Differences in Chronic Low-Grade Inflammation and Metabolic Disturbances between VDR Genotypes in an Ethnically Homogenous Postmenopausal Female Population from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometrical and Biochemical Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. The Prevalence of VDR Polymorphism
4.2. VDR Polymorphism and Anthropometric Risk Factors of Metabolic Diseases
4.3. VDR Gene Polymorphism and Metabolic Risk Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Norman, A.W.; Vitamin, D. Receptor: New Assignments for an Already Busy Receptor. Endocrinology 2007, 147, 5542–5548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haussler, M.R.; Witfield, G.K.; Kanenko, I.; Haussler, C.A.; Hasieh, D.; Hasieh, J.-C.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Long, M.D.; Sucheston-Campbell, L.E.; Campbell, M.J. Vitamin D Receptor and RXR in the Post-Genomic Era. J. Cell. Physiol. 2015, 230, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; van Leeuwen, J.P. Genetics and biology of vitamin D receptor poly-morphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abousid, M.; Kruszyna, M.; Burchardt, P.; Kruszyna, Ł.; Główka, F.K.; Karazniewicz-Łada, M. Vitamin D receptor gene poly-morphisms and vitamin D status in population of patients with cardiovascular disease―A preliminary report. Nutrients 2021, 13, 3117. [Google Scholar] [CrossRef]
- Pistono, C.; Osera, C.; Monti, M.C.; Boiocchi, C.; Mallucci, G.; Cuccia, M.; Montomoli, C.; Bergamaschi, R.; Pascale, A. Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression. Immuno 2022, 2, 469–481. [Google Scholar] [CrossRef]
- Garnero, P.; Munoz, F.; Borel, O.; Sornay-Rendu, E.; Delmas, D. Vitamin D receptor gene polymorphisms is associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J. Clin. Endocrinol. Metab. 2005, 90, 4829–4835. [Google Scholar] [CrossRef] [Green Version]
- Morrison, N.A.; Qi, J.C.; Tokita, A.; Kelly, P.J.; Crofts, L.; Nguyen, T.V.; Sambrook, P.N.; Eisman, J.A. Prediction of bone density from vitamin D receptor alleles. Nature 1994, 367, 284–287. [Google Scholar] [CrossRef]
- Valdivielso, M.J.; Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta 2006, 371, 1–12. [Google Scholar] [CrossRef]
- Testa, A.; Mallamaci, F.; ABenedetto, F.; Pisano, A.; Tripepi, G.; Malatino, L.; Thadhani, R.; Zoccali, C. Vitamin D receptor (VDR) gene polymorphism is associated with left ventricular (LV) mass and predicts left ventricular hypertrophy (LVH) progression in end-stage renal disease (ESRD) patients. J. Bone Miner. Res. 2010, 25, 313–319. [Google Scholar] [CrossRef]
- Filus, A.; Trzmiel, A.; Kuliczkowska-Płaksej, J.; Tworowska, U.; Jędrzejuk, D.; Milewicz, A.; Mędraś, M. Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male 2008, 11, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Ortlepp, J.R.; Krantz, C.; Kimmel, M.; von Korff, A.; Vesper, K.; Schmitz, F.; Mevissen, V.; Janssens, U.; Franke, A.; Hanrath, P.; et al. Additive effects of the chemokine receptor 2, vitamin D receptor, interleukin-6 polymorphisms and cardiovascular risk factors on the prevalence of myocardial infarction in patients below 65 years. Int. J. Cardiol. 2005, 105, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, B.; Liu, J.-Y.; Yang, L.-B. Vitamin D receptor gene polymorphisms and Type 2 diabetes: A meta-analysis. Arch. Med. Res. 2013, 44, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ortlepp, J.R.; Lauscher, J.; Hoffmann, R.; Hanrath, P.; Joost, H.-G. The vitamin D receptor gene variant is associated with the prevalence of Type 2 diabetes mellitus and coronary artery disease. Diabet. Med. 2001, 18, 842–845. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Barrett-Connor, E. Association between vitamin D receptor polymorphism and type 2 diabetes or metabolic syndrome in community-dwelling older adults: The Rancho Bernardo Study. Metabolism 2002, 51, 356–359. [Google Scholar] [CrossRef]
