Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans—A Systematic Review
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Protocol
2.2. Outcomes
2.3. Search Strategy
2.4. Studies Included
2.5. Data Extraction
2.6. Risk of Bias
2.7. Data Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics—All Studies
3.3. Fat Oxidation
3.3.1. Non-Caloric Sweeteners
3.3.2. Low-Caloric Sweeteners
3.4. Carbohydrate and Protein Oxidation, Energy Expenditure, Catecholamines and Adverse Events
3.4.1. Non-Caloric Sweeteners
3.4.2. Low-Caloric Sweeteners
3.5. Risk of Bias Assessment
4. Discussion
4.1. Summary of Findings
4.2. Fat and Carbohydrate Oxidation
4.3. Energy Expenditure
4.4. Possible Mechanism for NCS and LCS
4.5. Strength of the Evidence—GRADE
4.6. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases Country Profiles 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151462-0. [Google Scholar]
- World Health Organization (WHO). Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015; ISBN 978 92 4 154902 8. [Google Scholar]
- Msomi, N.Z.; Erukainure, O.L.; Islam, M.S. Suitability of Sugar Alcohols as Antidiabetic Supplements: A Review. J. Food Drug Anal. 2021, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A Review of Polyols–Biotechnological Production, Food Applications, Regulation, Labeling and Health Effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial Sweeteners—A Review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí, N.; Funes, L.L.; Saura, D.; Micol, V. An Update on Alternative Sweeteners. Int. Sugar J. 2008, 110, 425–429. [Google Scholar]
- Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological Fate of Low-Calorie Sweeteners. Nutr. Rev. 2016, 74, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Livesey, G. Health Potential of Polyols as Sugar Replacers, with Emphasis on Low Glycaemic Properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Mattes, R.D.; Popkin, B.M. Nonnutritive Sweetener Consumption in Humans: Effects on Appetite and Food Intake and Their Putative Mechanisms. Am. J. Clin. Nutr. 2009, 89, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Grembecka, M. Sugar Alcohols-Their Role in the Modern World of Sweeteners: A Review. Eur. Food Res. Technol. 2015, 241, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Gibson, S.; Bellisle, F.; Buttriss, J.; Drewnowski, A.; Fantino, M.; Gallagher, A.M.; de Graaf, K.; Goscinny, S.; Hardman, C.A.; et al. Expert Consensus on Low-Calorie Sweeteners: Facts, Research Gaps and Suggested Actions. Nutr. Res. Rev. 2020, 33, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Romo-Romo, A.; Aguilar-Salinas, C.A.; Gómez-Díaz, R.A.; Brito-Córdova, G.X.; Gómez-Velasco, D.V.; López-Rocha, M.J.; Almeda-Valdés, P. Non-Nutritive Sweeteners: Evidence on Their Association with Metabolic Diseases and Potential Effects on Glucose Metabolism and Appetite. Rev. Investig. Clin. 2017, 69, 129–138. [Google Scholar] [CrossRef]
- Dybing, E.; Doe, J.; Groten, J.; Kleiner, J.; O’Brien, J.; Renwick, A.G.; Schlatter, J.; Steinberg, P.; Tritscher, A.; Walker, R.; et al. Hazard Characterisation of Chemicals in Food and Diet: Dose Response, Mechanisms and Extrapolation Issues. Food Chem. Toxicol. 2002, 40, 237–282. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Health Effects of the Use of Non-Sugar Sweeteners: A Systematic Review and Meta-Analysis; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789240046429. [Google Scholar]
- Zhao, X.; Yan, J.; Chen, K.; Song, L.; Sun, B.; Wei, X. Effects of Saccharin Supplementation on Body Weight, Sweet Receptor MRNA Expression and Appetite Signals Regulation in Post-Weanling Rats. Peptides 2018, 107, 32–38. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive Sweeteners and Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies. CMAJ 2017, 189, E929–E939. [Google Scholar] [CrossRef] [Green Version]
