Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry
2.2. Analytical Methods
2.3. Body Composition and Bone Mineral Density
2.4. Rectus Femoris Ultrasound
2.5. Physical Performance
2.6. Qualitative Measurements
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilder, D.A.; Arnold, G.L.; Dimmock, D.; Grant, M.L.; Janzen, D.; Longo, N.; Nguyen-Driver, M.; Jurecki, E.; Merilainen, M.; Amato, G.; et al. Improved attention linked to sustained phenylalanine reduction in adults with early-treated phenylketonuria. Am. J. Med Genet. Part A 2022, 188, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Hermida, Á.; Bélanger-Quintana, A.; Bell, H.; Bjoraker, K.J.; Christ, S.E.; Grant, M.L.; Harding, C.O.; Huijbregts, S.C.; Longo, N.; et al. Management of early treated adolescents and young adults with phenylketonuria: Development of international consensus recommendations using a modified Delphi approach. Mol. Genet. Metab. 2022, 137, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Romani, C.; Palermo, L.; MacDonald, A.; Limback, E.; Hall, S.K.; Geberhiwot, T. The Impact of Phenylalanine Levels on Cognitive Outcomes in Adults with Phenylketonuria: Effects Across Tasks and Developmental Stages. Neuropsychology 2017, 31, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Van Wegberg, A.M.J.; Macdonald, A.; Ahring, K.; BéLanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, A.; Van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef]
- Castro, G.; Hamilton, V.; Cornejo, V. Chilean Nutrition Management Protocol for Patients with Phenylketonuria. J. Inborn Errors Metab. Screen. 2017, 5, 2326409816689788. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.H.; Cunningham, A.C.; Mofidi, S.; Douglas, T.D.; Frazier, D.M.; Hook, D.G.; Jeffers, L.; McCune, H.; Moseley, K.D.; Ogata, B.; et al. Updated, web-based nutrition management guideline for PKU: An evidence and consensus based approach. Mol. Genet. Metab. 2016, 118, 72–83. [Google Scholar] [CrossRef]
- Cornejo, V. Avance en el programa de pesquisa neonatal y prevención de retardo mental chileno: Actualidad y proyecciones. Rev. Chil. Nutr. 2017, 44, 306. [Google Scholar] [CrossRef] [Green Version]
- Albersen, M.; Bonthuis, M.; De Roos, N.M.; Hurk, D.A.M.V.D.; Weber, E.C.; Hendriks, M.M.W.B.; Velden, M.G.M.D.S.-V.D.; De Koning, T.J.; Visser, G. Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage. J. Inherit. Metab. Dis. 2010, 33 (Suppl. S3), 283–288. [Google Scholar] [CrossRef] [Green Version]
- Sailer, M.; Elizondo, G.; Martin, J.; Harding, C.O.; Gillingham, M.B. Nutrient intake, body composition, and blood phenylalanine control in children with phenylketonuria compared to healthy controls. Mol. Genet. Metab. Rep. 2020, 23, 100599. [Google Scholar] [CrossRef]
- Doulgeraki, A.; Skarpalezou, A.; Theodosiadou, A.; Monopolis, I.; Schulpis, K. Body Composition Profile of Young Patients With Phenylketonuria and Mild Hyperphenylalaninemia. Int. J. Endocrinol. Metab. 2014, 12, e16061. [Google Scholar] [CrossRef] [Green Version]
- Firman, S.J.; Ramachandran, R.; Whelan, K.; Witard, O.C.; O’Keeffe, M. Protein status in phenylketonuria: A scoping review. Clin. Nutr. 2022, 41, 894–922. [Google Scholar] [CrossRef]
- Mazzola, P.N.; Teixeira, B.C.; Schirmbeck, G.H.; Reischak-Oliveira, A.; Derks, T.G.; van Spronsen, F.J.; Dutra-Filho, C.S.; Schwartz, I.V.D. Acute exercise in treated phenylketonuria patients: Physical activity and biochemical response. Mol. Genet. Metab. Rep. 2015, 5, 55–59. [Google Scholar] [CrossRef]
