide-
1 (GLP-1). These peptides regulate digestion and modulate lipid metabolism, which
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indirectly affects fatty acid storage in the liver. Butyrate stimulates the intestinal epithelium,
promotes GLP-2 release, and increases mucus secretion, reducing the intestinal barrier’s
permeability. It also has anti-inflammatory properties and protects against colitis and colon
cancer. Obesity metagenomics studies showed that SCFA pathways are activated, and
SCFA levels are increased in overweight or obese subjects and animal models. Propionate
as a gluconeogenesis substrate affects the central nervous system and protects the host
against glucose intolerance and diet-induced obesity. Increased propionate levels are
observed in microbiota after gastric bypass, which protect against diet-induced obesity
when transferred to sterile mice [4,73].

In addition, the influence of microbiota on choline metabolism is currently under
study, as microbiota is thought to synthesize trimethylamine (TMA) from dietary choline.
Trimethylamine can be oxidized in the host liver by hepatic flavin-monooxygenase 3 (FMO3),
producing trimethylamine N-oxide (TMAO) [4]. Circulating TMAO levels are associated
with an increased risk of death from cardiovascular and cerebrovascular disease and type 2
diabetes mellitus (T2DM) [78,79]. Regulation of the gut microbiota activity, or the TMA-
producing species, could help develop new ways to prevent or treat atherosclerosis and
choline deficiency diseases. By reducing TMAO levels, resveratrol down-regulates the en-
terohepatic farnesoid X receptor (FXR):fibroblast growth factor 15 (FGF15) axis. It indicates
that the gut microbiota can be targeted by personalized therapies, which can prevent or
reduce the risk of metabolic diseases [80,81]. Another TMAO precursor, betaine, present
in microorganisms, plants (e.g., bran, wheat germ, spinach), and seafood, protects cells
and proteins from environmental stressors and serves as a source of methyl groups for
transmethylation processes. Decreased levels of dietary methyl groups cause hypomethyla-
tion in several metabolic pathways, like hepatic fats metabolism, which leads to steatosis
and plasma dyslipidemia. Betaine protects internal organs and reduces risk factors for
vascular disease [81]. Moreover, berberine, an isoquinoline alkaloid extracted from herbal
plants, inhibits choline-to-TMA conversion and alters gut microbiota composition, micro-
biome functionality, and gene abundance, and might become a potential future therapy for
atherosclerotic disorders [82].

Ileum and colon microbiota produce secondary bile acids from cholesterol by cleav-
age of glycine and taurine and the -OH group. Secondary bile acids serve as signaling
molecules by binding to receptors such as the G protein-coupled bile acid receptor 1 (TGR5),
the vitamin D receptor (VDR), and the farnesoid X receptor (FXR) [83–85]. The ability to
metabolize the naturally occurring FXR antagonist, tauro-β-muricholic acid, is the basic
process leading to obesity, steatosis, and impaired glucose, insulin, and leptin tolerance.
Importantly, the microbiota regulates immune processes at the tissue level through trypto-
phan metabolism. In particular, commensal Lactobacilli use tryptophan as an energy source
to generate aryl hydrocarbon receptor (AhR) ligands and a transcription factor playing role
in the organogenesis of intestinal lymphatic vesicles (ILF). AhR influences the production
of IL-22 and, thus, influences the secretion of antimicrobial peptides (Lipocalin-2, S100A8,
and S100A9) [86].

Other microbial metabolites, with yet unconfirmed functions in the physiology and
pathophysiology of the host, include: indole propionic acid, bound to the intestinal ep-
ithelial barrier; ethylphenyl sulfate, correlated with enhanced autistic behavior in a mouse
model [87]; indoxyl sulfate and p-cresyl sulfate, both associated with endothelial dysfunc-
tion and media arterial calcification in uremic patients [88].

The gut–brain axis plays a crucial role in preserving homeostasis. The gut microbiota
communicates to the central nervous system through neuronal, endocrine, and immune
pathways. Signals to the gut are modulated and transmitted through the vagus nerve
and neuroendocrine pathways [89]. The way of communication with the microbiota can
be direct when neurotransmitters—5-hydroxytryptamine (5-HT), γ-aminobutyric acid
(GABA), and catecholamines are detected by microorganisms or indirectly by influencing
the intestinal niche. The gut microconditions can be regulated by the vagus nerve involved
in gut physiology, immune response, gut motility, and gut barrier function, all of which
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affect the composition and function of the microbiome [90]. The gut microbiota metabolites
can act as signaling molecules that regulate the secretion of the enteroendocrine cells
hormones: peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). Glucagon-like peptide-
1 and PYY have receptors in brain regions responsible for regulating the host’s energy
balance [91].

6. A High-Fat, High-Protein Diet Effects on Gut Microbiota

High-protein diets are believed to promote weight loss and maintain healthy body
weight in humans [92–94], but a systematic review of the literature on the subject showed
that the long-term effects of protein-rich diet are neither consistent nor conclusive [95].
Studies conducted on rodents confirmed that a high protein-to-carbohydrate ratio prevents
obesity induced by a high-fat diet [96–105].

The idea that the obesity-inducing potential of high-fat diets in murine models can
be lowered by increasing the protein-to-carbohydrate ratio is largely based on research
using casein or whey as a protein source. However, little is known about how different
protein sources can modulate the response to high protein intake. Feeding obese-prone
C57BL/6J mice with a high-fat and high-protein diet using beef, chicken, pork, cod fillets
casein, or soy as protein sources leads to statistically significant differences in the obesity
development under thermoneutral conditions. Casein most efficiently prevented weight
gain and fat mass accumulation. At the same time, mice fed a high-protein diet based on
‘meat’ (pork, chicken fillets) showed the highest feeding efficiency and a moderate gain
in adipose tissue mass [106]. Epidemiological studies also show that the consumption of
dairy and vegetarian sources of protein is associated with protection against obesity, while
a high consumption of meat, especially red meat, determines a more significant weight
gain [107–109].

