Connection between Celiac Disease and Systemic Lupus Erythematosus in Children—A Development Model of Autoimmune Diseases Starting from What We Inherit to What We Eat
Abstract
:1. Introduction
2. Epidemiology
3. Clinical and Paraclinical Aspects
- very young children (under 3 years old): diarrhea, delay in physical development, abdominal distention; asymptomatic—6.8%
- preschoolers (3–6 years): abdominal pain, iron deficiency, delay in physical development; asymptomatic—18.9%
- school age (≥6 years): abdominal pain, delay in physical development, diarrhea; asymptomatic—23.7% [13]
4. Pathogenic Correlation
4.1. Genome-Wide Association
4.2. The Impact of Viral Infection
4.3. The Influence of the Internal and External Environment
4.3.1. The Microbiome
4.3.2. Atopy
4.3.3. Vitamin D Deficiency
4.3.4. Prolactin Level
4.3.5. The Overwork
4.3.6. The Psychic Component
4.4. Consequences of IgA Deficiency
4.5. The Place of Nutrients in Pathogenesis
- A: having as its origin pro-VitA, retinol, or retinyl ester, vitamin A in insufficient concentrations deregulates the function of regulatory T cells, causing an excess of T helper 1 in favor of T helper 2, an observation that sparked interest in the study of all-trans retinoic acid (ATRA), the main metabolite of vitamin A [85];
- B Complex: represents one of the lines of micronutrients affected in autoimmune diseases, and it is therefore essential to know the inverse correlation between the level of total homocysteine in the plasma and that of the vitamins in the B complex (B1, B2, B6, B9), a marker that also proved its effectiveness in a study of the quality of life among adult patients with CD [80].
5. The Practical Component
6. Treatment
- Folic acid: green vegetables, bell peppers, beans, lentils;
- Methionine: eggs, yogurt, cheese, red meat;
- Choline: beef liver, egg, soy, potatoes, quinoa, peanuts, carrots, apples, broccoli;
- B complex vitamins: rice, quinoa, apple, strawberries, bananas, watermelon, walnuts, spinach, onions, tomatoes, chickpeas, beans, potatoes, salmon, tuna, beef liver, milk, yogurt, cheese;
- Flavanols: cocoa, red grapes, tea, berries, apples;
- Vitamin A: liver, carrots, sweet potatoes;
- Vitamin E: quinoa, amaranth;
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossi, T. Celiac disease. Adolesc. Med. Clin. 2004, 15, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.P.; Kirkham, E.N.; Pidgeon, S.; Sandmann, S. Coeliac disease in children. Nurs. Stand. 2015, 29, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, L.; Kurppa, K. Screening for coeliac disease in children. Acta Paediatr. 2018, 107, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Tully, M.A. Pediatric celiac disease. Gastroenterol. Nurs. 2008, 31, 132–140, quiz 141–142. [Google Scholar] [CrossRef] [PubMed]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef]
- Charras, A.; Smith, E.; Hedrich, C. Systemic Lupus Erythematosus in Children and Young People. Curr. Rheumatol. Rep. 2021, 23, 20. [Google Scholar] [CrossRef]
- Alexander, T.; Hedrich, C.M. Systemic lupus erythematosus—Are children miniature adults? Clin. Immunol. 2022, 234, 108907. [Google Scholar] [CrossRef]
- Harry, O.; Yasin, S.; Brunner, H. Childhood-Onset Systemic Lupus Erythematosus: A Review and Update. J. Pediatr. 2018, 196, 22–30.e2. [Google Scholar] [CrossRef]
- Diamanti, A.; Capriati, T.; Bizzarri, C.; Ferretti, F.; Ancinelli, M.; Romano, F.; Perilli, A.; Laureti, F.; Locatelli, M. Autoimmune diseases and celiac disease which came first: Genotype or gluten? Expert Rev. Clin. Immunol. 2016, 12, 67–77. [Google Scholar] [CrossRef]