- Sumanszki, C.; Kovacs, K.; Karvaly, G.B.; Kiss, E.; Simon, E.; Patocs, A.; Toth, M.; Komka, Z.; Reismann, P. Metabolic and catecholamine response to sympathetic stimulation in early-treated adult male patients with phenylketonuria. Hormones 2020, 19, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Bunout, D.; Barrera, G.; De La Maza, T.; Avendaño, M.; Gattas, V.; Petermann, M.; Hirsch, S. Lean and fat mass as determinants of muscle strength and insulin sensitivity in Chilean elderly subjects. J. Nutr. Health Aging 2004, 8, 374–378. [Google Scholar]
- Henriksson, P.; Henriksson, H.; Tynelius, M.P.; Berglind, D.; Löf, M.; Lee, M.I.-M.; Shiroma, S.E.J.; Ortega, F.B. Fitness and Body Mass Index During Adolescence and Disability Later in Life. Ann. Intern. Med. 2019, 170, 230–239. [Google Scholar] [CrossRef]
- Demirdas, S.; Coakley, K.E.; Bisschop, P.H.; Hollak, C.E.M.; Bosch, A.M.; Singh, R.H. Bone health in phenylketonuria: A systematic review and meta-analysis. Orphanet J. Rare Dis. 2015, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Stroup, B.M.; Sawin, E.A.; Murali, S.G.; Binkley, N.; Hansen, K.E.; Ney, D.M. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria. J. Nutr. Metab. 2017, 2017, 1909101. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Gajardo, H.; Barrera, G. Quality control of bone densitometry: Precision, reproducibility, and clinical application. Rev. Med. Chile 1998, 126, 56–62. [Google Scholar]
- Tillquist, M.; Kutsogiannis, D.J.; Wischmeyer, P.E.; Kummerlen, C.; Leung, R.; Stollery, D.; Karvellas, C.J.; Preiser, J.-C.; Bird, N.; Kozar, R.; et al. Bedside Ultrasound Is a Practical and Reliable Measurement Tool for Assessing Quadriceps Muscle Layer Thickness. J. Parenter Enter. Nutr. 2014, 38, 886–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.; Bunout, D.; Barrera, G.; de la Maza, M.P.; Henriquez, S.; Leiva, L.; Hirsch, S. Rectus femoris (RF) ultrasound for the assessment of muscle mass in older people. Arch. Gerontol. Geriatr. 2015, 61, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Olguín, T.; Bunout, D.; de la Maza, M.P.; Barrera, G.; Hirsch, S. Admission handgrip strength predicts functional decline in hospitalized patients. Clin. Nutr. ESPEN 2017, 17, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, S.; Monsalves-Alvarez, M.; Jimenez, T.; Barrera, G.; Hirsch, S.; de la Maza, M.P.; Leiva, L.; Rodriguez, J.M.; Silva, C.; Bunout, D. Effects of Two Training Modalities on Body Fat and Insulin Resistance in Postmenopausal Women. J. Strength Cond. Res. 2017, 31, 2955–2964. [Google Scholar] [CrossRef]
- Vásquez-Gómez, J.; Salas, N.G.; Villarroel, P.J.; Rojas-Araya, L.; Faundez-Casanova, C.; Castillo-Retamal, M. Cardiorespiratory Fitness: Reference on the Six-Minute Walk Test and Oxygen Consumption in Adolescents from South-Central Chile. Int. J. Environ. Res. Public Health 2021, 18, 2474. [Google Scholar] [CrossRef]
- Kim, Y.; Park, I.; Kang, M. Convergent validity of the International Physical Activity Questionnaire (IPAQ): Meta-analysis. Public Health Nutr. 2013, 16, 440–452. [Google Scholar] [CrossRef] [Green Version]
- IPAQ—Score. Available online: https://sites.google.com/view/ipaq/score (accessed on 25 May 2023).
- Cerda, R.; Barrera, C.; Arenas, M.; Bascuñán, K.; Jimenez, G. Atlas Fotográfico de Alimentos y Preparaciones Típicas Chilenas: Encuesta Nacional de Consumo Alimentario 2010; Universidad de Chile: Santiago de Chile, Chile, 2010. [Google Scholar]
- Food Data Central. Available online: https://fdc.nal.usda.gov (accessed on 25 May 2023).
- National Institute of Health. Nutrient Recommendations: Dietary Reference Intakes (DRI). Available online: https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx (accessed on 25 May 2023).
- FAO/WHO/UNU. Human Energy Requirements. 2004. Available online: http://www.fao.org/docrep/007/y5686e/y5686e00.HTM (accessed on 25 May 2023).