Martinez-Lopez et al. [110], using a canine model, demonstrated that the applied nutri-
tional model altered the overall taxonomic composition of the microbiome. A high-protein
diet correlated with the increase in bacteria belonging to the Fusobacteria and Bacteroidetes
phyla, whereas a high-fiber diet with an increase in Firmicutes and Actinobacteria phyla [110].
In the study conducted on athletes, a 10-week consumption of protein supplement (10 g
whey isolate and 10 g beef hydrolysate) was associated with a decrease in Lachnospiraceae,
Roseburia, Blautia, Synergistales, Coprococcus, Lactobacillales, Bacilli, and Bifidobacterium longum,
a higher abundance of Bacteroidetes, and lower abundance of Firmicutes, with no differ-
ences in microbial metabolites when compared with a placebo [111]. McKenna et al. [112]
showed that high beef protein intake, combined with resistance training, is associated with
a reduced abundance of Veillonellaceae, Akkermansia, and uncultured Eggerthellaceae and
Ruminococcaceae [113]. On the other hand, Cronin et al. [113] reported no significant shift in
the intestinal microbiome of overweight and obese patients supplementing whey protein,
which may result from a relatively short duration of the dietary intervention. However,
they noted an increase in trimethylamine N-oxide (TMAO) concentration [113]. Interest-
ingly, consumption of the Mediterranean diet, rich in vegetal proteins and polysaccharides,
was correlated with a higher total concentration of short-chain fatty acids (SCFA) in fecal
samples [114].

Nutritional patterns are related to the genetic diversity of bacteria in the human
gut [115]. In addition, dietary characteristics, such as fat content, whole grain content, fruit
and nuts consumption, or a fiber-rich diet, affect the gut microbiota [9,10,12–15,116]. Nev-
ertheless, which food components are particularly conducive to the growth and function of
beneficial bacteria in the intestine is still not established. Rats fed with proteins derived
from red meat (beef and pork), chicken and fish (here referred to as white meat), and other
sources (casein and soybeans) showed differences in the gut bacteria profiles [117,118].
Research on this subject in humans is insufficient, and thus, the influence of the protein
source and quality on the energy balance regulation needs further investigation.

Diets high in saturated- and trans-fats, known as Western-style diets, are believed to in-
crease the risk of cardiovascular disease and atherosclerosis by increasing the total and LDL
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cholesterol in the blood [119]. On the other hand, health-promoting fats, such as monounsat-
urated and polyunsaturated fats, are vital in reducing the risk of chronic disease. The typical
Western diet is rich in trans- and saturated-fats and low in mono- and polyunsaturated
fats, predisposing ordinary consumers to develop metabolic syndromes, cardiovascular
diseases, and obesity [120]. Several studies on patients have suggested that a high-fat diet
increases the total anaerobic microbiota and the number of Bacteroides [115,121–123].

The Western-style diet induces alternations in gut microflora by promoting the abun-
dance of Proteobacteria, Mollicutes, and Bilophila wadsworthia, increasing the Firmicutes-to-
Bacteroidetes ratio, and reducing the abundance of bacteria considered as beneficial—i.e.,
Akkermansia muciniphila, Bifidobacterium spp., and butyrate-producing taxa [9,124,125]. In
addition, the carbohydrates intake restriction is not without significance in high-fat diets,
as the ketogenic diet contributes to the decreased gut colonization by Bifidobacterium and
Lactobacilli and increased by Fusobacteria and Escherichia profusion [126].

Fava et al. [123] noted that a low-fat diet increased the fecal abundance of Bifidobac-
terium and reduced fasting glucose and total cholesterol. On the other hand, a diet high
in saturated fat increased the relative proportion of Faecalibacterium prausnitzii. Finally, a
high monounsaturated fat intake did not change the relative abundance of any bacteria,
but decreased the overall bacterial load and plasma total cholesterol and LDL levels [123].
Similarly, the consumption of salmon—rich in mono- and polyunsaturated fats—also did
not change the fecal microbiota composition in 123 people [127]. Studies in rats showed
that a high-fat diet consumption reduced the amount of Lactobacillus intestinalis and the
excessive growth of propionate- and acetate-producing species, including Clostridiales,
Bacteroides, and Enterobacteriales. In addition, the number of Lactobacillus intestinalis neg-
atively correlated with the rats’ body and adipose tissue weight [128]. Changes in the
gut microbiota also influenced the development of inflammation induced by metabolic
endotoxemia in mice consuming a high-fat diet [129]. The studies in mice comparing the
effects of lipids derived from lard and fish oil on the gut microbiota showed that mice
fed with lard presented with an increase in Bacteroides and Bilophila, while Actinobacteria
(Bifidobacterium and Adlercreutzia), lactic acid bacteria (Lactobacillus and Streptococcus) and
Verrucomicrobia (Akkermansia muciniphila) were more abundant in mice fed with fish. In
addition, the lard-fed mice had an increased systemic Toll-like receptor (TLR) activation,
white adipose tissue generalized inflammation, and impaired insulin sensitivity compared
to fish oil-fed mice. The authors suggested that these findings result partly from differences
in intestinal microbiota between the two groups; the transplantation of microbiota from
one group to another after an antibiotic administration not only enriched the gut of the
transplant recipient with the dominant types of the donor species, but also restored the
inflammatory and metabolic phenotypes of the donor. These results suggest that the gut
microbiota may promote metabolic inflammation through TLR signaling when challenged
with a diet rich in saturated fats [130].