- McDermott, M.F.; Ramachandran, A.; Ogunkolade, B.W.; Aganna, E.; Curtis, D.; Boucher, B.J.; Snehalatha, C.; Hitman, G.A. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetologia 1997, 40, 971–975. [Google Scholar] [CrossRef] [Green Version]
- Alathari, B.E.; Sabta, A.A.; Kalpana, C.A.; Vimaleswaran, K.S. Vitamin D pathway-related gene polymorphisms and their association with metabolic diseases: A literature review. J. Diabetes Metab. Disord. 2020, 19, 1701–1729. [Google Scholar] [CrossRef]
- Ferder, M.; Inserra, F.; Manucha, W.; Ferder, L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the rennin-angiotensin system. Am. J. Physiol. Cell Physiol. 2013, 304, C1027–C1039. [Google Scholar] [CrossRef] [Green Version]
- Schuch, N.J.; Garcia, V.C.; Goueva, S.R.; Vivolo, F.; Araujo Martini, L. Relationship between vitamin D receptor gene poly-morphisms and the components of metabolic syndrome. Nutr. J. 2013, 12, 96. [Google Scholar] [CrossRef] [Green Version]
- Kunadian, V.; Ford, G.A.; Bawamia, B.; Qiu, W.; Manson, J.E. Vitamin D deficiency and coronary artery disease: A review of the evidence. Am. Heart J. 2013, 167, 283–291. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Manson, J.E.; Buring, J.E.; Gaziano, J.M.; Sesso, H.D. A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur. J. Nutr. 2012, 52, 1771–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadoniene, J.; Čypienė, A.; Rinkūnienė, E.; Badariene, J.; Laucevičius, A. Vitamin D, cardiovascular and bone health in postmen-opausal women with metabolic syndrome. Adv. Clin. Exp. Med. 2018, 27, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Livadas, S.; Goulis, D.G.; Rees, M.; Lambrinoudaki, I. Vitamin D, Menopausal Health and COVID-19: Critical Appraisal of Current Data. J. Clin. Med. 2023, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, Z.; Zhu, D.; Chen, G.; Yan, G.; Zhang, S.; Chen, F.; Khan, B.A.; Hou, K. Vitamin D and Lipid Profiles in Postmenopausal Women: A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Front. Mol. Biosci. 2021, 8, 799934. [Google Scholar] [CrossRef] [PubMed]
- Bono, R.; Squillacioti, G.; Ghelli, F.; Panizzolo, M.; Comoretto, R.I.; Dalmasso, P.; Bellisario, V. Oxidative Stress Trajectories during Lifespan: The Possible Mediation Role of Hormones in Redox Imbalance and Aging. Sustainability 2023, 15, 1814. [Google Scholar] [CrossRef]
- Renke, G.; Starling-Soares, B.; Baesso, T.; Petronio, R.; Aguiar, D.; Paes, R. Effects of Vitamin D on Cardiovascular Risk and Oxidative Stress. Nutrients 2023, 15, 769. [Google Scholar] [CrossRef]
- Lwow, F.; Bohdanowicz-Pawlak, A. Vitamin D and selected cytokines concentrations in postmenopausal women in relation to metabolic disorders and physical activity. Exp. Gerontol. 2020, 141, 111107. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute; National Institute of Diabetes and Digestive and Kidney Diseases (U.S.). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report; National Institutes of Health: Bethesda, MD, USA, 1998; Volume 6, pp. 51–209.