- Romo-Romo, A.; Aguilar-Salinas, C.A.; Brito-Cordova, G.X.; Valentin, D.V.; Almeda-Valdes, P.; Diaz, R.A.G. Effects of the Non-Nutritive Sweeteners on Glucose Metabolism and Appetite Regulating Hormones: Systematic Review of Observational Prospective Studies and Clinical Trials. PLoS ONE 2016, 11, 161264. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.Y. Observational Studies: A Review of Study Designs, Challenges and Strategies to Reduce Confounding. Int. J. Clin. Pract. 2009, 63, 691–697. [Google Scholar] [CrossRef]
- Normand, M.; Ritz, C.; Mela, D.; Raben, A. Low-Energy Sweeteners and Body Weight: A Citation Network Analysis. BMJ Nutr. Prev. Health 2021, 4, 319–332. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guideline: Use of Non-Sugar Sweeteners; World Health Organization: Geneva, Switzerland, 2023; ISBN 9789240073616. [Google Scholar]
- Payne, A.N.; Chassard, C.; Lacroix, C. Gut Microbial Adaptation to Dietary Consumption of Fructose, Artificial Sweeteners and Sugar Alcohols: Implications for Host-Microbe Interactions Contributing to Obesity. Obes. Rev. 2012, 13, 799–809. [Google Scholar] [CrossRef]
- Nettleton, J.E.; Reimer, R.A.; Shearer, J. Reshaping the Gut Microbiota: Impact of Low Calorie Sweeteners and the Link to Insulin Resistance? Physiol. Behav. 2016, 164, 488–493. [Google Scholar] [CrossRef]
- Pearlman, M.; Obert, J.; Casey, L. The Association Between Artificial Sweeteners and Obesity. Curr. Gastroenterol. Rep. 2017, 19, 64. [Google Scholar] [CrossRef]
- Burke, M.V.; Small, D.M. Physiological Mechanisms by Which Non-Nutritive Sweeteners May Impact Body Weight and Metabolism. Physiol. Behav. 2015, 30, 1289–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2021, 7, 598340. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Pang, M.; Castelnuovo, G.; Finlayson, G.; Blaak, E.; Gibbons, C.; Navas-Carretero, S.; Almiron-Roig, E.; Harrold, J.; Raben, A.; et al. A Rational Review on the Effects of Sweeteners and Sweetness Enhancers on Appetite, Food Reward and Metabolic/Adiposity Outcomes in Adults. Food Funct. 2021, 12, 442–465. [Google Scholar] [CrossRef]
- McGlynn, N.D.; Khan, T.A.; Wang, L.; Zhang, R.; Chiavaroli, L.; Au-Yeung, F.; Lee, J.J.; Noronha, J.C.; Comelli, E.M.; Blanco Mejia, S.; et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages with Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e222092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Noronha, J.C.; Khan, T.A.; Mcglynn, N.; Back, S.; Grant, S.M.; Kendall, C.W.C.; Sievenpiper, J.L. The Effect of Non-Nutritive Sweetened Beverages on Postprandial Glycemic and Endocrine Responses: A Systematic Review and Network Meta-Analysis. Nutrients 2023, 15, 1050. [Google Scholar] [CrossRef]
- Rogers, P.J.; Appleton, K.M. The Effects of Low-Calorie Sweeteners on Energy Intake and Body Weight: A Systematic Review and Meta-Analyses of Sustained Intervention Studies. Int. J. Obes. 2021, 45, 2139–2140. [Google Scholar] [CrossRef]
- Rogers, P.J.; Hogenkamp, P.S.; De Graaf, C.; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; et al. Does Low-Energy Sweetener Consumption Affect Energy Intake and Body Weight? A Systematic Review, Including Meta-Analyses, of the Evidence from Human and Animal Studies. Int. J. Obes. 2016, 40, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Lasserson, T.; Chandler, J.; Tovey, D.; Thomas, J.; Flemyng, E.; Churchill, R. (Eds.) Standards for the conduct of new Cochrane Intervention Reviews. In Methodological Expectations of Cochrane Intervention Reviews; Cochrane: London, UK, 2021. [Google Scholar]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Comparisons against Baseline within Randomised Groups Are Often Used and Can Be Highly Misleading. Trials 2011, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Covidence Systematic Review Software. Verit. Heal. Innov. Melbourne, Aust. 2022. Available online: www.covidence.org (accessed on 30 December 2022).