7. The Interaction of Metabolism and Diet in Relation to Gut Microbiota

The gut microbiota of traditional rural populations from different parts of the world
showed greater bacterial diversity and the otherwise lacking microbial taxa compared
to Western populations. Modern lifestyles, medical practices, and processed foods con-
tribute to an overall decline in biodiversity and loss of specific phylogenetic groups from
the gut microbiome of the industrialized populations. The gut microbiota modifies the
bioavailability, transformation, absorption, or excretion of chemical elements (i.e., selenium,
zinc, cobalt, and iodine) acting as cofactors for different enzymes involved in epigenetic
modifications [131]. Yang et al. [132], studying the Chinese population, also proved the
importance of environmental factors for gut microbiota diversity. They found that children
from rural areas had an increased Prevotella-to-Bacteroides ratio, but a decreased abun-
dance of microbiota when compared to children living in an urban environment [132].
Studies showed that host genetics and diet are related and can regulate the microbiome’s
composition. Various genetic variants, especially those related to T2DM, obesity, dietary
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preferences, and metabolism, can significantly affect changes in obesity and the metabolic
response of low-calorie weight loss diets [78]. A significant variant of the lactase gene
that modulates Bifidobacterium sp. appears throughout the genome in the LCT region and
is widespread among the intestinal microbiome of the dairy-consuming individuals. A
study in the older Mediterranean population showed the LCT variant is associated with
obesity and regulated by lactose and milk consumption [133]. Therefore, the diet can alter
the microbial composition or abundance and the microbial metabolome [134,135]. Studies
in Japanese populations revealed a transfer of the genes encoding the enzymes involved
in the red sea algae metabolism from marine bacteria present in the dietary seaweed to
the consumer’s gut microbiome specific bacteria [75]. The microbiome plays a key role in
forming the hologenome, defined as the sum of the microbiota and host’s genetic informa-
tion, resulting from their long-term co-evolution, ultimately defining the host’s metabolic
capacity [136,137]. Many bacterial enzymes, like beta-glucuronidase, beta-glucosidase,
azoreductase, nitroreductase, 7-alpha-dehydroxylase, and cholesterol dehydrogenase, are
inducible diet-dependent enzymes. Many studies report on gene–diet interactions regu-
lating Bifidobacterium sp. and other species’ abundance, indicating the importance of the
host–microbiome interaction [70,134]. Microbiota can promote epigenetic modifications:
the host responds to environmental factors by altering DNA methylation and modifying
histones. DNA methylation influences gene expression by regulating the availability of
transcriptional mechanisms, transcription factors, histone modifiers, and chromatin. DNA
methyltransferases (DNMT) can add a methyl group from the S-adenosylmethionine donor
(SAM) to the cytosine carbon-5 position (5 mC). At the same time, the dioxygenase family,
ten-eleven translocation (TET) enzymes, oxidizes 5 mC to hydroxymethylcytosine (5 hmC).
Bifidobacterium and Lactobacillus produce folic acid, which supports the production of S-
adenosylmethionine (SAM) [138]. Dietary methionine modulates the composition of the
host’s microbiota and the metabolism of the bacteria, releasing substrates for the synthesis
of S-adenosylmethionine (SAM). The mechanisms of microbiota-dependent modification
of histones are not well understood yet. Histone acetylation uncovers nucleosomal DNA
targets for transcription factors, while histone deacetylation (HDAC) triggered deacetyla-
tion removes acetyl groups from histone tails, thus reducing transcriptional availability.
Butyrate, produced by numerous commensal bacteria (i.e., Faecalibacterium, Coprococcus,
Roseburia, Eubacterium) from dietary fiber, is an anti-inflammatory HDAC inhibitor by
inhibiting the STAT1 and NF-kB activation [139].

Several infectious agents (Human papillomavirus, Hepatitis B and C viruses, Epstein–
Barr virus, Polyomaviruses, Chlamydia pneumoniae, Campylobacter rectus, Streptococcus bovis,
and Helicobacter pylori) and members of the intestinal microbiota are epigenetic factors in-
volved in the pathogenesis of the metabolic syndrome. An example of the indirect action of
small-molecule microorganisms (LMW) on chromatin remodeling is the deficiency of some
substrates (betaine, methionine, choline) or cofactors (vitamins B12, B2, B6, and folic acid)
produced by the microbiota. Gut indigenous bacteria can change the bioavailability of di-
etary methyl groups, causing hypomethylation of several epigenome-associated pathways.
This change may hinder DNA methylation, leading to decreased SAM levels, increased
plasma homocysteine levels, and an increased risk of various liver and vascular diseases
and malignancies. LMW molecules, including SCFA, sulforaphane cysteine/sulforaphane
N-acetylcysteine, and allyl mercaptan/diallyl disulfide produced during the metabolism of
cruciferous vegetable or garlic microbes, may interfere with the activity of other enzymes
responsible for the epigenetic modification, such as deacetylase, protein–threonferinase
kinases, and syphosphyltransferinases. Additionally, the intestinal microbiota is the main
donor of acetyl groups for the formation of acetyl-CoA, which is involved in epigenomic
acetylation reactions. Bacteria and eukaryotes biosynthesize coenzyme A (CoA) from pan-
tothenate, cysteine, and β-alanine, all of which are found in most foods in small amounts
and are also produced by the gut microbiota. Deficiencies of these nutrients disrupt the
synthesis of NADH, acetyl-CoA, and NAD, leading to disorders of the epigenomic mecha-
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nisms of acetylation involved in the change of chromatin structure and post-translational
modifications of proteins [131].