- Lins, T.C.L.; Nogueira, L.R.; Lima, R.M.; Gentil, P.; Oliveira, R.; Pereira, R. A multiplex single-base extension protocol for genotyping Cdx2, FokI, BsmI, ApaI, and TaqI polymorphisms of the vitamin D receptor gene. Genet. Mol. Res. 2007, 6, 316–324. [Google Scholar]
- Laczmanski, L.; Milewicz, A.; Lwow, F.; Puzianowska-Kuznicka, M.; Pawlak, M.; Kolackov, K.; Jedrzejuk, D.; Krzyzanowska-Swiniarska, B.; Bar-Andziak, E.; Chudek, J.; et al. Vitamin D receptor gene polymorphism and cardiovascular risk variables in elderly Polish subjects. Gynecol. Endocrinol. 2012, 29, 268–272. [Google Scholar] [CrossRef]
- Cyganek, K.; Mirkiewicz-Sieradzka, B.; Malecki, M.T.; Wolkow, P.; Skupien, J.; Bobrek, J.; Czogala, M.; Klupa, T.; Sieradzki, J. Clinical risk factors and the role of VDR gene polymorphisms in diabetic retinopathy in Polish type 2 diabetes patients. Acta Diabetol. 2006, 43, 114–119. [Google Scholar] [CrossRef]
- Malecki, M.T.; Frey, J.; Moczulski, D.; Klupa, T.; Kozek, E.; Sieradzki, J. Vitamin D receptor gene polymorphisms and association with Type 2 diabetes mellitus in a Polish population. Exp. Clin. Endocrinol. Diabetes 2003, 111, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Marc, J.; Preželj, J.; Komel, R.; Kocijancic, A. Association of vitamin D receptor gene polymorphism with bone mineral density in Slovenian postmenopausal women. Gynecol. Endocrinol. 2000, 14, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S. Vitamin-D receptor (VDR) gene polymorphisms (Taq-I & Apa-I) in Syrian healthy population. Meta Gene 2014, 2, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Zmuda, J.M.; Cauley, J.A.; Danielson, M.E.; Wolf, R.L.; Ferrell, R.E. Vitamin D receptor gene polymorphisms, bone turnover, and rates of bone loss in older African-American women. J. Bone Miner. Res. 1997, 12, 1446–1452. [Google Scholar] [CrossRef]
- Kaleta, B.; Walicka, M.; Sawicka, A.; Wrzosek, M.; Bogołowska-Stieblich, A.; Nowicka, G.; Górski, A.; Łukaszewicz, J.; Marcin-kowska-Suchowierska, E. Vitamin D receptor gene polymorphism in Polish patients with morbid obesity. Postępy Nauk. Med. 2014, XXVII, 65–69. [Google Scholar]
- Ye, W.; Reis, A.; Dubois-Laforgue, D.; Bellanne-Chantelot, C.; Timsit, J.; Velho, G. Vitamin D receptor gene polymorphisms are associated with obesity in type 2 diabetic subjects with early age of onset. Eur. J. Endocrinol. 2001, 145, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Ochs-Balcom, H.M.; Chennamaneni, R.; Millen, A.E.; Shields, P.G.; Marian, C.; Trevisan, M.; Freudenheim, J.L. Vitamin D receptor gene polymorphisms are associated with adiposity phenotypes. Am. J. Clin. Nutr. 2011, 93, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Grundberg, E.; Brandstrom, H.; Ribom, E.; Ljunggren, O.; Mallmin, H.; Kindmark, A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur. J. Endocrinol. 2004, 150, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liao, S.; He, J.; Jin, Y.; Fu, H.; Chen, X.; Fan, X.; Xu, H.; Liu, X.; Jin, J.; et al. Association of vitamin D receptor gene polymorphisms with metabolic syndrome: A case–control design of population-based cross-sectional study in North China. Lipids Heal. Dis. 2014, 13, 129. [Google Scholar] [CrossRef] [Green Version]