- Eckstein, M.L.; Brockfeld, A.; Haupt, S.; Schierbauer, J.R.; Zimmer, R.T.; Wachsmuth, N.; Zunner, B.; Zimmermann, P.; Obermayer-Pietsch, B.; Moser, O. Acute Metabolic Responses to Glucose and Fructose Supplementation in Healthy Individuals: A Double-Blind Randomized Crossover Placebo-Controlled Trial. Nutrients 2021, 13, 4095. [Google Scholar] [CrossRef]
- Mourão, D.M.; Monteiro, J.B.R.; Hermsdorff, H.H.M.; Lelte, M.C.T. Effect of Sucrose and Sweetener on Appetite Sensation and Energy Expenditure in Normal Weight and Overweight Subjects. Rev. Bras. Nutr. Clin. 2004, 19, 47–53. [Google Scholar]
- Natah, S.S.; Hussien, K.R.; Tuominen, J.A.; Koivisto, V.A. Metabolic Response to Lactitol and Xylitol in Healthy Men. Am. J. Clin. Nutr. 1997, 65, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Van Es, A.J.H.; De Groot, L.; Vogt, J.E. Energy Balances of Eight Volunteers Fed on Diets Supplemented with Either Lac Ti To1 or Saccharose. Br. J. Nutr. 1986, 56, 545–554. [Google Scholar] [CrossRef]
- Buemann, B.; Toubro, S.; Astrup, A. D-Tagatose, a Stereoisomer of d-Fructose, Increases Hydrogen Production in Humans without Affecting 24-Hour Energy Expenditure or Respiratory Exchange Ratio. J. Nutr. 1998, 128, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Savović, E.; Page, M.J.; Sterne, J.A.C. Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB 2) Additional Considerations for Crossover Trials. Available online: https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials (accessed on 30 December 2022).
- Higgins, J.; Sterne, J.; Savović, J.; Page, M.; Hrobjartsson, A.; Bourton, I.; Reeves, B.; Eldridge, S. A Revised Cochrane Risk of Bias Tool for Randomized Trials. Available online: https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2?authuser=0 (accessed on 30 December 2022).
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without Meta-Analysis (SWiM) in Systematic Reviews: Reporting Guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. Chin. J. Evid.-Based Med. 2009, 9, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Goldet, G.; Howick, J. Understanding GRADE: An Introduction. J. Evid. Based Med. 2013, 6, 50–54. [Google Scholar] [CrossRef]
- Grupp, U.; Siebert, G. Metabolism of Hydrogenated Palatinose, an Equimolar Mixture of Alpha-D-Glucopyranosido-1,6-Sorbitol and Alpha-D-Glucopyranosido-1,6-Mannitol. Res. Exp. Med. 1978, 173, 261–278. [Google Scholar] [CrossRef]
- Melanson, K.J.; Westerterp-Plantenga, M.S.; Campfield, L.A.; Saris, W.H.M. Blood Glucose and Meal Patterns in Time-Blinded Males, after Aspartame, Carbohydrate, and Fat Consumption, in Relation to Sweetness Perception. Br. J. Nutr. 1999, 82, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Bulow, J.; Christensen, N.J.; Madsen, J.; Quaade, F. Facultative Thermogenesis Induced by Carbohydrate: A Skeletal Muscle Component Mediated by Epinephrine. Am. J. Physiol. Metab. 1986, 250, E226–E229. [Google Scholar] [CrossRef]