8. Examples of Research Results

Endocannabinoids are endogenous signaling particles implicated in many physiologi-
cal processes, including energy balance regulation, fat accumulation, and body homeostasis.
They modulate the expression of insulin and adipokines through cannabinoid receptors,
and their levels are known to be elevated in states of hyperglycemia and obesity [140]. Nev-
ertheless, little is still known about the genetic and dietary factors affecting endocannabi-
noid system modulation. Ijaz et al. [141] investigated the impact of dietary proteins derived
from casein, chicken, beef, and pork contained in a high-fat diet on endocannabinoids, adi-
pogenesis, and biomarkers associated with dyslipidemia. A high-fat diet of beef or poultry
increased the activity of the cannabinoid receptor 1, N-acylphosphatidylethanolamine-
selective phospholipase-D, and diacylglycerol-α lipase in adipose tissue. The diets also
decreased the immunoreactivity of the mitochondrial uncoupling protein 1 in brown adi-
pose tissue. In addition, high-fat diets with beef and poultry protein had a significant
effect on adipocyte differentiation and mitochondrial biogenesis in obese mice [141]. Se-
quencing of the 16S rRNA gene showed that high-fat diets significantly improved the ratio
of Firmicutes to Bacteroidetes in the colon, regardless of protein source. Meat proteins in
a high-fat diet significantly reduced the relative abundance of Akkermansia and Bifidobac-
teria, but increased the serum lipopolysaccharide levels, which promoted adipogenesis,
causing endocannabinoid receptor dysregulation [141]. In animals with obesity, visceral
obesity, and dyslipidemia, meat protein consumption reduced thermogenesis and affected
mitochondrial activity compared to casein protein consumption. High-fat diets resulted
in a significant increase in the number of Firmicutes, which was accompanied by a sig-
nificant reduction in the number of Deferribacteres compared to animals fed with low-fat
diets [141]. In animals fed with high-fat diets with chicken protein, Verrucomicrobia was
the most common compared to others fed with high-fat diets, while in animals fed with
high-fat diets with beef protein, Verrucomicrobia was the lowest [141]. In addition, there
were more Proteobacteria in animals fed with a high-fat diet with beef protein than in the
casein- and pork-protein-fed animals. The lean mice fed with casein had the greatest
abundance of Actinobacteria, but its relative abundance remained somewhat similar to that
of the obese mice. Firmicutes, Bacteroidetes, and Verrucomicrobia were the most abundant
species in animals fed with low-fat diet groups. At the same time, a high-fat consumption
increased the abundance of Firmicutes, Proteobacteria, and Deferribacteres, and decreased the
abundance of Verrucomicrobia.

The essential role of microbiota on the intestinal endocannabinoid system was demon-
strated in numerous studies. Oral administration of Lactobacillus acidophilus in mice and rats
led to an increased expression of intestinal epithelial cannabinoid receptor 2 (CB2R) [142].
In addition, an increased consumption of oleic acid and omega-3 fatty acids, such as in
the Mediterranean diet, resulted in significant increases in both the N-acyl-ethanolamines
(NAEs) and 2-monoacyl-glycerols (2-MAGs), which are endocannabinoid congeners [143].

A high-fat diet increases the biodiversity of gut microbiota and is characterized
by a high abundance of Muribaculaceae, Rikenellaceae RC9 gut group, Odoribacter, Mu-
cispirillum, Alistipes, uncultured Muribaculaceae bacteria (two OTUs), and an uncultured
Bacteroidales bacterium in comparison to a low-fat diet. In contrast, limited lipid con-
sumption reduces gut microbial biodiversity in the colon but supports the retention of
beneficial microorganisms.

The gut microbiome of animals fed with a low-fat diet consisted mainly of Lactobacillus,
Faecalibaculum, Lachnoclostridium, Bacteroides, Desulfovibrio, Eubacterium fissicatena group,
Akkermansia, and Bifidobacterium [144].

Compared to the casein diet group, the chicken, beef, and pork diet groups had a
higher Akkermanis abundance, but a smaller Faecalibaculum, non-cultured Lachnospiraceae,
Blautia, and Lachnospiraceae NK4A136 groups. High-fat diets significantly changed the
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composition of the gut microbiota, their biochemical environment and hence the microbial
activity, in mice [145].

Ijaz et al. [146] studied the effects of different protein sources on microbial colon
diversity in combination with a high- or low-fat diet. The gut of rodents fed with a low-fat
diet were predominantly colonized by Bacteroidales S24-7, Akkermansia, Rikenellaceae RC9
gut group, Desulfovibrio, Faecalibaculum, Alistipes, and Ruminiclostridium 9. Consumption
of a high-fat diet significantly reduced the abundance of the Bacteroidales S24-7 group
compared to consumption of a low-fat diet. In addition, soy protein in a high-fat diet was
associated with a relative abundance of Proteobacteria compared to beef protein or casein
diets. Moreover, beef as a protein source crucially depleted the Verrucomicrobia abundance,
regardless of the fat content in the diet. Relatively higher numbers of the genera linked
with the development of obesity and the related metabolic syndrome, such as Mollicutes,
Oscillibacter, Escherichia, Shigella, and Mucispirillum, were observed in animals fed with
high-fat with beef proteins. Beef as a protein source in a high-fat diet excessively lowered
the prevalence of Akkermansia by up to 23%. On the other hand, it affected the amount
of Blautia, Anaerotruncus, and Bacteroides, which are inversely correlated with obesity and
visceral obesity [146,147].

