THC-Reduced Cannabis sativa L.—How Does the Solvent Determine the Bioavailability of Cannabinoids Given Orally?
Abstract
:1. Introduction
2. Methods
2.1. Characteristics of the Hemp Extract with a Reduced THC Content
Component | CBD-A | CBD | Δ9-THC-A | Δ9-THC |
Concentration [mg/g] | 1.2 | 215.2 | 0.15 | 13.3 |
2.2. Hemp Extract Preparation
2.3. Preparation of Solutions of Cannabis sativa Extracts
- Rapae oleum—ready to use.
- 2.
- Mixture: Cremophor/ethyl alcohol 96%/NaCl 0.9% in the ratio 1:1:18.
2.4. High-Performance Liquid Chromatography
2.5. Animal Study
2.6. Analytical Procedure
2.6.1. Blood Sample Preparation
2.6.2. Brain Sample Preparation
2.6.3. LC–MS/MS
2.6.4. Pharmacokinetic (PK) and Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC0–24 | Area under the curve 0–24-h |
CBD | Cannabidiol |
CBD-A | Cannabinolic acid |
CL (L/h) | Clearance |
Cmax | Maximum concentration during the last 24-h dosing interval |
LC–MS/MS | Liquid chromatography–tandem mass spectrometry |
MRT | Mean residence time (of the unchanged drug in the systemic circulation) |
PK | Pharmacokinetics |
Tmax | Time to reach Cmax |
Δ9-THC | THC-Δ9-Tetrahydrocannabinol, Tetrahydrocannabinol |
Δ9-THC-A | Δ9-Tetrahydrocannabinolic acid |
Vd (CL) | Volume of distribution |
References
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- Zuardi, A.W. History of cannabis as a medicine: A review. Rev. Bras. De Psiquiatr. 2006, 28, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Bridgeman, M.B.; Abazia, D.T. Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. PTA Peer-Rev. J. Formul. Manag. 2017, 42, 180–188. [Google Scholar]
- Poyatos, L.; Pérez-Acevedo, A.P.; Papaseit, E.; Pérez-Mañá, C.; Martin, S.; Hladun, O.; Siles, A.; Torrens, M.; Busardo, F.P.; Farré, M. Oral Administration of Cannabis and Δ-9-tetrahydrocannabinol (THC) Preparations: A Systematic Review. Medicina 2020, 56, 309. [Google Scholar] [CrossRef]
- Panlilio, L.V.; Justinova, Z.; Goldberg, S.R. Animal models of cannabinoid reward. Br. J. Pharmacol. 2010, 160, 499–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, C.; Navarra, G.; Coppola, L.; Avilia, G.; Bifulco, M.; Laezza, C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 3344. [Google Scholar] [CrossRef] [PubMed]
- Doohan, P.T.; Oldfield, L.D.; Arnold, J.C.; Anderson, L.L. Cannabinoid Interactions with Cytochrome P450 Drug Metabolism: A Full-Spectrum Characterization. AAPS J. 2021, 23, 91. [Google Scholar] [CrossRef] [PubMed]
- Abouchedid, R.; Ho, J.H.; Hudson, S.; Dines, A.; Archer, J.R.H.; Wood, D.M.; Dargan, P.I. Acute Toxicity Associated with Use of 5F-Derivations of Synthetic Cannabinoid Receptor Agonists with Analytical Confirmation. J. Med. Toxicol. 2016, 12, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Kiselak, T.D.; Koerber, R.; Verbeck, G.F. Synthetic route sourcing of illicit at home cannabidiol (CBD) isomerization to psychoactive cannabinoids using ion mobility-coupled-LC–MS/MS. Forensic Sci. Int. 2020, 308, 110173. [Google Scholar] [CrossRef]
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [Green Version]
- Ramella, A.; Roda, G.; Pavlovic, R.; Cas, M.D.; Casagni, E.; Mosconi, G.; Cecati, F.; Minghetti, P.; Grizzetti, C. Impact of Lipid Sources on Quality Traits of Medical Cannabis-Based Oil Preparations. Molecules 2020, 25, 2986. [Google Scholar] [CrossRef] [PubMed]
- Van Zuylen, L.; Verweij, J.; Sparreboom, A. Role of Formulation Vehicles in Taxane Pharmacology. Investig. New Drugs 2001, 19, 125–141. [Google Scholar] [CrossRef]
- Cannabis-based medicines—GW pharmaceuticals: High CBD, high THC, medicinal cannabis—GW pharmaceuticals, THC:CBD. Drugs RD 2003, 4, 306–309. [CrossRef]
- Cessak, G. Polish Pharmacopoeia, xth ed.; Office for Registration of Medicinal Products Medical Devices and Biocidal Products: Warsaw, Poland, 2014; pp. 1–2. [Google Scholar]
- Available online: https://www.sigmaaldrich.com/PL/pl/product/mm/238470 (accessed on 1 May 2023).