- Veldhuizen, M.G.; Babbs, R.K.; Patel, B.; Fobbs, W.; Kroemer, N.B.; Garcia, E.; Yeomans, M.R.; Small, D.M. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr. Biol. 2017, 27, 2476–2485.e6. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.B.; Vasilaras, T.H.; Astrup, A.; Raben, A. Sucrose Compared with Artificial Sweeteners: A Clinical Intervention Study of Effects on Energy Intake, Appetite, and Energy Expenditure after 10 Wk of Supplementation in Overweight Subjects. Am. J. Clin. Nutr. 2014, 100, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felber, J.P.; Tappy, L.; Vouillamoz, D.; Randin, J.P.; Jéquier, E. Comparative Study of Maltitol and Sucrose by Means of Continuous Indirect Calorimetry. JPEN J. Parenter. Enteral Nutr. 1987, 11, 250–254. [Google Scholar] [CrossRef]
- Müller-Hess, R.; Geser, C.A.; Bonjour, J.P.; Jéquier, E.; Felber, J.P. Effects of Oral Xylitol Administration on Carbohydrate and Lipid Metabolism in Normal Subjects. Infusionsther. Klin. Ernahr. 1975, 2, 247–252. [Google Scholar] [CrossRef]
- Thiébaud, D.; Jacot, E.; Schmitz, H.; Spengler, M.; Felber, J.P. Comparative Study of Isomalt and Sucrose by Means of Continuous Indirect Calorimetry. Metabolism 1984, 33, 808–813. [Google Scholar] [CrossRef]
- Sinaud, S.; Montaurier, C.; Wils, D.; Vernet, J.; Brandolini, M.; Bouteloup-Demange, C.; Vermorel, M. Net Energy Value of Two Low-Digestible Carbohydrates, Lycasin (R) HBC and the Hydrogenated Polysaccharide Fraction of Lycasin (R) HBC in Healthy Human Subjects and Their Impact on Nutrient Digestive Utilization. Br. J. Nutr. 2002, 87, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.W.; Borg, W.P.; Boulware, S.D.; McCarthy, G.; Sherwin, R.S.; Tamborlane, W. V Enhanced Adrenomedullary Response and Increased Susceptibility to Neuroglycopenia: Mechanisms Underlying the Adverse Effects of Sugar Ingestion in Healthy Children. J. Pediatr. 1995, 126, 171–177. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Buckley, C.E., 3rd; Sampson, H.A.; Massey, E.W.; Baraniuk, J.N.; Follett, J.V.; Warwick, Z.S. Aspartame and Susceptibility to Headache. N. Engl. J. Med. 1987, 317, 1181–1185. [Google Scholar] [CrossRef]
- Tse, T.F.; Clutter, W.E.; Shah, S.D.; Miller, J.P.; Cryer, P.E. Neuroendocrine Responses to Glucose Ingestion in Man. Specificity, Temporal Relationships, and Quantitative Aspects. J. Clin. Investig. 1983, 72, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaywitz, B.A.; Sullivan, C.M.; Anderson, G.M.; Gillespie, S.M.; Sullivan, B.; Shaywitz, S.E. Aspartame, Behavior, and Cognitive Function in Children with Attention Deficit Disorder. Pediatrics 1994, 93, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Casperson, S.L.; Hall, C.; Roemmich, J.N. Postprandial Energy Metabolism and Substrate Oxidation in Response to the Inclusion of a Sugar- or Non-Nutritive Sweetened Beverage with Meals Differing in Protein Content. BMC Nutr. 2017, 3, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chern, C.; Tan, S.-Y. Energy Expenditure, Carbohydrate Oxidation and Appetitive Responses to Sucrose or Sucralose in Humans: A Pilot Study. Nutrients 2019, 11, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Kanasaki, A.; Hayashi, N.; Yamada, T.; Iida, T.; Nagata, Y.; Okuma, K. D-Allulose Enhances Postprandial Fat Oxidation in Healthy Humans. Nutrition 2017, 43–44, 16–20. [Google Scholar] [CrossRef]