Zhu et al. [148] assessed the gut microbiota and metabolite composition in the distal
colonic contents of rats fed with diets containing different protein sources: casein, beef,
chicken, or soy for 90 days. The rats fed with chicken protein showed the highest rela-
tive abundance of Lactobacillus and the highest concentration of organic acids, including
lactate, which may favor Lactobacillus growth, compared to rats fed with casein (control
group). The rats fed with soy protein had the highest relative abundance of Ruminococcus,
but the lowest relative abundance of Lactobacillus [148]. The long-term consumption of
soy protein led to the upregulation of the transcription factor CD14 receptor and liver
lipopolysaccharide-binding protein (LBP), which are involved in inflammatory processes
and modulate macrophages activation [149]. These observations indicate that meat protein
consumption could support a more balanced composition of gut microbiota, reduce the
antigen load, and, consequently, lessen the inflammatory response of gut bacteria to the
hosts. Contrary to meat proteins, a soy-based diet may enhance the degradation of dietary
fiber and glycans, resulting in a higher SCFA production. Although higher concentrations
of SCFAs were noted, the decreased relative abundance of beneficial bacteria was observed
in rats fed with vegetable protein compared to rats fed with meat protein groups. Addi-
tionally, the rats fed with vegetable protein showed elevated levels of proteins associated
with antioxidative stress response in the liver, which may suggest a shift of redox status to-
ward pro-inflammatory processes [148]. In addition, the elevated glutathione S-transferase
activity in the liver of these rats implied intensified detoxification and, thus, maintaining
oxidative/antioxidative balance.

The excessive consumption of red meat is associated with an increased risk of metabolic
and cardiovascular diseases [150]. As numerous studies proved, increased red meat in-
take alters the composition and diversity of gut bacteria, favoring a greater abundance of
Fusobacterium and Bacteroides and a lower abundance of Lactobacillus and Roseburia in the
intestine. It was found that these changes were also accompanied by a significant reduction
in the number of Firmicutes and Bacteroidetes [151]. However, Zhu et al. [117] noted a higher
Lactobacillus but lower Bacteroides content in the meat protein-fed groups, while OTU227
(genus Roseburia) was found in the non-meat protein-fed than in the meat protein-fed
group, but the relative abundance of Roseburia did not differ significantly between these
two groups [117]. Meat protein-fed groups presented with a higher Firmicutes abundance
and lower Bacteroidetes abundance than non-meat protein-fed groups [117].

Zhu et al. [117] also assessed the effects of different source proteins on the composition
of cecal bacterial communities. They investigated the microbiota of rodents fed with
red meat (beef and pork), white meat (chicken and fish), dairy (casein), and vegetable
(soybeans) proteins at recommended levels of consumption. By sequencing the V4–V5
region of the 16S ribosomal RNA gene, they found that animals fed with meat proteins had a
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similar overall gut microbiota structure in the cecum to animals fed with non-meat proteins.
The rodents fed with white meat protein showed a higher content of the Lactobacillus
genus when compared to rodents fed with red meat or non-meat protein. Moreover, in
contrast to rodents fed with vegetable protein, rodents fed with meat and dairy protein had
significantly lower levels of lipopolysaccharide-binding proteins (LBP), suggesting that
the consumption of meat proteins may maintain a more balanced composition of the gut
bacteria, thus reducing the inflammatory response in the host [117].

However, it must be considered that the discussed studies have limitations. Con-
sumption, preparation methods, and other ingredients of red meat, such as heme iron, can
also affect the presented results and should be considered when assessing the relationship
between meat or protein consumption and health problems. Overall, dietary proteins
significantly influence the composition of the gut bacteria in the cecum. Specific phylotypes
that respond to dietary proteins may play a key role in maintaining the host’s health.
The consumption of dairy products and meat proteins at the recommended levels may
support a balanced gut bacteria composition than soy protein [117]. These findings provide
new insight into the relationship between meat consumption and gut bacteria health and
indicate that low red- or white-meat protein consumption may be more beneficial to health
than non-meat proteins consumption [117].

Table 1 presents the summary of research on the effects of dietary fats and proteins on
the gut microbiome.
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Table 1. The summary of research on the effects of dietary fats and proteins on the gut microbiome in human, rodent, murine, and canine models.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Human
N = 27 Mediterranean diet

greater Bacteroidetes presence associated with lower animal
protein intake

[114]

higher Bifidobacterium spp. levels associated with more vegetal
proteins intake; lower Bacteroidetes presence and higher F/B
ratio associated with higher animal protein intake
lower relative abundance of Parabacteroides and Butyricimonas
related to higher animal proteins and saturated fats intake;
lower relative abundance of Oscillospira related to high protein
intake; Roseburia associated with vegetal proteins intake

Human, male
N = 24

10 weeks
whey isolate (10 g) and beef
hydrolysate (10 g) vs.
maltodextrin; once a day

protein group presenting higher abundance of Bacteroidetes and
lower abundance of Firmicutes [111]protein group presented a higher percentage of Bacteroides
genus and a lower presence of Citrobacter and Klebsiella genera

Human, overweight
N = 50 10 weeks

isocaloric meal of minimally
processed beef (97.4% lean):
moderate protein consumption
(16 g protein, MOD) vs. high
protein consumption (32 g
protein, HIGH) of the minced
beef steak

1st week of dietary habituation: decreased abundance of
Veillonellaceae, Akkermansia, Eggerthellaceae, and Ruminococcaceae
in the HIGH group;
Final result: Erysipelotrichaceae decreased in MOD and HIGH
groups, increased abundance of Eggerthellaceae, Veillonellaceae,
and Akkermansia in HIGH group, increased abundance of
Veillonellaceae in MOD group

whole body resistance training
(3 days/week) during the diet
intervention

[112]

Human, predominantly
overweight or obese,
N = 90

8 weeks
daily 30-g protein supplement
containing 24 g of whey
protein (P group)

increased alpha diversity of Archaea sp. in the P group;
moderately enhanced archaeal diversity in the P group
compared to the EP group; greater bacterial diversity in the EP
group than in the P group

P group vs. EP group (exercise
+ diet of P group) vs. E group
(exercise only)