- Grundy, S.M.; Stone, N.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1046–e1081. [Google Scholar] [CrossRef]
- Wigodski, S.; Carrasco, F.; Bunout, D.; Barrera, G.; Hirsch, S.; de la Maza, M.P. Sarcopenia: The need to establish different cutoff points of fat-free mass for the Chilean population. Nutrition 2019, 57, 217–224. [Google Scholar] [CrossRef]
- Adamczyk, P.; Morawiec-Knysak, A.; Płudowski, P.; Banaszak, B.; Karpe, J.; Pluskiewicz, W. Bone metabolism and the muscle–bone relationship in children, adolescents and young adults with phenylketonuria. J. Bone Miner Metab. 2011, 29, 236–244. [Google Scholar] [CrossRef]
- Bunout, D.; Barrera, G.; Hirsch, S.; Jimenez, T.; De La Maza, M.P. Association between activity energy expenditure and peak oxygen consumption with sarcopenia. BMC Geriatr. 2018, 18, 298. [Google Scholar] [CrossRef]
- Bhasin, S.; Apovian, C.M.; Travison, T.G.; Pencina, K.; Moore, L.L.; Huang, G.; Campbell, W.W.; Li, Z.; Howland, A.S.; Chen, R.; et al. Effect of Protein Intake on Lean Body Mass in Functionally Limited Older Men. JAMA Intern. Med. 2018, 178, 530. [Google Scholar] [CrossRef]
- McMurry, M.P.; Chan, G.M.; Leonard, C.; Ernst, S.L. Bone mineral status in children with phenylketonuria— relationship to nutritional intake and phenylalanine control. Am. J. Clin. Nutr. 1992, 55, 997–1004. [Google Scholar] [CrossRef]
- Yannicelli, S.; Medeiros, D.M. Elevated plasma phenylalanine concentrations may adversely affect bone status of phenylketonuric mice. J. Inherit. Metab. Dis. 2002, 25, 347–361. [Google Scholar] [CrossRef]
- Naeem, Z. Vitamin d deficiency- an ignored epidemic. Int. J. Health Sci. 2010, 4, V–VI. [Google Scholar]
- Le Roy, C.; Reyes, M.; González, J.M.; Perez-Bravo, F.; Castillo-Durán, C. Estado nutricional de vitamina D en pre escolares chilenos de zonas australes. Rev. Médica Chile 2013, 141, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Bravo, F.; Duarte, L.; Arredondo-Olguín, M.; Iñiguez, G.; Castillo-Valenzuela, O. Vitamin D status and obesity in children from Chile. Eur. J. Clin. Nutr. 2022, 76, 899–901. [Google Scholar] [CrossRef]
- Leiva, C.; Bravo, P.; Arias, C.; Cabello, J.; Leal-Witt, M.; Salazar, F.; Cornejo, V. 25 Hydroxy Vitamin D Level, Bone Health, Vitamin D and Calcium Intake in Chilean Patients with Phenylketonuria and Hyperphenylalaninemias. J. Inborn Errors Metab. Screen. 2021, 9, e20210004. [Google Scholar] [CrossRef]
- Walter, J.H. Vitamin B12 deficiency and phenylketonuria. Mol. Genet. Metab. 2011, 104, S52–S54. [Google Scholar] [CrossRef]
- Schulpis, K.; Karikas, G.; Papakonstantinou, E. Homocysteine and other vascular risk factors in patients with phenylketonuria on a diet. Acta Paediatr. 2007, 91, 905–909. [Google Scholar] [CrossRef]
PKU-1 Patients ¶ | Matched Controls | p ¥ | PKU-2 Patients * | Matched Controls | p § | p † | |
---|---|---|---|---|---|---|---|
Demographic-anthropometric- physical activity data | |||||||
Women/men (n) | 5//5 | 5//5 | 5//9 | 5//9 | NS | ||
Age (years) | 23.5 (19–26) ‡ | 21.5 (20–27) | NS | 22.5 (18.5–25.5) | 23 (19–25) | NS | NS |