- Prat-Larquemin, L.; Oppert, J.M.; Bellisle, F.; Guy-Grand, B. Sweet Taste of Aspartame and Sucrose: Effects on Diet-Induced Thermogenesis. Appetite 2000, 34, 245–251. [Google Scholar] [CrossRef]
- Pearson, R.C.; Green, E.S.; Olenick, A.A.; Jenkins, N.T. Comparison of Aspartame- and Sugar-Sweetened Soft Drinks on Postprandial Metabolism. Nutr. Health 2021, 29, 115–128. [Google Scholar] [CrossRef]
- Hue, L.; Taegtmeyer, H. The Randle Cycle Revisited: A New Head for an Old Hat. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, 578–591. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S. The Glycemic Index Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Melzer, K. Carbohydrate and Fat Utilization during Rest and Physical Activity. e-SPEN 2011, 6, e45–e52. [Google Scholar] [CrossRef] [Green Version]
- Weyer, C.; Snitker, S.; Rising, R.; Bogardus, C.; Ravussin, E. Determinants of Energy Expenditure and Fuel Utilization in Man: Effects of Body Composition, Age, Sex, Ethnicity and Glucose Tolerance in 916 Subjects. Int. J. Obes. 1999, 23, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Miles-Chan, J.L.; Dulloo, A.G.; Schutz, Y. Fasting Substrate Oxidation at Rest Assessed by Indirect Calorimetry: Is Prior Dietary Macronutrient Level and Composition a Confounder. Int. J. Obes. 2015, 39, 1114–1117. [Google Scholar] [CrossRef] [Green Version]
- Schutz, Y. Abnormalities of Fuel Utilization as Predisposing to the Development of Obesity in Humans. Obes. Res. 1995, 3, 173s–178s. [Google Scholar] [CrossRef]
- Cummings, J.H.; Roberfroid, M.B.; Andersson, H.; Barth, C.; Ferro-Luzzi, A.; Ghoos, Y.; Gibney, M.; Hermonsen, K.; James, W.P.T.; Korver, O.; et al. A New Look at Dietary Carbohydrate: Chemistry, Physiology and Health. Eur. J. Clin. Nutr. 1997, 51, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Laffitte, A.; Neiers, F.; Briand, L. Functional Roles of the Sweet Taste Receptor in Oral and Extraoral Tissues. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Prather, J.H.; William, L. Effects of Colonic Fermentation on Respiratory Gas Exchanges Glucose Load in Man. Metabolism 1993, 42, 347–352. [Google Scholar] [CrossRef]
- Westerterp, K.R. Diet Induced Thermogenesis. Nutr. Metab. 2004, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.O.; Prentice, A.M.; Goldberg, G.R.; Murgatroyd, P.R.; Coward, W.A. Metabolic Response to Experimental Overfeeding in Lean and Overweight Healthy Volunteers. Am. J. Clin. Nutr. 1992, 56, 641–655. [Google Scholar] [CrossRef]
- Reed, G.W.; Hill, J.O. Measuring the Thermic Effect of Food. Am. J. Clin. Nutr. 1996, 63, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Van Der Beek, C.M.; Jocken, J.W.E.; Goossens, G.H.; Holst, J.J.; Olde Damink, S.W.M.; Lenaerts, K.; Dejong, C.H.C.; Blaak, E.E. Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Sci. Rep. 2017, 7, 2360. [Google Scholar] [CrossRef]
- Procházková, N.; Falony, G.; Dragsted, L.O.; Licht, T.R.; Raes, J.; Roager, H.M. Advancing Human Gut Microbiota Research by Considering Gut Transit Time. Gut 2023, 72, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Tarini, J.; Wolever, T.M.S. The Fermentable Fibre Inulin Increases Postprandial Serum Short-Chain Fatty Acids and Reduces Free-Fatty Acids and Ghrelin in Healthy Subjects. Appl. Physiol. Nutr. Metab. 2010, 35, 9–16. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Population Characteristics | Intervention and Control | Results | ||