- Ogunkolade, B.W.; Boucher, B.J.; Prahl, J.M.; Bustin, S.A.; Burrin, J.M.; Noonan, K.; North, B.V.; Mannan, N.; McDermott, M.F.; DeLuca, H.F.; et al. Vitamin D recepror (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002, 51, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; Hauache, O.; Velho, G. Vitamin D endocrine system and the genetic susceptibility to diabetes, obesity and vascular disease. A review of evidence. Diabetes Metab. 2005, 31, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Skragg, R.; Sowers, M.; Bell, C. Serum 25-hydroxyvitamin D, diabetes and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2813–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.-F.; Lv, Y.-L.; Gong, L.-L.; Liu, H.; Wan, Z.-R.; Liu, L.-H. VDR Gene variation and insulin resistance related diseases. Lipids Health Dis. 2017, 16, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phabphal, K.; Geater, A. The association between BsmI polymorphism and risk factors for atherosclerosis in patients with epilepsy taking valproate. Seizure 2013, 22, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Karonova, T.; Grineva, E.; Belyaeva, O.; Bystrova, A.; Jude, E.B.; Andreeva, A.; Kostareva, A.; Pludowski, P. Relationship between Vitamin D status and Vitamin D receptor gene polymorphisms with markers of metabolic syndrome among adults. Front. Endocrinol. 2018, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Michos, E.D.; Melamed, M.L. Vitamin D and cardiovascular disease risk. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 7–12. [Google Scholar] [CrossRef]
- Melamed, M.L.; Michos, E.D.; Post, W.; Astor, B. 25-Hyrdoxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med. 2008, 168, 1629–1637. [Google Scholar] [CrossRef]
Polymorphism | Forward Primers for PCR (5′-3′) | Reverse Primers for PCR (3′-5′) | Size of the PCR Product (bp) |
---|---|---|---|
FokI | GGCCTGCTTGCTGTTCTTAC | TCACCTGAAGAAGCCTTTGC | 174 |
BsmI | CCTCACTGCCCTTAGCTCTG | CCATCTCTCAGGCTCCAAAG | 209 |
ApaI | CTGCCGTTGAGTGTCTGTGT | TCGGCTAGCTTCTGGATCAT | 242 |
TaqI |
Polymorphism | Forward Primers for PCR (5′-3′) |
---|---|
FokI | (T)31GCTGGCCGCCATTGCCTCC |
BsmI | (T)21CAGAGCCTGAGTATTGGGAATG |
ApaI | (T)12GTGGTGGGATTGAGCAGTGAGG |
TaqI | (T)9GCGGTCCTGGATGGCCTC |
Genotype Polymorphism | Genotype | n (Observed) | n (Expected) | p | q | χ2 | p |
---|---|---|---|---|---|---|---|
N = 321 | |||||||
Bsm-I (rs1544410) G < A | GG GA AA | 121 (37.71%) 163 (50.8%) 37 (11.5%) | 127.1 (39.8%) 149.5 (46.6%) 43.7 (13.6%) | G 0.63 | A 0.37 | 2.6136 | 0.106 |
Taq-I (rs731236) T < C | TT TC CC | 122 (41.9%) 133 (45.7%) 36 (12.4%) | 122.1 (42.0%) 132.8 (45.6%) 36.1 (12.4%) | T 0.65 | C 0.35 | 0.0007 | 0.979 |
Apa-I (rs7975232) T < G | TT TG GG | 59 (20.4%) 153 (52.5%) 79 (27.1%) | 63.1 (21.7%) 144.8 (4.8%) 83. (28.5%) | T 0.47 | G 0.53 | 0.9302 | 0.334 |
Fok-I (rs10735810) C < T | CC CT TT | 99 (34%) 148 (50.9) 44 (15.1%) | 102.8 (35.4%) 140.3 (48.2%) 47.8 (16.4%) | C 0.41 | T 0.59 | 0.8759 | 0.349 |
Risk Factor of Metabolic Disturbances | Genotype GA n = 163 | Genotype GG n = 121 | Genotype AA n = 37 | p |
---|---|---|---|---|
BMI (kg/m2) | 27.2 ± 4.9 | 27.4 ± 4.9 | 27.5 ± 4.7 | 0.944 |
WC (cm) | 89.1 ± 11.5 | 87.7 ± 11.7 | 89.4 ± 11.5 | 0.570 |
Hip circumference (cm) | 105.1 ± 10 | 105.8 ± 8.7 | 105.9 ± 8.8 | 0.536 |
WHR (cm/cm) | 0.830 ± 0.078 | 0.828 ± 0.075 | 0.835 ± 0.063 | 0.877 |
TF (%) | 37.5 ± 54 | 37.6 ± 5.0 | 37.3 ± 0.0 | 0.956 |
Glucose (mg/dL) | 87.7 ± 9.6 | 88.8 ± 9.9 | 89.7 ± 8.2 | 0.49 |