- Szalata, M.; Dreger, M.; Zielińska, A.; Banach, J.; Szalata, M.; Wielgus, K. Simple Extraction of Cannabinoids from Female Inflorescences of Hemp (Cannabis sativa L.). Molecules 2022, 27, 5868. [Google Scholar] [CrossRef] [PubMed]
- Deiana, S.; Watanabe, A.; Yamasaki, Y.; Amada, N.; Arthur, M.; Fleming, S.; Woodcock, H.; Dorward, P.; Pigliacampo, B.; Close, S.; et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology 2011, 219, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Viudez-Martínez, A.; García-Gutiérrez, M.S.; Navarrón, C.M.; Morales-Calero, M.I.; Navarrete, F.; Torres-Suárez, A.I.; Manzanares, J. Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addict. Biol. 2017, 23, 154–164. [Google Scholar] [CrossRef]
- Cabrera, C.L.R.; Keir-Rudman, S.; Horniman, N.; Clarkson, N.; Page, C. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination. Pulm. Pharmacol. Ther. 2021, 69, 102047. [Google Scholar] [CrossRef]
- Hložek, T.; Uttl, L.; Kadeřábek, L.; Balíková, M.; Lhotková, E.; Horsley, R.R.; Nováková, P.; Šíchová, K.; Štefková, K.; Tylš, F.; et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsychopharmacol. 2017, 27, 1223–1237. [Google Scholar] [CrossRef]
- Bardelmeijer, H.A.; Ouwehand, M.; Malingré, M.M.; Schellens, J.H.; Beijnen, J.H.; Van Tellingen, O. Entrapment by Cremophor EL decreases the absorption of paclitaxel from the gut. Cancer Chemother. Pharmacol. 2001, 49, 119–125. [Google Scholar] [CrossRef]
- Nagai, K.; Watanabe, K.; Narimatsu, S.; Gohda, H.; Matsunaga, T.; Yamamoto, I.; Yoshimura, H. In Vitro Metabolic Formation of a New Metabolite, 6.BETA.-Hydroxymethyl.DELTA.9-tetrahydrocannabinol from Cannabidiol through an Epoxide Intermediate and Its Pharmacological Effects on Mice. Biol. Pharm. Bull. 1993, 16, 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Golombek, P.; Müller, M.; Barthlott, I.; Sproll, C.; Lachenmeier, D.W. Conversion of Cannabidiol (CBD) into Psychotropic Cannabinoids Including Tetrahydrocannabinol (THC): A Controversy in the Scientific Literature. Toxics 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Grotenhermen, F.; Russo, E.; Zuardi, A.W. Even High Doses of Oral Cannabidiol Do Not Cause THC-Like Effects in Humans: Comment on Merrick et al. Cannabis and Cannabinoid Research 2016;1(1):102–112. DOI: 10.1089/can.2015.0004. Cannabis Cannabinoid Res. 2017, 2, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahler, G.; Grotenhermen, F.; Zuardi, A.W.; Crippa, J.A. A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans. Cannabis Cannabinoid Res. 2017, 2, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Palazzoli, F.; Citti, C.; Licata, M.; Vilella, A.; Manca, L.; Zoli, M.; Vandelli, M.A.; Forni, F.; Cannazza, G. Development of a simple and sensitive liquid chromatography triple quadrupole mass spectrometry (LC–MS/MS) method for the determination of cannabidiol (CBD), Δ 9 -tetrahydrocannabinol (THC) and its metabolites in rat whole blood after oral administration of a single high dose of CBD. J. Pharm. Biomed. Anal. 2018, 150, 25–32. [Google Scholar] [CrossRef]