Weight (kg) | 64.6 (58.8–91.4) | 68.1 (61.5–79.4) | NS | 71.5 (60.4–79.2) | 75.1 (61.5–87.6) | 0.02 | NS |
Height (cm) | 161 (156–171.2) | 166.6 (156–172.4) | NS | 162.5 (155.3–168.4) | 163.3 (159.5–172.5) | 0.02 | NS |
Body mass index (kg/cm2) | 24.3 (22.4–28.5) | 24.3 (24.1–27.9) | NS | 26.7 (24–29.9) | 27.6 (23.3–30.6) | NS | NS |
Waist circumference (cm) | 81.5 (75–94) | 79.8 (74–90.2) | NS | 85.5 (78.5–102) | 83.3 (78.5–105.5) | NS | NS |
Physical activity questionnaire (mets/week) | 1233 (1040–5124) | 1243.8 (942–2862) | NS | 1032 (333–4738) | 1993.8 (1046–4283) | NS | NS |
Functional measures: | |||||||
Left handgrip strength (kg) | 27.2 (21–35.8) | 30.9 (24.8–39.7) | 0.04 | 29.7 (22.4–34.7) | 32.8 (23.8–39.6) | NS | NS |
Right handgrip strength (kg) | 30.6 (23.5–40.1) | 34 (28.1–42.9) | 0.01 | 34.8 (25.1–37.4) | 33.8 (27.6–46.1) | NS | NS |
Six minutes’ walk test (m) | 650.6 (647–765) | 704.8 (674–721.4) | NS | 682 (612.7–740.1) | 672.5 (638.5–716) | NS | NS |
Muscle ultrasound: | |||||||
Left rectus femoris thickness (mm) | 21.2 (20.6–24.2) | 22.3 (20.8–25.1) | NS | 22.2 (20.5–24.9) | 23.5 (20.4–25.7) | NS | NS |
Right rectus femoris thickness (mm) | 23 (21.4–25.9) | 22.7 (21.1–24.8) | NS | 22.4 (20.1–23.7) | 22.8 (20.9–25.3) | NS | NS |
Incremental exercise test: | |||||||
Peak oxygen consumption (ml/min/kg) | 19 (15.9–25.7) | 26.2 (21.2–39.1) | NS | 23.4 (18.8–31.1) | 26.4 (19.5–34.7) | NS | NS |
Peak workload (Watt) | 135 (103–161) | 167.5 (150–233) | NS | 144 (116.5–192.5) | 167.5 (140.5–218) | 0.03 | NS |
Double beam X ray absorptiometry (DEXA) | |||||||
Total fat free mass (kg) | 44.3 (34.9–51.5) | 44.1 (38.6–49.6) | NS | 44.4 (36.3–50.5) | 47.4 (37.9–57.9) | 0.01 | NS |
Total fat mass (kg) | 21.1 (16–30.2) | 21.7 (15.4–34.7) | NS | 24.4 (18.1–32.4) | 26.6 (13.4–36.1) | NS | NS |
Appendicular fat free mass (kg) | 18.3 (14.3–21.6) | 19.1 (15.8–21) | NS | 17.7 (14.7–21.7) | 19.8 (16.1–25.4) | <0.01 | NS |
Appendicular fat free mass index (kg/cm2) | 6.8 (6–7.9) | 7.2 (6–7.7) | NS | 6.5 (6–7.7) | 7.4 (6.4–8.5) | 0.02 | NS |
Spine bone mineral density (g/cm2) | 1.1 (1.1–1.3) | 1.2 (1.1–1.3) | NS | 1.2 (1–1.3) | 1.3 (1.1–1.4) | 0.04 | NS |
Femoral bone mineral density (g/cm2) | 1 (0.9–1.2) | 1 (1–1.1) | NS | 1 (0.9–1.1) | 1.2 (1–1.3) | <0.01 | NS |
Reference Values | PKU-1 Patients ¶ | Matched Controls | p ¥ | PKU-2 Patients * | Matched Controls | p § | p † | |
---|---|---|---|---|---|---|---|---|
Phenylalanine (μmol/L) | 120–360 | 260.3 (170–642) ‡ | 39.3 (36.3–42.4) | <0.01 | 781 (636–1035.1) | 47.8 (40.6–48.4) | <0.01 | <0.01 |
Tyrosine (μmol/L) | 44–99 | 46.6 (33.1–49.7) | 49.7 (44.2–60.7) | NS | 35.9 (33.1–55.2) | 53 (44.2–60.7) | NS | NS |
Total cholesterol (mg/dL) | 100–200 | 139.5 (121–157) | 147 (129–174) | NS | 133.5 (121–154) | 154 (131–185) | NS | NS |
HDL cholesterol (mg/dL) | 40.0 | 48 (38.4–56.6) | 49.4 (48–60.8) | NS | 44.9 (38.2–48.9) | 46.6 (40.5–50.6) | NS | NS |
Triglycerides (mg/dL) | 30–150 | 81.5 (58–104) | 100 (68–127) | NS | 93.5 (60–146) | 95 (82–138) | NS | NS |