---|---|---|---|---|---|
FAT | CHO | EE, DIT and BMR | |||
Acute studies ≤ 1 day | |||||
Casperson, 2017 [61] | n: 27 (f = 14, m = 13) f: BMI: 22.2 ± 2 kg/m2 Age: 24 ± 7 y m: BMI: 24.2 ± 2 kg/m2 Age: 22 ± 2 y | I: drink w/sucralose (4 g) C: drink w/sucrose (31 g) Drinks served w/a meal Non-isoenergetic condition | Diff. b/w groups a: 24 h AUCFAT: I ↑* than C | Diff. b/w groups: 24 h AUCCHO: I↓*** than C | Diff. b/w groups: 24 h AUCEE: I↓*** than C 8 h DIT: I ↑* than C |
Chern, 2019 [62] | n: 11 (f = 3, m = 8) BMI: 24.9 ± 6.1 kg/m2 Age: 25.0 ± 4.7 y | I1: jelly w/sucralose (0.12 g) I2: jelly w/sucralose (0.12 g)/maltodextrin (50 g) C: jelly w/sucrose (50 g) I1 vs. I2 and C: non-isoenergetic condition I2 vs. C: isoenergetic | Diff. b/w groups: 1.5 h AUCFAT: NS b/w I1 and I2 I1 and I2 ↑* than C | Diff. b/w groups: 1.5 h AUCCHO: I1 ↓*** I2 I1 and I2 ↓*** than C Time-meal I/ACHO: overall sign.*** b | Diff. b/w groups: 1.5 h AUCEE: I1 ↓* I2 and C NS b/w I2 and C Time-meal I/AEE: NS b/w I1, I2 and C |
Eckstein, 2021 [36] | n: 15 (f = 5, m = 10) BMI: 23.7 ± 1.7 kg/m2 Age: 25.4 ± 2.5 y | I: drink w/sucralose (0.2 g) C1: drink w/glucose (1 g/kg body mass) C2: drink w/fructose (1 g/kg body mass) C3: drink w/fructose/glucose (1 g/kg body mass) Non-isoenergetic condition | Diff. b/w groups: PEAK RQ: overall sign.** b END c RQ: overall sign.* b | Diff. b/w groups: PEAKCHO: overall sign.** b ENDcCHO: NS | |
Pearson, 2021 [65] | n: 8 m BMI no info, height = 176.9 ± 6.0 cm weight = 82.4 ± 6.2 kg Age: 22 ± 1.8 y | I: drink w/aspartame d C1: drink w/water d C2: drink w/sucrose d (approx. 60 g sucrose) Drinks served w/a meal I and C1: isoenergetic condition I and C2: non-isoenergetic condition | Diff. b/w groups: 3 h AUCFAT: I NS vs. C1 I ↑* than C2 Time-meal I/AFAT: I ↑ than C2 at 10 min**, 2 h** and 3 h** I ↓** than C1 at 10 min | Diff. b/w groups: 3 h AUCCHO: I NS vs. C1 I ↓* than C2 Time-meal I/ACHO: I ↓ than C2 at 10 min**, 2 h* and 3 h* I ↑** than C1 at 10 min | Diff. b/w groups: 3 h AUCEE: I NS vs. C2 I ↑* than C1 Time-meal I/AEE: I NS vs. C2 I ↑ than C1 at 10 min* and 1 h** |
Prat-Larquemin, 2000 [64] | n: 24 m BMI: 20.4 ± 0.4 kg/m2 Age: 23.2 ± 0.5 y | I: cheese w/aspartame (0.27 g)/maltodextrin (90 g) C1: cheese w/sucrose (90 g) C2: cheese w/maltodextrin (90 g) Isoenergetic condition | Diff. b/w groups: 5 h DIT: NS b/w I, C1, C2 Time-meal I/AEE: 0.5–1, 1.5–2 h and peak: NS b/w I and C2 I and C2 ↓ * than C1 | ||
Mourão, 2004 [37] | n: 26 m, 13 w/NW, 13 w/OW NW: BMI: 23.4 ± 0.5 kg/m2 Age: 25.0 ± 1.6 y OW: BMI: 29.3 ± 0.6 kg/m2 Age: 30.0 ± 1.9 y | I: meal w/sucralose (4 g) C: meal w/sucrose (21 g) Isoenergetic condition | Diff. b/w groups: 4 h g/minFAT: NS b/w I and C | Diff. b/w groups: 4 h g/minCHO: I ↑* than C | Diff. b/w groups: 2 h AUCEE: NS b/w I and C 0.5 h AUCEE 4 h after meal consumption: I ↑* than C 3 h DIT: I ↑* than C |