- Wray, L.; Stott, C.; Jones, N.; Wright, S. Cannabidiol Does Not Convert to Δ9-Tetrahydrocannabinol in an In Vivo Animal Model. Cannabis Cannabinoid Res. 2017, 2, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Crippa, J.A.S.; Derenusson, G.N.; Ferrari, T.B.; Wichert-Ana, L.; Duran, F.L.; Martin-Santos, R.; Simões, M.V.; Bhattacharyya, S.; Fusar-Poli, P.; Atakan, Z.; et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: A preliminary report. J. Psychopharmacol. 2010, 25, 121–130. [Google Scholar] [CrossRef]
- Agurell, S.; Carlsson, S.; Lindgren, J.E.; Ohlsson, A.; Gillespie, H.; Hollister, L. Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man. Assay of cannabinol and cannabidiol by mass fragmentography. Experientia. Cell. Mol. Life Sci. 1981, 37, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Nadulski, T.; Pragst, F.; Weinberg, G.; Roser, P.; Schnelle, M.; Fronk, E.-M.; Stadelmann, A.M. Randomized, Double-Blind, Placebo-Controlled Study About the Effects of Cannabidiol (CBD) on the Pharmacokinetics of Δ9-Tetrahydrocannabinol (THC) After Oral Application of THC Verses Standardized Cannabis Extract. Ther. Drug Monit. 2005, 27, 799–810. [Google Scholar] [CrossRef] [Green Version]
Time Point | Rat No. 1 | Rat No. 2 | Rat No. 3 | Rat No. 4 |
---|---|---|---|---|
0.5 h | BW 250 g Cse 7.5 mg CBD 0.83 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL |
1 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 260 g Cse 7.8 mg CBD 0.87 mL | BW 260 g Cse 7.8 mg CBD 0.87 mL |
2 h | BW 260 g Cse 7.8 mg CBD 0.87 mL | BW 260 g Cse 7.8 mg CBD 0.87 mL | BW 250 g Cse 7.5 mg CBD 0.83 mL | BW 250 g Cse 7.5 mg CBD 0.83 mL |
4 h | BW 255 g Cse 7.65 mg CBD 0.85 mL | BW 245 g Cse 7.35 mg CBD 0.82 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 250 g Cse 7.5 mg CBD 0.83 mL |
6 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
24 h | BW 250 g Cse 7.5 mg CBD 0.83 mL | BW 245 g Cse 7.35 mg CBD 0.82 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 240 g Cse 7.2 mg CBD 0.8 mL |
Time Point | Rat No. 1 | Rat No. 2 | Rat No. 3 | Rat No. 4 |
---|---|---|---|---|
0.5 h | BW 255 g Cse 7.65 mg CBD 0.85 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 255 g Cse 7.65 mg CBD 0.85 mL | BW 260 g Cse 7.8 mg CBD 0.87 mL |
1 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