Serum folic acid (ng/mL) | 4.4–31 | 26.1 (20–30.4) | 15.2 (12.5–19.7) | <0.01 | 22.4 (18.5–28.1) | 16.8 (12.9–18.4) | <0.01 | NS |
Vitamin B12 (ng/mL) | 197–771 | 722.5 (499–926) | 374.5 (291–696) | NS | 338 (137–539) | 436.5 (330–543) | NS | 0.03 |
Homocysteine (μmol/L) | 4.30–11.10 | 5.1 (4.3–5.9) | 6.2 (5.3–6.4) | NS | 5.6 (4.9–6.4) | 6 (5.2–6.6) | NS | NS |
Vitamin D3 (pg/mL) | 30.0 | 35.7 (28.4–46.6) | 23.7 (23–37.5) | NS | 23.9 (19–26.8) | 29 (24.8 - 32.3) | NS | <0.01 |
Reference Values | PKU-1 Patients ¶ | Matched Controls | p ¥ | PKU-2 Patients * | Matched Controls | p § | p † | |
---|---|---|---|---|---|---|---|---|
Protein (g) (%MDR) | 0.8 g/kg/d a 10–35% b | 75.1 (57.3–78.2) ‡ 15% (10–20) | 84.4 (57.9–101) 15% (13–16) | NS | 46.6 (28.9–68.7) 9% (7–13) | 89.6 (66.6–101.1) 15% (12–18) | 0.01 | NS |
Fat (g) (%MDR) | 20–35% b | 55.8 (38–71) 27% (21–29) | 97 (70–121) 37% (32–41) | 0.01 | 67.8 (44.5–84.5) 30% (23–37) | 86.5 (66.5–95.5) 34% (29–38) | NS | NS |
Carbohydrates (g) (%MDR) | 45–65% b | 269.3 (198–305) 57 % (52–64) | 268.3 (226–335) 48% (44–52) | NS | 298.5 (245.5–442.5) 61% (55–67) | 310 (188.5–420) 51% (45–59) | NS | NS |
Energy (Kcal/d) | 2500 c | 1800.5 (1565–2167) | 2263.3 (1923–2850) | NS | 1938.3 (1730.5–3068) | 2238 (1754.5–3052) | NS | NS |
Cholesterol (mg/d) | <300 d | 1.3 (0–10.5) | 273.5 (181.5–496) | <0.01 | 15.8 (10.5–69) | 283 (158–620.5) | <0.01 | 0.02 |
Phenylalanine (mg/d) | 200–1100 e | 600 (400–800) | 3900 (2600–4900) | <0.01 | 1200 (500–1700) | 4000 (3100–4500) | <0.01 | NS |
Tyrosine (mg/d) | 4000–6000 e | 5600 (4400–7000) | 3200 (2000–3900) | 0.04 | 2700 (1200–4300) | 3300 (2500–3600) | NS | 0.01 |
Vitamin B12 (μg/d) | 2.4 a | 13.5 (11.2–21.4) | 5 (3.8–6.5) | <0.01 | 2.7 (1.1–11.2) | 5.3 (2.4–5.6) | NS | <0.01 |
Folic acid (μg/d) | 400 a | 1361 (737.5–1869) | 416.8 (228.5–498) | <0.01 | 1672.8 (1404–2941) | 458.5 (225–1114) | <0.01 | NS |
Vitamin D (μg/d) | 5 a | 11.7 (7.7–13.9) | 1 (0.5–1.7) | <0.01 | 2.8 (1.9–9.3) | 1.3 (0.3- 1.9) | 0.03 | 0.02 |
Calcium (mg/d) | 1000 a | 2121 (1482.5–2529) | 803 (535.5–1119) | 0.04 | 929.5 (501.5–1431.5) | 735.3 (466–1221.5) | NS | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Agurto, E.; Leal-Witt, M.J.; Arias, C.; Cabello, J.F.; Bunout, D.; Cornejo, V. Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet. Nutrients 2023, 15, 2939. https://doi.org/10.3390/nu15132939
Rojas-Agurto E, Leal-Witt MJ, Arias C, Cabello JF, Bunout D, Cornejo V. Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet. Nutrients. 2023; 15(13):2939. https://doi.org/10.3390/nu15132939
Chicago/Turabian StyleRojas-Agurto, Eugenia, María Jesús Leal-Witt, Carolina Arias, Juan Francisco Cabello, Daniel Bunout, and Verónica Cornejo. 2023. "Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet" Nutrients 15, no. 13: 2939. https://doi.org/10.3390/nu15132939
APA StyleRojas-Agurto, E., Leal-Witt, M. J., Arias, C., Cabello, J. F., Bunout, D., & Cornejo, V. (2023). Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet. Nutrients, 15(13), 2939. https://doi.org/10.3390/nu15132939