[113]
E and EP groups with separate Prevotella copri-related clusters;
P group composed of Bacteroides vulgatus pathways; no
significant separations for alterations in diversity resulting from
the intervention (P, EP, E)

Human, pregnant
women
N = 123

ca. 18 weeks two 150 g portions of farmed
salmon/week

no effects of increased oily fish consumption on any of the
bacteria enumerated in maternal fecal samples sampled at 38 weeks gestation [127]
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Rat, Sprague-Dawley,
male
N = 66

90 days proteins from pork, beef,
chicken, fish, soy, or casein

chicken and fish proteins-fed groups presented higher
Firmicutes but lower Bacteroidetes abundance than groups fed
with other proteins; soy protein-fed group presented higher
Bacteroidetes abundance; chicken protein-fed group presented
greater Actinobacteria abundance; beef protein-fed group
presented greater Proteobacteria abundance

[117]

Lachnospiraceae characteristic of soy protein and casein-fed
groups (average: 17% and 18%, respectively); Ruminococcaceae
(average: 18% and 27%, respectively) and Lactobacillaceae
(average: 20% and 19%, respectively) characteristic of beef and
pork proteins-fed groups; Lactobacillaceae (average: 46% and
36%, respectively) characteristic of chicken and fish
proteins-fed groups
36 OTUs difference between non-meat and red meat protein
groups:
22 OTUs higher in non-meat protein groups and 14 OTUs
higher in red meat protein groups; relative abundance of
Alloprevotella higher in non-meat protein groups, Roseburia one
of the most predominant in non-meat protein groups,
Prevotellaceae uncultured detected in non-meat protein groups
but not in red meat protein groups
56 OTUs difference between non-meat and white meat protein
groups:
33 OTUs higher in non-meat protein groups, 23 OTUs higher in
white meat protein groups; Roseburia and Prevotellaceae
uncultured typical of non-meat protein groups; Bacteroides
characteristic of non-meat protein groups; 5 OTUs representing
genus Lactobacillus more abundant in white meat protein groups
105 OTUs difference between red and white meat protein
groups:
83 OTUs higher in red meat protein groups; 22 OTUs higher in
white meat protein groups but only 16 OTUs significantly
diverse; relative abundance of Lactobacillus genus higher in
white meat protein groups; relative abundance of Oscillibacter
was higher in red meat protein groups; Bacteroides differed
between the red and white meat protein groups; chicken
protein-fed group with the highest, and casein-fed group with
the lowest Lactobacillus abundance (multiple comparison); soy
protein-fed group with lower Lactobacillus abundance
compared to meat proteins-fed groups
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Rat, Sprague Dawley,
6-week old, male
N = 20

16 weeks

control chow (11 kJ/g, 12% fat,
21% protein, 65%
carbohydrate), free choice
HFD in 3 variants:
(1) control chow
(2) commercial HF pelleted
diet SF03-020 (20 kJ/g, 43% fat,
17% protein, 40%
carbohydrate)
(3) modified chow (powdered
chow with sweetened
condensed milk and saturated
animal fat (lard); 15.4 kJ/g;
51% fat, 10% protein, 38%
carbohydrate)

HFD decreased abundance of Lactobacillales and lowered
abundance of Clostridiales, Bacteroidales, Enterobacteriales,
Erysipelotrichales and Desulfovibrionales

fecal sample/animal;
harvested from the terminal
part of the cecum

[118]

HFD lowered abundance of Lactobacillaceae and increased
abundance of other important groups including Bacteroidaceae,
Lachnospiraceae, Enterobacteriaceae

Ruminococcaceae, Veillonellaceae, Porphyromonadaceae, and
Erysipelotrichaceae

Lactobacillus, specifically Lactobacillus intestinalis, dominated in
chow-fed groups; HFD decreased Lactobacillus intestinalis but
increased Blautia, Morganella, Bacteroides, Phascolarctobacterium,
and Parabacteroides

Rat, Sprague-Dawley,
male
N = 32; n = 8 per group

90 days casein, beef proteins, chicken
proteins, soy proteins

no differences in ACE, Chao, Shannon, Simpson, and Good’s
coverage indices; different response to chicken protein than to
casein, beef protein, and soy protein; soy and casein-fed groups
showed similarity in microbiota; Firmicutes and Bacteroidetes the
most dominant phyla; Bacteroidetes the most and Firmicutes the
least abundant in chicken protein-fed group; F/B ratio was
lower in casein, beef, and soy protein-fed groups [148]
Fusobacterium higher in casein and beef protein-fed groups;
chicken protein-fed group with the highest relative abundance
of Lactobacillus sp. OTUs and higher level of beneficial
Lactobacillus sp.; soy protein-fed group with the highest relative
abundance of Ruminococcaceae OTUs and the lowest level of
beneficial Lactobacillus sp.

Mouse, 12-week-old,
male 11 weeks lard vs. fish oil

Bacteroides, Turicibacter, and Bilophila higher in lard-fed group;
Actinobacteria (Bifidobacterium and Adlercreutzia), lactic acid
bacteria (Lactobacillus and Streptococcus), Verrucomicrobia
(Akkermansia muciniphila), Alphaproteobacteria, and
Deltaproteobacteria higher in fish-oil-fed group

gut microbiota transplantation
with cecal content followed by
200 µL antibiotic cocktail
treatment (ampicillin +
metronidazole + vancomycin +
neomycin) administrated by
oral gavage once a day for
3 days

[130]Akkermansia and Lactobacillus presence increased in the cecal
contents of fish oil-fed group compared to lard-fed group;
Lactobacillus, but not Akkermansia, presence increased in
fish-oil-fed group after 3 weeks; Akkermansia taxa increased in
the cecum of mice that received fish-oil microbiota; Lactobacillus
increased in mice that received a lard microbiota after gut
microbiota transplant
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Mouse C57BL/6J,
7-week old, male
N = 80