2 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 265 g Cse 7.95 mg CBD 0.88 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
4 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
6 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 260 g Cse 7.8 mg CBD 0.87 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
24 h | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL | BW 270 g Cse 8.1 mg CBD 0.9 mL |
Time [min] | Phase A | Phase B |
---|---|---|
0.1 | 40% | 60% |
0.5 | 40% | 60% |
2.5 | 2.5% | 97.5% |
5 | 2.5% | 97.5% |
5.5 | 40% | 60% |
7 | 40% | 60% |
PK Parameter | CBD | THC | ||
---|---|---|---|---|
Rapae Oleum | Cremophor | Rapae Oleum | Cremophor | |
Whoole blood | ||||
Cmax (ng/mL) | 333.62 | 120.13 | 26.19 | 18.53 |
Tmax (h) | 2 | 0.5 | 4 | 1 |
CL (L/h) | 5.85 | 7.75 | 2.56 | 2.18 |
AUC0–24 (ng/mL×h) | 1287.65 | 988.03 | 185.92 | 217.02 |
MRT (h) | 4.03 | 12.01 | 5.75 | 12.69 |
Terminal slope ke (L/h) | −0.15 | −0.11 | −0.18 | −0.11 |
Vd (L) | 28.29 | 69.66 | 15.15 | 28.26 |
AUC(CBD)/AUC(THC) | 6.93 | 4.55 | ||
Brain | ||||
Cmax (ng/mL) | 301.38 | 274.99 | 75.76 | 56.85 |
Tmax (h) | 2 | 0.5 | 4 | 4 |
CL (L/h) | 3.91 | 8.25 | 0.87 | 0.73 |
AUC0–24 (ng/mL×h) | 1985.93 | 943.04 | 553.39 | 655.88 |
MRT (h) | 7.76 | 6.19 | 7.19 | 5.11 |
Terminal slope ke (L/h) | −0.10 | −0.15 | −0.11 | −0.20 |
Vd (L) | 30.38 | 51.08 | 6.17 | 3.73 |
AUC(CBD)/AUC(THC) | 3.59 | 1.44 |
Time [h] | Mean Concentration [ng/g] ± SD for Rapae Oleum | Mean Concentration [ng/g] for Cremophor | p-Value |
---|---|---|---|
CBD blood | |||
0.5 | 26.905 ± 21.476 | 120.134 ± 93.505 | 0.036 |
1 | 106.913 ± 51.028 | 108.887 ± 35.391 | 0.006 |
2 | 333.619 ± 138.971 | 46.538 ± 15.707 | 0.041 |
4 | 153.554 ± 145.61 | 35.125 ± 4.710 | 0.036 |
6 | 37.584 ± 11.297 | 31.416 ± 9.282 | 0.006 |
24 | 2.759 ± 2.120 | 12.315 ± 18.045 | 0.036 |
CBD brain | |||
0.5 | 23.327+/6.725 | 274.994 ± 103.691 | 0.045 |
1 | 65.391+/27.232 | 213.491 ± 66.081 | 0.031 |
2 | 301.388+/155.739 | 81.114 ± 23.387 | 0.033 |
4 | 263.467+/228.678 | 52.119 ± 12.179 | 0.038 |
6 | 59.650+/32.649 | 57.715 ± 25.882 | 0.001 |
24 | 9.797+/7.354 | 3.604 ± 0.493 | 0.028 |
THC blood | |||
0.5 | 11.885 ± 18.039 | 13.05 ± 10.870 | 0.003 |
1 | 10.951 ± 5.213 | 18.535 ± 1.984 | 0.016 |
2 | 24.029 ± 7.225 | 13.988 ± 3.297 | 0.016 |
4 | 26.198 ± 19.106 | 8.008 ± 1.480 | 0.031 |
6 | 10.259 ± 2.095 | 9.045 ± 4.386 | 0.004 |
24 | 0.445 ± 0.210 | 3.788 ± 4.592 | 0.043 |
THC brain | |||
0.5 | 3.719 ± 2.345 | 18.575 ± 11.626 | 0.037 |
1 | 43.592 ± 24.786 | 49.521 ± 9.469 | 0.004 |
2 | 75.768 ± 43.807 | 56.85 ± 7.386 | 0.009 |
4 | 27.792 ± 15.206 | 35.976 ± 7.445 | 0.008 |
6 | 3.7605 ± 2.612 | 35.947 ± 12.691 | 0.043 |