Kimura, 2017 [63] | n: 13 (f = 8, m = 5) BMI: 20.9 ± 0.7 kg/m2 Age: 35.7 ± 2.1 y | I: drink w/d-allulose (5 g) C: drink w/aspartame (10 g) Drinks served before a meal Isoenergetic condition | Diff. b/w groups: 4 h AUCFAT: I ↑* than C Time-meal I/AFAT: I ↑** than C at 1.5 h | Diff. b/w groups: 4 h AUCCHO: I ↓* than C Time-meal I/ACHO: I ↓ than C at 1.5*, 3.5 h** and 4 h** | Diff. b/w groups: 4 h AUCEE: NS b/w I and C |
Veldhuizen, 2017 [51] | n: 18 (f = 12, m = 6) BMI: 21.9 ± 2.1 kg/m2 Age: 24.1 ± 3.6 y | I: drink w/sucralose/maltodextrin sweetened to be equivalent to a 315 kJ sucrose drink C: drink with sucralose/maltodextrin sweetened to be equivalent to a 472.5 kJ sucrose drink Isoenergetic condition | Diff. b/w groups: DIT 30 min: I ↓* than C | ||
Longer-term study > 1 day | |||||
Sørensen e, 2014 [52] | n: 22 NCS: f = 12, m = 2 Sucrose: f = 8, m = 2 NCS: BMI: 27.3 ± 2.5 kg/m2 Age: 35.2 ± 12.4 y Sucrose: BMI: 28.7 ± 2.3 kg/m2 Age: 35.3 ± 9.8 y | I: diet w/NCS f C: diet w/sucrose (125–175 g/d) Non-isoenergetic condition | Week-diet I/AFAT a: I ↑*** than C at week 10 | Week-diet I/ACHO: I ↓*** than C at week 10 | Diff. b/w groups (week 10): 24 h AUCEE: NS b/w I and C BMR: NS b/w I and C 4 h DIT: NS b/w I and C Week-time-diet I/AEE: I ↓** than C at 11.00 a.m. in week 10 |
First Author, Year | Population Characteristics | Intervention and Control | Results | ||
---|---|---|---|---|---|
FAT | CHO | EE and DIT | |||
Acute studies ≤ 1 day | |||||
Felber, 1987 [53] | n: 8 (sex = no info) BMI: no info Age: 24 ± 2 y | I: drink w/maltitol (30 g) C: drink w/sucrose (30 g) Non-isoenergetic condition | Time-meal I/AFAT a: I ↑ at 0–0.5 h* and 0.5–1 h** than C I ↓ at 3–3.5 h* than C | Diff. b/w groups: 3 h iAUCcHO: I ↓* than C Time-meal I/ACHO: I ↓ at 0–1 h*** and 1–1.5 h* than C I ↑* at 3–3.5 h than C | |
Müller-Hess b, 1975 [54] | n: 7 (f = 3, m = 4) BMI: no info Age range: 20–30 y | I: drink w/xylitol (50 g) C: drink w/glucose (50 g) Non-isoenergetic condition | Diff. b/w groups: 2.5 h AUCCHO: I < 23% c than C | Diff. b/w groups: 2.5 h AUCEE: I < 46% c than C | |
Natah, 1997 [38] | n: 8 (m = all) BMI: 22.1 ± 0.5 kg/m2 Age: 25 ± 1 y | I1: drink w/xylitol (25 g) I2: drink w/lactitol (25 g) C: drink w/glucose (25 g) Non-iosenergetic condition | Diff. b/w groups a: kJ/minFAT: I1 ↑* than C NS b/w I2 and C | Diff. b/w groups: kJ/minCHO: NS b/w I1, I2 and C | |
Thiebaud, 1984 [55] | n: 10 (m = all) BMI: no info, height = 178.3 ± 4.8 cm, weight = 69.3 ± 4.2 kg Age: 26.1 ± 2.9 y | I: drink w/isomalt (36.1 g) C: drink w/sucrose (30 g) Non-isoenergetic condition | Diff. b/w groups a: 6 h iAOC d FAT: I ↓** C | Diff. b/w groups: 6 h iAUCCHO: I ↓** C | |
Longer-term studies > 1 day | |||||
Buemann, 1998 [40] | n: 8 (f = 5, m = 3) f: BMI: no info, height = 169.0 ± 2.3 cm weight = 66.3 ± 2.9 kg Age: 26.2 ± 2.6 y m: BMI: no info, height = 183.7 ± 0.8 cm weight = 74.4 ± 3.9 kg Age: 25.0 ± 3.4 y | I: cake w/d-tagatose (30 g) C: cake w/sucrose (30 g) Non-isoenergetic condition | Diff. b/w groups: 24 h RQ day 1 and 15: NS b/w I and C Time-meal I/A RQ: NS b/w all 4 test days | Diff. b/w groups: 24 RQ day 1 and 15: NS b/w I and C Time-meal I/A RQ: NS b/w all 4 test days | Diff. b/w groups: 24 h AUCEE day 1: NS b/w I and C 24 h AUCEE day 15: NS b/w I and C Time-meal I/AEE: NS b/w all 4 test days |