Insulin (µIU/mL) | 6.34 ± 4.30 | 6.51 ± 4.09 | 6.94 ± 3.64 | 0.73 |
HOMA | 1.30 ± 0.81 | 1.57 ± 1.11 | 1.44 ± 0.95 | 0.06 |
T-chol (mg/dL) | 240.0 ± 38.6 | 248.1 ± 45.7 | 257.1 ± 43.9 | 0.054 |
HDL-C (mg/dL) | 72.1 ± 17.7 | 69.5 ± 17.0 | 66.7 ± 16.1 | 0.170 |
LDL-C (mg/dL) | 148 ± 36.1 | 156.4 ± 41.2 | 167.6 ± 40.2 | 0.014 * |
TG (mg/dL) | 100.8 ± 43.5 | 112.2 ± 50.1 | 114.3 ± 45.2 | 0.072 |
LDL-C/HDL-C | 2.20 ± 0.82 | 2.40 ± 0.89 | 2.65 ± 0.92 | 0.009 * |
Castelli index | 2.50 ± 0.95 | 2.76 ± 1.05 | 3.02 ± 1.05 | 0.008 * |
AIP | 0.280 ± 0.556 | 0.409 ± 0.612 | 0.494 ± 0.545 | 0.055 |
TNF-α (pg/mL) | 15.2 ± 19.1 | 19.7 ± 25.4 | 16.5 ± 19.1 | 0.22 |
IL-6 (pg/mL) | 22.4 ± 64.3 | 15.5 ± 7.6 | 17.6 ± 7.2 | 0.44 |
Adiponectin (µg/mL) | 14.3 ± 6.0 | 13.5 ± 6.3 | 16.6 ± 8.2 | 0.08 |
Leptin (ng/mL) | 12.0 ± 6.7 | 12.5 ± 7.1 | 13.0 ± 7.6 | 0.70 |
Parameter Risk Factor | Genotype TT n = 133 | Genotype TC n = 122 | Genotype CC n = 36 | p |
---|---|---|---|---|
BMI (kg/m2) | 27.8 ± 4.8 | 27.4 ± 4.8 | 26.7 ± 4.0 | 0.48 |
WC (cm) | 88.4 ± 11.6 | 88.2 ± 11.6 | 86.5 ± 10.9 | 0.67 |
Hip circumference (cm) | 106.1 ± 9.1 | 105.5 ± 10.4 | 105.1 ± 7.5 | 0.79 |
WHR | 0.832 ± 0.069 | 0.837 ± 0.082 | 0.822 ± 0.068 | 0.657 |
TF (%) | 37.8 ± 5.1 | 38.0 ± 4.9 | 36.5 ± 5.1 | 0.36 |
Glucose (mg/dL) | 90.0 ± 11.9 | 87.6 ± 9.6 | 87.1 ± 7.5 | 0.132 |
Insulin (μIU/mL) | 6.86 ± 4.68 | 6.35 ± 4.02 | 5.99 ± 3.48 | 0.451 |
HOMA | 1.55 ± 1.10 | 1.26 ± 0.75 | 1.31 ± 0.98 | 0.041 * |
T-chol (mg/dL) | 249.2 ± 47.1 | 239.9 ± 36.6 | 248.3 ± 39.9 | 0.199 |
HDL-C (mg/dL) | 70 ± 17.4 | 70.5 ± 18.1 | 70.5 ± 14.2 | 0.968 |
LDL-C (mg/dL) | 156.6 ± 42.8 | 149.2 ± 34.2 | 157.3 ± 39.8 | 0.267 |
TG (mg/dL) | 113.0 ± 53.0 | 103.3 ± 40.3 | 102.8 ± 43.1 | 0.518 |
LDL-C/HDL-C | 2.39 ± 0.92 | 2.27 ± 0.82 | 2.35 ± 0.89 | 0.567 |
Castelli index | 2.75 ± 1.07 | 2.60 ± 0.96 | 2.67 ± 1.02 | 0.482 |
AIP | 0.403 ± 0.625 | 0.340 ± 0.550 | 0.315 ± 0.539 | 0.598 |
TNF-α (pg/mL) | 17.1 ± 24.0 | 17.1 ± 21.2 | 15.6 ± 16.0 | 0.881 |
IL-6 (pg/mL) | 20.7 ± 63.9 | 18.5 ± 33.6 | 16.6 ± 4.0 | 0.881 |
Adiponectin (µg/mL) | 13.8 ± 6.2 | 13.8 ± 5.9 | 16.7 ± 6.7 | 0.032 * |
Leptin (ng/mL) | 12.9 ± 7.3 | 12.0 ± 6.6 | 12.3 ± 7.4 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohdanowicz-Pawlak, A.; Lwow, F. Differences in Chronic Low-Grade Inflammation and Metabolic Disturbances between VDR Genotypes in an Ethnically Homogenous Postmenopausal Female Population from Poland. Nutrients 2023, 15, 2737. https://doi.org/10.3390/nu15122737
Bohdanowicz-Pawlak A, Lwow F. Differences in Chronic Low-Grade Inflammation and Metabolic Disturbances between VDR Genotypes in an Ethnically Homogenous Postmenopausal Female Population from Poland. Nutrients. 2023; 15(12):2737. https://doi.org/10.3390/nu15122737
Chicago/Turabian StyleBohdanowicz-Pawlak, Anna, and Felicja Lwow. 2023. "Differences in Chronic Low-Grade Inflammation and Metabolic Disturbances between VDR Genotypes in an Ethnically Homogenous Postmenopausal Female Population from Poland" Nutrients 15, no. 12: 2737. https://doi.org/10.3390/nu15122737
APA StyleBohdanowicz-Pawlak, A., & Lwow, F. (2023). Differences in Chronic Low-Grade Inflammation and Metabolic Disturbances between VDR Genotypes in an Ethnically Homogenous Postmenopausal Female Population from Poland. Nutrients, 15(12), 2737. https://doi.org/10.3390/nu15122737