14 weeks

high-fat diet (HFD, 60% kcal
from lard) vs. low fat diet
(LFD, 12% kcal from lard)
containing casein, or meat
proteins from chicken, beef,
or pork

Dietary proteins had no effect on microbiota richness (Chao and
Good coverage) or the diversity (Shannon and Simpson indices)
in LFD groups; beef and pork protein diet groups with lower
Chao and Good coverage values than casein diet group among
HFD groups

[141]

HFD increased Firmicutes and reduced Deferribacteres
abundance compared with LDF groups; HF chicken protein
diet group with the highest, and HF beef protein diet group
with the lowest, Verrucomicrobia abundance compared with
other HFD groups
HF beef protein diet group with higher Proteobacteria abundance
than casein and pork protein diet groups; LF casein diet group
with the highest Actinobacteria abundance, but not the relative
Actinobacteria abundance, remained similar to HF group;
Firmicutes, Bacteroidetes, and Verrucomicrobia the most abundant
in LF diet groups; HFD increased the abundance of Firmicutes,
Proteobacteria, and Deferribacteres but reduced the abundance of
Verrucomicrobia; Bacteroidales S24-7, Akkermansia, Desulfovibrio,
Rikenellaceae RC9 gut group, Faecalibaculum, Alistipes, and
Ruminiclostridium 9 the most abundant in LFD groups
chicken, beef, and pork protein diet groups with higher
abundance of Akkermanisa but lower abundances of
Faecalibaculum, Lachnospiraceae uncultured, Blautia, and
Lachnospiraceae NK4A136 group than the casein diet group;
HFD increased the relative abundances of Desulfovibrio,
Lachnospiraceae uncultured, Ruminiclostridium 9, and
Lactobacillus, but decreased the relative abundance of
Akkermansia; HF beef protein group with relatively higher
abundances of genera Mollicutes, Oscillibacter, Escherichia,
Shigella, and Mucispirillum and decreased relative abundances
of Blautia, Anaerotruncus, and Bacteroides
Corynebacteriaceae, Micrococcaceae, Actinobacteria,
Staphylococcaceae, and Lactobacillales the most abundant taxa in
LF casein diet group; Peptococcaceae, Sphingomonadaceae,
Burkholderiaceae, Pseudomonadaceae, and Anaeroplasmataceae
dominant in the chicken protein diet group; Defluviitaleaceae
and Verrucomicrobiaceae more abundant in LF beef protein diet
group; Deferribacteraceae and Lactobacillales rich in LF pork
protein diet group; Peptococcaceae, Ruminococcaceae, Clostridia,
Alcaligenaceae, and Halomonadaceae the most abundant in HF
casein diet group; Lactobacillales, Bacilli, Christensenellaceae, and
Clostridialesvadin bb60 group more specific for HF chicken
protein diet group; Porphyromonadaceae, Peptostreptococcaceae,
and Burkholderiaceae specific for HF beef protein diet group;
Rhodospirillaceae specific for HF pork protein diet group
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Mouse C57BL/6J, male 14 weeks
high-fat diet (HFD, lard) vs.
low-fat, high-carbohydrate
diet (corn starch) (LFD)

no difference in Firmicutes abundance or F/B ratio between HFD
and LFD groups; relative abundances of Lactobacillus,
Faecalibaculum, Lachnoclostridium, Bacteroides, Desulfovibrio,
Eubacterium fissicatena group, and Bifidobacterium higher in LFD
group; Lachnospiraceae, Blautia, Rikenellaceae RC9 gut group,
Oscillibacter, an uncultured Bacteroidales bacterium,
Lachnospiraceae UCG-006 more abundant in HFD group;
Rikenellaceae RC9 gut group, Rikenellaceae, Clostridiales, and
Peptococcaceae higher in HFD group; Lactobacillae more
abundant in LFD group

cecum

[144]

alpha-diversity higher in the HFD group; relative abundances
of Bacteroidetes and Proteobacteria higher in HFD group; relative
abundances of Firmicutes and Verrucomicrobia lower in HFD
group; F/B ratio significantly higher in LFD group

colon

HFD increased alpha diversity in cecum and colon compared to
LFD; F/B ratio significantly decreased in HFD group
HFD group: Desulfovibrionaceae bacterium the most abundant in
cecum; uncultured Muribaculaceae bacterium was the most
abundant in colon
LFD-fed group: Lactobacillus was the most abundant in cecum
and colon
Muribaculaceae, Rikenellaceae RC9 gut group, Odoribacter,
Mucispirillum, Alistipes, uncultured Muribaculaceae bacteria (two
OTUs), and an uncultured Bacteroidales bacterium more
abundant in HFD group; Faecalibaculum, Blautia, Bifidobacterium,
Akkermansia, and uncultured Muribaculaceae bacterium less
abundant in HFD group; Muribaculaceae was more abundant in
HFD group in the cecum and colon; HFD increased
Mucispirillum in cecum and colon; Lactobacillus and
Bifidobacterium abundance decreased in HFD group

Mouse C57BL/6NCrl,
male
n = 6 per group

12 weeks carbohydrate (corn starch) vs.
high-fat (HF, beef tallow)

HF diet did not affect taxa richness; Ruminococcaceae (phylum
Firmicutes) proportionally lower and Rikenellaceae (phylum
Bacteroidetes) proportionally higher in HF-fed group; Lactobacilli
in higher proportions in HF-fed group; HF-fed group with
increased relative Rikenellaceae abundance; mean Lactobacillus
relative abundances higher (but not statistically significant due
to inter-individual variations) in HF-fed group