24 | <LOQ* | 1.154 ± 0.577 | 0.05 |
CBD | Rapae oleum | AUCbrain:AUC whole blood | 1.54 |
Cremophor | AUCbrain:AUC whole blood | 0.95 | |
THC | Rapae oleum | AUCbrain:AUC whole blood | 3.72 |
Cremophor | AUCbrain:AUC whole blood | 1.22 |
Tissue/Rapae Oleum | p-Value | Tissue/Cremophor | p-Value | ||||
---|---|---|---|---|---|---|---|
Blood/Rapae Oleum | THC | CBD | Blood/Cremophor | THC | CBD | ||
0.5 | 11.885 | 26.905 | 0.024 | 0.5 | 13.05 | 120.133 | 0.043 |
1 | 10.9508 | 106.9125 | 0.044 | 1 | 18.535 | 108.887 | 0.039 |
2 | 24.029 | 333.619 | 0.045 | 2 | 13.988 | 46.538 | 0.031 |
4 | 26.1975 | 153.554 | 0.039 | 4 | 8.008 | 35.125 | 0.036 |
6 | 10.259 | 37.584 | 0.033 | 6 | 9.045 | 31.416 | 0.032 |
24 | 0.445 | 2.759 | 0.040 | 24 | 3.788 | 12.315 | 0.031 |
Brain/Rapae oleum | THC | CBD | Brain/Cremophor | THC | CBD | ||
0.5 | 3.719 | 23.327 | 0.040 | 0.5 | 18.575 | 274.994 | 0.046 |
1 | 43.593 | 65.391 | 0.013 | 1 | 49.521 | 213.491 | 0.035 |
2 | 75.768 | 301.388 | 0.034 | 2 | 56.85 | 81.1135 | 0.011 |
4 | 27.792 | 263.466 | 0.043 | 4 | 35.976 | 52.1185 | 0.011 |
6 | 3.7605 | 59.650 | 0.046 | 6 | 35.947 | 57.7145 | 0.014 |
24 | 0 | 9.797 | 0.05 | 24 | 1.154 | 3.604 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkowiak-Wieczorek, J.; Mądry, E.; Książkiewicz, M.; Winkler-Galicki, J.; Szalata, M.; Szalata, M.; Jiménez, U.E.; Wielgus, K.; Grześkowiak, E.; Słomski, R.; et al. THC-Reduced Cannabis sativa L.—How Does the Solvent Determine the Bioavailability of Cannabinoids Given Orally? Nutrients 2023, 15, 2646. https://doi.org/10.3390/nu15122646
Bartkowiak-Wieczorek J, Mądry E, Książkiewicz M, Winkler-Galicki J, Szalata M, Szalata M, Jiménez UE, Wielgus K, Grześkowiak E, Słomski R, et al. THC-Reduced Cannabis sativa L.—How Does the Solvent Determine the Bioavailability of Cannabinoids Given Orally? Nutrients. 2023; 15(12):2646. https://doi.org/10.3390/nu15122646
Chicago/Turabian StyleBartkowiak-Wieczorek, Joanna, Edyta Mądry, Michał Książkiewicz, Jakub Winkler-Galicki, Milena Szalata, Marlena Szalata, Ulises Elizalde Jiménez, Karolina Wielgus, Edmund Grześkowiak, Ryszard Słomski, and et al. 2023. "THC-Reduced Cannabis sativa L.—How Does the Solvent Determine the Bioavailability of Cannabinoids Given Orally?" Nutrients 15, no. 12: 2646. https://doi.org/10.3390/nu15122646
APA StyleBartkowiak-Wieczorek, J., Mądry, E., Książkiewicz, M., Winkler-Galicki, J., Szalata, M., Szalata, M., Jiménez, U. E., Wielgus, K., Grześkowiak, E., Słomski, R., & Bienert, A. (2023). THC-Reduced Cannabis sativa L.—How Does the Solvent Determine the Bioavailability of Cannabinoids Given Orally? Nutrients, 15(12), 2646. https://doi.org/10.3390/nu15122646