- Emilsson, L.; Wijmenga, C.; Murray, J.A.; Ludvigsson, J.F. Autoimmune Disease in First-Degree Relatives and Spouses of In-dividuals with Celiac Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 1271–1277.e2. [Google Scholar] [CrossRef]
- Alenzi, F.; Yateem, M.; Shaikh, M.; Alsohaibani, F.; Alhaymouni, B.; Ahmed, A.; Al-Mayouf, S.M. The Value of Screening for Celiac Disease in Systemic Lupus Erythematosus: A Single Experience of a Tertiary Medical Center. Rheumatol. Ther. 2020, 7, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Dima, A.; Jurcut, C.; Balanescu, E.; Badea, C.; Lacatus, N.; Popp, A. Immune and autoimmune gluten-related phenomenon in systemic lupus erythematosus. Lupus 2017, 26, 1235–1236. [Google Scholar] [CrossRef] [PubMed]
- Riznik, P.; De Leo, L.; Dolinsek, J.; Gyimesi, J.; Klemenak, M.; Koletzko, B.; Koletzko, S.; Korponay-Szabó, I.R.; Krencnik, T.; Not, T.; et al. Clinical Presentation in Children With Coeliac Disease in Central Europe. J. Craniofacial Surg. 2021, 72, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Catassi, C. Coeliac disease in children. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 467–478. [Google Scholar] [CrossRef]
- Lythgoe, H.; LJ, M.; Hedrich, C.; Aringer, M. Classification of systemic lupus erythematosus in children and adults. Clin. Immunol. 2022, 234, 108898. [Google Scholar] [CrossRef]
- Stichweh, D.; Pascual, V. Lupus eritematoso sistémico pediátrico [Systemic lupus erythematosus in children]. An. Pediatr. 2005, 63, 321–329. (In Spanish) [Google Scholar] [CrossRef]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
- Ameer, M.A.; Chaudhry, H.; Mushtaq, J.; Khan, O.S.; Babar, M.; Hashim, T.; Zeb, S.; Tariq, M.A.; Patlolla, S.R.; Ali, J.; et al. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management. Cureus 2022, 14, 30330. [Google Scholar] [CrossRef]
- Ribero, S.; Sciascia, S.; Borradori, L.; Lipsker, D. The Cutaneous Spectrum of Lupus Erythematosus. Clin. Rev. Allergy Immunol. 2017, 53, 291–305. [Google Scholar] [CrossRef]
- Almaani, S.; Meara, A.; Rovin, B.H. Update on Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2017, 12, 825–835. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update οn the diagnosis and management of systemic lupus ery-thematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef]
- Lecouffe-Desprets, M.; Groh, M.; Bour, B.; Le Jeunne, C.; Puéchal, X. Eosinophilic gastrointestinal disorders associated with autoimmune connective tissue disease. Jt. Bone Spine 2016, 83, 479–484. [Google Scholar] [CrossRef]
- Al-Mogairen, S.M. Lupus protein-losing enteropathy (LUPLE): A systematic review. Rheumatol. Int. 2011, 31, 995–1001. [Google Scholar] [CrossRef]
- Hall, R.P.; Lawley, T.J. Characterization of circulating and cutaneous IgA immune complexes in patients with dermatitis herpetiformis. J. Immunol. 1985, 135, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Caja, S.; Mäki, M.; Kaukinen, K.; Lindfors, K. Antibodies in celiac disease: Implications beyond diagnostics. Cell. Mol. Immunol. 2011, 8, 103–109. [Google Scholar] [CrossRef]
- Mohammed, I.; Holborow, E.J.; Fry, L.; Thompson, B.R.; Hoffbrand, A.V.; Stewart, J.S. Multiple immune complexes and hypo-complementaemia in dermatitis herpetiformis and coeliac disease. Lancet 1976, 1, 487–490. [Google Scholar] [CrossRef]
- Hall, R.P.; Lawley, T.J.; Heck, J.A.; Katz, S.I. IgA-containing circulating immune complexes in dermatitis herpetiformis, Henoch-Schönlein purpura, systemic lupus erythematosus and other diseases. Clin. Exp. Immunol. 1980, 40, 431–437. [Google Scholar]
- Barone, M.V.; Auricchio, R.; Nanayakkara, M.; Greco, L.; Troncone, R.; Auricchio, S. Pivotal Role of Inflammation in Celiac Disease. Int. J. Mol. Sci. 2022, 23, 7177. [Google Scholar] [CrossRef]