[145]
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Mouse, C57BL/6J, male
N = 60 12 weeks

low-fat diet (LFD: 12% kcal
from lard) vs. high-fat diet
(HFD: 60% kcal from lard);
each diet with different protein
source: casein (C), soy (S),
beef (B)

no differences in HFD and LFD groups in alpha diversity;
microbiota responded differently to beef protein in LFD and
HFD groups
HFD increased F/B ratio compared to LFD; Firmicutes,
Bacteroidetes, and Verrucomicrobia the most abundant in LFD and
HFD groups

[146]

relative abundances of Firmicutes and Bacteroidetes unchanged
in all HFD groups in soy, casein, and beef protein-fed
subgroups; Verrucomicrobia abundance reduced in HFB group
compared with LFB group and other HFD groups; relative
abundance of Proteobacteria higher in HFS group than in HFB
and HFC groups
Bacteroidales S24-7 the most predominant genus in LFD-fed
groups; HFD reduced the abundance of Bacteroidales S24-7
group compared with LFD; HFD increased the abundance of
Mucispirillum, Escherichia, Shigella, Mollicutes, and Oscillibacter
and their relative abundances were highest in HFB group; HFB
reduced the relative abundance of Akkermansia but induced an
increase in relative abundance of Anaerotruncus, Bacteroides, and
Blautia; LFS-fed group with higher relative abundance of
Rikenellaceae than LFB-fed group; Akkermansia was most
abundant in LFB-fed group and least abundant in LFC-fed
group; LFB increased the relative abundances of Mucispirillum,
Deferribacteraceae, Desulfovibrionaceae, and Bacteroidaceae LFC
group showed the highest relative abundances of Firmicutes,
Actinobacteria, Bacilli, and Lactobacillus, but lower relative
abundances of Akkermansia, Deferribacters, and
Ruminiclostridium
Lachnospiraceae NK4A136 group the most predominant in
HFS-fed group and the least abundant in the HFB-fed group;
HFB-fed group with the highest relative abundances of Blautia,
Romboutsia, and Odoribacter; HFC-fed group with the highest
relative abundances of Ruminiclostridium 9, Lactobacillus,
Anaerotruncus, and Actinobacteria
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Table 1. Cont.

Research Model Timeframe Protein or Fat Source Microbiota Changes Comment Ref.

Dog
N = 50 18 weeks

diet A = hydrolyzed diet
(protein source: hydrolyzed
chicken liver, carbohydrate
source: corn starch and
cellulose)
diet B = high-insoluble fiber
diet (protein source: soybean
meal, carbohydrate source:
soybean meal)
diet C = high-protein diet (all
meat/carcass, raw diet)

Firmicutes represented 44% (range: 18–91%) in diet C, 62%
(range: 29–93%) in diet B, and 55% (range: 30–95%) in diet A;
Bacteroidetes represented 14% (range: 0.22–50%) in diet C, 16%
(range: 0.44–41%) in diet B, and 16% (range: 0.34–51%) in diet
A; Fusobacteria represented 24% (range: 4–72%) in diet C, 8%
(range: 1–45%) in diet B, and 17% (range: 2–34%) in diet A

Group 1 = dogs fed ACB diet
sequence
Group 2 = dogs fed BCA diet
sequence
each feeding period = 6 weeks;
all dogs fed with diet C at
baseline

[110]

after 6 weeks on diet A, relative abundance of Bacteroidetes was
24% (range: 0.71–51) in group 1 and 7% (range: 0.34–29) in
group 2; Bacteroidetes presented 3–50% (median: 23%) at
baseline (diet C) in group 1 and 0.5–33% (median: 8%) at the
end of the washout (diet C) period in group 2
diet C enriched with Fusobacteria in group 1; diets B and A
enriched Firmicutes phylum; Firmicutes increased in the
washout period but not during the baseline; Bacteroidetes
increased at baseline but not during the washout period;
Actinobacteria increased on diet B only in group 1
Turicibacteraceae, Lactobacillaceae, Bifidobacteriaceae and
Erysipelotrichaceae higher on diet B only in group 1;
Peptostreptococcaceae and Clostridiaceae higher on diet C only
during the washout period; Bacteroidaceae higher only at
baseline; Fusobacteriaceae more abundant at baseline and during
the washout period in both groups; Veillonellaceae was more
abundant on diet A only in group 1 and on diet B; Prevotella to
Bacteroides ratio higher on diet A and B compared to diet C

Abbreviations: F/B—Firmicutes-to-Bacteroidetes, OUT—operational taxonomic unit.
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9. Conclusions

While the effect of diet on the gut microbiota is well understood, further information
on the effects and duration of action of specific dietary components remains unexplored.
The analysis of the nutritional models’ impact on the intestinal microbiota condition may
allow for developing the optimal dietary programs based on the consistently and selectively
supplied nutritional substrates to the environment of intestinal microorganisms and the
implantation and proliferation of bacterial cultures. The use of acute dietary interventions
in humans leads to transient changes in the intestinal microbiota from over days to several
weeks. Knowledge of how eating habits and diet—including animal products—affect the
gut microbiota in the long term is limited by the lack of long-term nutritional studies or
interventions repeating over multiple time points. In addition, the variety of available
research results makes it difficult to view and analyze the factors influencing the diet–
microbiota relationship, possibly due to the personalized responses of the host’s microbiota.

Further long-term dietary interventions and observations, including nutrient analysis,
are needed to investigate the potential of the diet-induced gut microbiome. For this, a
wide range of individual microbial profiles and personalized therapeutic strategies must
be considered.

Personally-tailored therapies based on the individual composition of the intestinal
microbiota and the possibility of its disruption may become the basis for treating metabolic
disorders in the future.
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