Sinaud, 2002 [56] | n: 9 (m = all) BMI: no info Age: no info | I1: diet w/high-polymer maltitol syrup (100 g/DM/d) I2: diet w/high-polymer (100 g/DM/d) C: diet w/dextrose (100 g/DM/d) Non-isoenergetic condition | Diff. b/w groups: 24 h AUCEE day 32: I1 and 12 ↑* than C | ||
Van Es, 1986 [39] | n: 8 (f = 4, m = 4) Diet with sucrose: BMI: no info, weight = 64.6 ± 5.5 kg Diet with lactiol: BMI: no info, weight = 65.0 ± 5.5 kg Age: 22.3 ± 2.6 y | I: diet w/lactitol (50 g) C: diet w/sucrose (49 g) Non-isoenergetic condition | Diff. b/w groups: 24 e RQ day 8: I ↓* than C | Diff. b/w groups: 24 e RQ day 8: I ↓* than C |
First Author, Year | Population Characteristics | Intervention and Control | Results | ||
---|---|---|---|---|---|
Norepinephrine | Epinephrine | Dopamine | |||
Acute studies ≤ 1 day | |||||
Jones a, 1995 [57] | n: 6 (f = 3, m = 3) BMI: no info Age: 10 ± 3 y | I: drink w/aspartame and acesulfame potassium b C: drink w/glucose (1.75 gm/kg body weight) Non-isoenergetic condition | Time-meal I/A: I ↓* at 4 and 4.5 h than C | ||
Tse, 1983 [59] | n: 10 (f = 2, m = 8) BMI range: 51.6–82.5 kg Age: 24 y | I1: drink w/xylose (62.5 g) I2: drink w/mannitol (20 g) C: drink w/water Non-isoenergetic condition | Diff. b/w groups: 5 h conc. NS b/w I1, I2 vs. C | Diff. b/w groups: 5 h conc. NS b/w I1 and C 5 h conc. NS b/w I2 and C | |
Schiffman, 1987 [58] | n: 40 (f = 28, m = 12) BMI: no info, height = 166.8 ± 1.37 cm weight = 76.9 ± 3.5 kg Age: 33.5 ± 1.9 y | I: capsules w/aspartame (10 mg/kg body weight) C: capsules w/microcrystalline cellulose Meals were served during the test days Isoenergetic condition | Diff. b/w groups: 9 a.m., 11 a.m., 4 p.m., and at times of adverse events conc.: NS b/w I and C | Diff. b/w groups: 9 a.m., 11 a.m., 4 p.m., and at times of adverse events conc.: NS b/w I and C | |
Longer-term study > 1 day | |||||
Shaywitz, 1994 [60] | n: 15 (f = 4, m = 11) BMI: no info, weight = 35.4 ± 12.6 kg Age: 8.9 ± 2.5 y | I: capsules w/aspartame (34.7 mg/kg body weight) C: capsules w/microcrystalline cellulose Isoenergetic condition | Diff. b/w groups c: day 9: NS b/w I and C | Diff. b/w groups: day 9: NS b/w I and C | Diff. b/w groups: day 9: NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, S.S.H.; Zhu, R.; Kjølbæk, L.; Raben, A. Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans—A Systematic Review. Nutrients 2023, 15, 2711. https://doi.org/10.3390/nu15122711
Andersen SSH, Zhu R, Kjølbæk L, Raben A. Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans—A Systematic Review. Nutrients. 2023; 15(12):2711. https://doi.org/10.3390/nu15122711
Chicago/Turabian StyleAndersen, Sabina S. H., Ruixin Zhu, Louise Kjølbæk, and Anne Raben. 2023. "Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans—A Systematic Review" Nutrients 15, no. 12: 2711. https://doi.org/10.3390/nu15122711
APA StyleAndersen, S. S. H., Zhu, R., Kjølbæk, L., & Raben, A. (2023). Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans—A Systematic Review. Nutrients, 15(12), 2711. https://doi.org/10.3390/nu15122711