- Marczynski, P.; Meineck, M.; Xia, N.; Li, H.; Kraus, D.; Roth, W.; Möckel, T.; Boedecker, S.; Schwarting, A.; Weinmann-Menke, J. Vascular inflammation and dysfunction in lupus-prone mice-IL-6 as mediator of disease initiation. Int. J. Mol. Sci. 2021, 22, 2291. [Google Scholar] [CrossRef] [PubMed]
- Municio, C.; Criado, G. Therapies Targeting Trained Immune Cells in Inflammatory and Autoimmune Diseases. Front. Immunol. 2021, 11, 631743. [Google Scholar] [CrossRef] [PubMed]
- Place, D.E.; Kanneganti, T.-D. The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr. Opin. Immunol. 2020, 67, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Moulton, V.R. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front. Immunol. 2018, 9, 2279. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, E.; Bistoni, O.; Alunno, A.; Cavagna, L.; Nalotto, L.; Baldini, C.; Priori, R.; Fischetti, C.; Fredi, M.; Quartuccio, L.; et al. Celiac Disease Prevalence Is Increased in Primary Sjögren’s Syndrome and Diffuse Systemic Sclerosis: Lessons from a Large Multi-Center Study. J. Clin. Med. 2019, 8, 540. [Google Scholar] [CrossRef]
- Inamo, J. Association between celiac disease and systemic lupus erythematosus: A Mendelian randomization study. Rheumatology 2020, 59, 2642–2644. [Google Scholar] [CrossRef]
- Lettre, G.; Rioux, J.D. Autoimmune diseases: Insights from genome-wide association studies. Hum. Mol. Genet. 2008, 17, R116–R121. [Google Scholar] [CrossRef]
- Ding, J.; Frantzeskos, A.; Orozco, G. Functional genomics in autoimmune diseases. Hum. Mol. Genet. 2020, 29, R59–R65. [Google Scholar] [CrossRef]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five Years of GWAS Discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef]
- Richard-Miceli, C.; A Criswell, L. Emerging patterns of genetic overlap across autoimmune disorders. Genome Med. 2012, 4, 6. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, K.; Tian, Z.; Hogan, S.L.; Yang, J.; Poulton, C.J.; Falk, R.J.; Li, W. PTPN22 R620W Polymorphism and ANCA Disease Risk in White Populations: A Metaanalysis. J. Rheumatol. 2015, 42, 292–299. [Google Scholar] [CrossRef]
- Sánchez, E.; Alizadeh, B.Z.; Valdigem, G.; Ortego-Centeno, N.; Jiménez-Alonso, J.; de Ramón, E.; García, A.; López-Nevot, M.A.; Wijmenga, C.; Martín, J.; et al. MYO9B gene polymorphisms are associated with autoimmune diseases in Spanish population. Hum. Immunol. 2007, 68, 610–615. [Google Scholar] [CrossRef]
- Schuster, C.; Gerold, K.D.; Schober, K.; Probst, L.; Boerner, K.; Kim, M.J.; Ruckdeschel, A.; Serwold, T.; Kissler, S. The Autoimmun-ity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection. Immunity 2015, 42, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Santin, I.; Aransay, A.M.; Castaño, L.; Vitoria, J.C.; Bilbao, J.R.; Castellanos-Rubio, A. The functional R620W variant of the PTPN22 gene is associated with celiac disease. Tissue Antigens 2008, 71, 247–249. [Google Scholar] [CrossRef]
- Rueda, B.; Núñez, C.; Orozco, G.; López-Nevot, M.; de la Concha, E.G.; Martin, J.; Urcelay, E. C1858T Functional Variant of PTPN22 Gene Is Not Associated With Celiac Disease Genetic Predisposition. Hum. Immunol. 2005, 66, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Daly, M. What have we learned from six years of GWAS in autoimmune diseases, and what is next? Curr. Opin. Immunol. 2012, 24, 571–575. [Google Scholar] [CrossRef]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef]
- Harley, J.B.; Chen, X.; Pujato, M.; Miller, D.; Maddox, A.; Forney, C.; Magnusen, A.F.; Lynch, A.; Chetal, K.; Yukawa, M.; et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 2018, 50, 699–707. [Google Scholar] [CrossRef]
- De Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in au-toimmune diseases. Immunology 2017, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Takahashi, D.; Takano, S.; Kimura, S.; Hase, K. The Roles of Peyer’s Patches and Microfold Cells in the Gut Immune System: Relevance to Autoimmune Diseases. Front. Immunol. 2019, 10, 2345. [Google Scholar] [CrossRef]
- Bozomitu, L.; Miron, I.; Raileanu, A.A.; Lupu, A.; Paduraru, G.; Marcu, F.M.; Buga, A.M.L.; Rusu, D.C.; Dragan, F.; Lupu, V.V. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022, 10, 3117. [Google Scholar] [CrossRef]
- Lupu, V.V.; Adam Raileanu, A.; Mihai, C.M.; Morariu, I.D.; Lupu, A.; Starcea, I.M.; Frasinariu, O.E.; Mocanu, A.; Dragan, F.; Fotea, S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023, 12, 1158. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, J.-J.; Han, B.-X.; Yan, S.-S.; Wei, X.-T.; Feng, G.-J.; Zhang, H.; Zhang, L.; Li, B.; Pei, Y.-F. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front. Immunol. 2022, 12, 746998. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.T.; Subramanian, A.; Adderley, N.; Zemedikun, D.T.; Gkoutos, G.V.; Nirantharakumar, K. Allergic diseases and long-term risk of autoimmune disorders: Longitudinal cohort study and cluster analysis. Eur. Respir. J. 2019, 54, 1900476. [Google Scholar] [CrossRef] [PubMed]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef]
- Infantino, C.; Francavilla, R.; Vella, A.; Cenni, S.; Principi, N.; Strisciuglio, C.; Esposito, S. Role of Vitamin D in Celiac Disease and Inflammatory Bowel Diseases. Nutrients 2022, 14, 5154. [Google Scholar] [CrossRef]
- Vici, G.; Camilletti, D.; Polzonetti, V. Possible Role of Vitamin D in Celiac Disease Onset. Nutrients 2020, 12, 1051. [Google Scholar] [CrossRef]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- Lu, C.; Zhou, W.; He, X.; Zhou, X.; Yu, C. Vitamin D status and vitamin D receptor genotypes in celiac disease: A meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 61, 2098–2106. [Google Scholar] [CrossRef]
- De Bellis, A.; Bizzarro, A.; Pivonello, R.; Lombardi, G.; Bellastella, A. Prolactin and Autoimmunity. Pituitary 2005, 8, 25–30. [Google Scholar] [CrossRef]
- Kapur, G.; Patwari, A.K.; Narayan, S.; Ananda, V.K. Serum Prolactin in Celiac Disease. J. Trop. Pediatr. 2004, 50, 37–40. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and Autoimmunity. Front. Immunol. 2018, 9, 73. [Google Scholar] [CrossRef]
- Comba, C.; Comba, A.; Yılmaz, H.; Erdogan, S.V.; Demir, O. Celiac disease does not influence markers of ovarian reserve in adolescent girls. Arch. Gynecol. Obstet. 2020, 302, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Favela, F.; Chavez-Rueda, K.; Leaños-Miranda, A. Analysis of anti-prolactin autoantibodies in systemic lupus ery-thematosus. Lupus 2001, 10, 757–761. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Systrom, D.M.; Rose, N.R. Fatigue, Sleep, and Autoimmune and Related Disorders. Front. Immunol. 2019, 10, 1827. [Google Scholar] [CrossRef] [PubMed]
- Ilchmann-Diounou, H.; Menard, S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front. Immunol. 2020, 11, 01823. [Google Scholar] [CrossRef] [PubMed]
- Faresjo, M. The Link between Psychological Stress and Autoimmune Response in Children. Crit. Rev. Immunol. 2015, 35, 117–134. [Google Scholar] [CrossRef]
- Rohr, M.W.; Narasimhulu, C.A.; Rudeski-Rohr, T.A.; Parthasarathy, S. Negative Effects of a High-Fat Diet on Intestinal Per-meability: A Review. Adv Nutr. 2020, 11, 77–91. [Google Scholar] [CrossRef]
- Nevriana, A.; Pierce, M.; Abel, K.M.; Rossides, M.; Wicks, S.; Dalman, C.; Kosidou, K. Association between parental mental illness and autoimmune diseases in the offspring—A nationwide register-based cohort study in Sweden. J. Psychiatr. Res. 2022, 151, 122–130. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.-P. Advance in effect of aerobic exercise on immune system and autoimmune diseases. Sheng Li Xue Bao Acta Physiol. Sin. 2019, 71, 769–782. [Google Scholar]
- Wang, N.; Hammarström, L. IgA deficiency: What is new? Curr. Opin. Allergy Clin. Immunol. 2012, 12, 602–608. [Google Scholar] [CrossRef]
- Binek, A.; Jarosz-Chobot, P. Wrodzony izolowany niedobór immunoglobuliny A [Selective immunoglobulin A defi-ciency]. Pediatr. Endocrinol. Diabetes Metab. 2012, 18, 76–78. (In Polish) [Google Scholar]
- Odineal, D.D.; Gershwin, M.E. The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin. Rev. Allergy Immunol. 2020, 58, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Selmi, C.; Gershwin, M.E.; Teuber, S.S. The clinical implications of selective IgA deficiency. J. Transl. Autoimmun. 2019, 2, 100025. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Shen, N.; Vyse, T.J.; Anand, V.; Gunnarson, I.; Sturfelt, G.; Dahlqvist, S.R.; Elvin, K.; Truedsson, L.; Andersson, B.A.; et al. Selective IgA Deficiency in Autoimmune Diseases. Mol. Med. 2011, 17, 1383–1396. [Google Scholar] [CrossRef]
- Lupu, V.V.; Miron, I.C.; Raileanu, A.A.; Starcea, I.M.; Lupu, A.; Tarca, E.; Mocanu, A.; Buga, A.M.L.; Lupu, V.; Fotea, S. Difficulties in Adaptation of the Mother and Newborn via Cesarean Section versus Natural Birth—A Narrative Review. Life 2023, 13, 300. [Google Scholar] [CrossRef]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef]
- Moreira, M.L.P.; Sztajnbok, F.; Giannini, D.T. Relationship between Fiber Intake and Cardiovascular Risk Factors in Ado-lescents with Systemic Lupus Erythematosus. Rev. Paul. Pediatr. 2021, 39, e2019316. [Google Scholar] [CrossRef]
- Pace, L.; Crowe, S.E. Complex Relationships Between Food, Diet, and the Microbiome. Gastroenterol. Clin. N. Am. 2016, 45, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, G.; Villa, M.P.; Conti, L.; Ranucci, G.; Pacchiarotti, C.; Principessa, L.; Raucci, U.; Parisi, P. Nutritional Deficiencies in Children with Celiac Disease Resulting from a Gluten-Free Diet: A Systematic Review. Nutrients 2019, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Mazzucca, C.B.; Raineri, D.; Cappellano, G.; Chiocchetti, A. How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients 2021, 13, 3956. [Google Scholar] [CrossRef] [PubMed]
- Selmi, C.; Tsuneyama, K. Nutrition, geoepidemiology, and autoimmunity. Autoimmun Rev. 2010, 9, A267–A270. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-C.; Lin, B.-F. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun. Rev. 2011, 11, 22–27. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, V.; Galgani, M.; Santopaolo, M.; Colamatteo, A.; Laccetti, R.; Matarese, G. Nutritional control of immunity: Balancing the metabolic requirements with an appropriate immune function. Semin. Immunol. 2015, 27, 300–309. [Google Scholar] [CrossRef]
- Issazadeh-Navikas, S.; Teimer, R.; Bockermann, R. Influence of Dietary Components on Regulatory T Cells. Mol. Med. 2012, 18, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Harbige, L.S. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc. Nutr. Soc. 1998, 57, 555–562. [Google Scholar] [CrossRef]
- Pesqueda-Cendejas, K.; Campos-López, B.; Mora-García, P.E.; Moreno-Ortiz, J.M.; De la Cruz-Mosso, U. Methyl Donor Mi-cronutrients: A Potential Dietary Epigenetic Target in Systemic Lupus Erythematosus Patients. Int. J. Mol. Sci. 2023, 24, 3171. [Google Scholar] [CrossRef]
- Hadjivassiliou, M.; Sanders, D.S.; Grünewald, R.A.; Akil, M. Gluten sensitivity masquerading as systemic lupus erythematosus. Ann. Rheum. Dis. 2004, 63, 1501–1503. [Google Scholar] [CrossRef]
- Zitouni, M.; Daoud, W.; Kallel, M.; Makni, S. Systemic lupus erythematosus with celiac disease: A report of five cases. Jt. Bone Spine 2004, 71, 344–346. [Google Scholar] [CrossRef]
- Naseem, S.; Suri, D.; Ahluwalia, J.; Lal, S.B.; Thapa, B.R.; Singh, S. Lupus anticoagulant in a child with celiac disease: A rare as-sociation. Rheumatol. Int. 2011, 31, 963–965. [Google Scholar] [CrossRef]
- Calvani, M.C., Jr.; Parisi, P.; Guaitolini, C.; Parisi, G.; Paolone, G. Latent coeliac disease in a child with epilepsy, cerebral calcifications, drug-induced systemic lupus erythematosus and intestinal folic acid malabsorption associated with impairment of folic acid transport across the blood-brain barrier. Eur. J. Pediatr. 2001, 160, 288–292. [Google Scholar] [CrossRef]
- Latif, S.; Jamal, A.; Memon, I.; Yasmeen, S.; Tresa, V.; Shaikh, S. Multiple autoimmune syndrome: Hashimoto’s thyroiditis, coeliac disease and systemic lupus erythematosus (SLE). J. Pak. Med. Assoc. 2010, 60, 863–865. [Google Scholar] [PubMed]
- Rubio-Tapia, A.; Hill, I.D.; Semrad, C.; Kelly, C.P.; Greer, K.B.; Limketkai, B.N.; Lebwohl, B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2022, 118, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Lu, M.-P.; Wang, J.-H.; Xu, M.; Yang, S.-R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatr. 2020, 16, 19–30. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Alunno, A.; Aringer, M.; Bajema, I.; Boletis, J.N.; Cervera, R.; Doria, A.; Gordon, C.; Govoni, M.; et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 736–745. [Google Scholar] [CrossRef]
- Passali, M.; Josefsen, K.; Frederiksen, J.L.; Antvorskov, J.C. Current Evidence on the Efficacy of Gluten-Free Diets in Multiple Sclerosis, Psoriasis, Type 1 Diabetes and Autoimmune Thyroid Diseases. Nutrients 2020, 12, 2316. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.H.; Larsen, C.S.; Zachariassen, L.F.; Mentzel, C.M.; Laigaard, A.; Krych, L.; Nielsen, D.S.; Gobbi, A.; Haupt-Jorgensen, M.; Buschard, K.; et al. Gluten-free diet reduces autoimmune diabetes mellitus in mice across multiple generations in a microbiota-independent manner. J. Autoimmun. 2022, 127, 102795. [Google Scholar] [CrossRef]
- Malandrini, S.; Trimboli, P.; Guzzaloni, G.; Virili, C.; Lucchini, B. What about TSH and Anti-Thyroid Antibodies in Patients with Autoimmune Thyroiditis and Celiac Disease Using a Gluten-Free Diet? A Systematic Review. Nutrients 2022, 14, 1681. [Google Scholar] [CrossRef]
- Mager, D.R.; Liu, A.; Marcon, M.; Harms, K.; Brill, H.; Mileski, H.; Dowhaniuk, J.; Nasser, R.; Carroll, M.W.; Persad, R.; et al. Diet patterns in an ethnically diverse pediatric population with celiac disease and chronic gastrointestinal complaints. Clin. Nutr. ESPEN 2019, 30, 73–80. [Google Scholar] [CrossRef]
- Lupu, A.; Miron, I.C.; Gavrilovici, C.; Raileanu, A.A.; Starcea, I.M.; Ioniuc, I.; Azoicai, A.; Mocanu, A.; Butnariu, L.I.; Dragan, F.; et al. Pediatric Systemic Lupus Erythematous in COVID-19 Era. Viruses 2023, 15, 272. [Google Scholar] [CrossRef]
- Capra, M.E.; Stanyevic, B.; Giudice, A.; Monopoli, D.; Decarolis, N.M.; Esposito, S.; Biasucci, G. The Effects of COVID-19 Pandemic and Lockdown on Pediatric Nutritional and Metabolic Diseases: A Narrative Review. Nutrients 2022, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, A.; Brosseau, C.; Bodinier, M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023, 15, 269. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Investigations | |
Celiac disease | Serological:
! anti-TGA test is the most sensitive test for CD, whereas IgA-EMA is the most specific test;
|
Endoscopy and biopsy:
| |
Modern diagnostic methods:
| |
Other investigations:
| |
Systemic lupus erythematosus | Serological:
|
Endoscopy and biopsy:
| |
Biopsy of the main affected organs:
| |
Other investigations:
|
Conditions | Characteristics of the Cases | Reference |
SLE with concurrently occurring CD, before SLE and postSLE | Retrospective study of 5 cases encountered within 4 years, including one child with CD before the onset of SLE. CD was histologically confirmed by the identification of villous atrophy on the duodenal biopsy fragment, with favorable evolution when gluten was excluded. SLE criteria were also fulfilled, the tests for anti-nuclear and anti-dsDNA antibodies being positive, and C3 and C4 levels low. | Zitouni M. et al. [89] |
Anticoagulant lupus associated with CD | Female child, 8 years old, showing weakness, abdominal discomfort, unsatisfactory weight curve and bullous lesions (which spared the face) for about 3 months. Paraclinical in evolution:
| Naseem S. et al. [90] |
Latent CD in the presence of epilepsy and cerebral calcifications, with drug-induced SLE and malabsorption of intestinal folic acid | A 15-year-old male patient under treatment with valproic acid, ethyl phenylbarbiturate, and ethosuximide presented the suspicion of drug-induced SLE. Paraclinical in evolution:
| Calvani Jr M et al. [91] |
Multiple autoimmune syndrome: Hashimoto’s thyroiditis, CD and SLE | Female patient, aged 11 years, overweight, pale, with clinical swelling in front of the neck (5 × 8 cm) along with constipation, anorexia, weight gain, and increasing pallor over a period of six months, symptoms associated with episodes of joint (knee and ankle) and abdominal pains in the antecedents, which could not be correlated with diet or other symptoms from the gastrointestinal or genitourinary, sphere. Paraclinical in evolution:
| Latif S. et al. [92] |
Acute hives | Celiac disease | Systemic lupus erythematosus |
|
| |
Background treatment |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, V.V.; Jechel, E.; Mihai, C.M.; Mitrofan, E.C.; Lupu, A.; Starcea, I.M.; Fotea, S.; Mocanu, A.; Ghica, D.C.; Mitrofan, C.; et al. Connection between Celiac Disease and Systemic Lupus Erythematosus in Children—A Development Model of Autoimmune Diseases Starting from What We Inherit to What We Eat. Nutrients 2023, 15, 2535. https://doi.org/10.3390/nu15112535
Lupu VV, Jechel E, Mihai CM, Mitrofan EC, Lupu A, Starcea IM, Fotea S, Mocanu A, Ghica DC, Mitrofan C, et al. Connection between Celiac Disease and Systemic Lupus Erythematosus in Children—A Development Model of Autoimmune Diseases Starting from What We Inherit to What We Eat. Nutrients. 2023; 15(11):2535. https://doi.org/10.3390/nu15112535
Chicago/Turabian StyleLupu, Vasile Valeriu, Elena Jechel, Cristina Maria Mihai, Elena Cristina Mitrofan, Ancuta Lupu, Iuliana Magdalena Starcea, Silvia Fotea, Adriana Mocanu, Dragos Catalin Ghica, Costica Mitrofan, and et al. 2023. "Connection between Celiac Disease and Systemic Lupus Erythematosus in Children—A Development Model of Autoimmune Diseases Starting from What We Inherit to What We Eat" Nutrients 15, no. 11: 2535. https://doi.org/10.3390/nu15112535
APA StyleLupu, V. V., Jechel, E., Mihai, C. M., Mitrofan, E. C., Lupu, A., Starcea, I. M., Fotea, S., Mocanu, A., Ghica, D. C., Mitrofan, C., Munteanu, D., Salaru, D. L., Morariu, I. D., & Ioniuc, I. (2023). Connection between Celiac Disease and Systemic Lupus Erythematosus in Children—A Development Model of Autoimmune Diseases Starting from What We Inherit to What We Eat. Nutrients, 15(11), 2535. https://doi.org/10.3390/nu15112535