Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Muscle Quality Index
2.2.2. Health Outcomes
2.2.3. Abdominal Obesity
2.2.4. Anthropometric Parameters
2.2.5. Fitness
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, T.J.; Lobstein, T. Exploring an algorithm to harmonize International Obesity Task Force and World Health Organization child overweight and obesity prevalence rates. Pediatr. Obes. 2022, 17, e12905. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.; Louzada, M.L.d.C.; Aschner, P.; Gerchman, F.; Brajkovich, I.; Faria-Neto, J.R.; Polanco, F.E.; Montero, J.; Juliá, S.M.M.; Lotufo, P.A. Obesity and COVID-19 in Latin America: A tragedy of two pandemics—Official document of the Latin American Federation of Obesity Societies. Obes. Rev. 2021, 22, e13165. [Google Scholar] [CrossRef]
- Okunogbe, A.; Nugent, R.; Spencer, G.; Ralston, J.; Wilding, J. Economic impacts of overweight and obesity: Current and future estimates for eight countries. BMJ Glob. Health 2021, 6, e006351. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected US state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef]
- Nyberg, S.T.; Batty, G.D.; Pentti, J.; Virtanen, M.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; Heikkilä, K.; Jokela, M.; Knutsson, A.; et al. Obesity and loss of disease-free years owing to major non-communicable diseases: A multicohort study. Lancet Public Health 2018, 3, e490–e497. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Vargas, C.A.; Guzmán-Guzmán, I.P.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Chirosa-Ríos, L.J.; Delgado-Floody, P. Syndrome metabolic markers, fitness and body fat is associated with sleep quality in women with severe/morbid obesity. Int. J. Environ. Res. Public Health 2021, 18, 9294. [Google Scholar] [CrossRef]
- Tong, Q.; Wang, X.; Sheng, Y.; Chen, S.; Lai, B.; Lv, R.; Yu, J. Metabolic syndrome and its association with components of sarcopenia in older community-dwelling Chinese. J. Biomed. Res. 2022, 36, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Ntougou Assoumou, H.-G.; Pichot, V.; Barthelemy, J.-C.; Celle, S.; Garcin, A.; Thomas, T.; Roche, F. Obesity related to metabolic syndrome: Comparison of obesity indicators in an older french population. Diabetol. Metab. Syndr. 2023, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.-H.; Huang, Y.-C.; Chiu, H.; Wu, P.-Y.; Chiou, H.-Y.C.; Huang, J.-C.; Chen, S.-C. Comparison of Various Obesity-Related Indices for Identification of Metabolic Syndrome: A Population-Based Study from Taiwan Biobank. Diagnostics 2020, 10, 1081. [Google Scholar] [CrossRef]
- Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Wang, Z.; Gao, R. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS ONE 2017, 12, e0183934. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Zhao, G.; Tsai, J. Trends in obesity and abdominal obesity among adults in the United States from 1999–2008. Int. J. Obes. 2011, 35, 736–743. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Hou, W.; Arcan, C. Obesity Trends and Associations with Types of Physical Activity and Sedentary Behavior in US Adults: National Health and Nutrition Examination Survey, 2007–2016. Obesity 2021, 29, 240–250. [Google Scholar] [CrossRef]
- Wong, M.C.; Huang, J.; Wang, J.; Chan, P.S.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.; Lao, X.Q.; Zheng, Z.-J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef]
- Caspard, H.; Jabbour, S.; Hammar, N.; Fenici, P.; Sheehan, J.J.; Kosiborod, M. Recent trends in the prevalence of type 2 diabetes and the association with abdominal obesity lead to growing health disparities in the USA: An analysis of the NHANES surveys from 1999 to 2014. Diabetes Obes. Metab. 2018, 20, 667–671. [Google Scholar] [CrossRef]
- Rhee, E.J.; Cho, J.H.; Kwon, H.; Park, S.E.; Jung, J.H.; Han, K.D.; Park, Y.G.; Park, H.S.; Kim, Y.H.; Yoo, S.J. Association between abdominal obesity and increased risk for the development of hypertension regardless of physical activity: A nationwide population-based study. J. Clin. Hypertens. 2018, 20, 1417–1426. [Google Scholar] [CrossRef]
- Dhawan, D.; Sharma, S. Abdominal Obesity, Adipokines and Non-communicable Diseases. J. Steroid Biochem. Mol. Biol. 2020, 203, 105737. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, J.K.; Shin, G.G.; Han, J.A.; Kim, J.W. Association between abdominal obesity and cardiovascular risk factors in adults with normal body mass index: Based on the sixth Korea National Health and Nutrition Examination Survey. J. Obes. Metab. Syndr. 2019, 28, 262. [Google Scholar] [CrossRef]
- Taurio, J.; Hautaniemi, E.J.; Koskela, J.K.; Eräranta, A.; Hämäläinen, M.; Tikkakoski, A.; Kettunen, J.A.; Kähönen, M.; Niemelä, O.; Moilanen, E.; et al. The characteristics of elevated blood pressure in abdominal obesity correspond to primary hypertension: A cross-sectional study. BMC Cardiovasc. Disord. 2023, 23, 161. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Khorshidi, M.; Shab-Bidar, S. Body mass index, abdominal adiposity, weight gain and risk of developing hypertension: A systematic review and dose–response meta-analysis of more than 2.3 million participants. Obes. Rev. 2018, 19, 654–667. [Google Scholar] [CrossRef]
- Shen, C.; Zhou, Z.; Lai, S.; Tao, X.; Zhao, D.; Dong, W.; Li, D.; Lan, X.; Gao, J. Urban-rural-specific trend in prevalence of general and central obesity, and association with hypertension in Chinese adults, aged 18–65 years. BMC Public Health 2019, 19, 661. [Google Scholar] [CrossRef]
- Lukács, A.; Horváth, E.; Máté, Z.; Szabó, A.; Virág, K.; Papp, M.; Sándor, J.; Ádány, R.; Paulik, E. Abdominal obesity increases metabolic risk factors in non-obese adults: A Hungarian cross-sectional study. BMC Public Health 2019, 19, 1533. [Google Scholar] [CrossRef]
- Von Eyben, F.; Mouritsen, E.; Holm, J.; Montvilas, P.; Dimcevski, G.; Suciu, G.; Helleberg, I.; Kristensen, L.; Von Eyben, R. Intra-abdominal obesity and metabolic risk factors: A study of young adults. Int. J. Obes. 2003, 27, 941–949. [Google Scholar] [CrossRef]
- Kitahara, C.; Flint, A.; de Gonzalez, A.; Bernstein, L.; Brotzman, M.; MacInnis, R.; Moore, S.; Robien, K.; Rosenberg, P.; Singh, P. Association between class III obesity (BMI of 40–59 kg/m2) and mortality: A pooled analysis of 20 prospective studies. PLoS Med. 2014, 11, e1001673. [Google Scholar] [CrossRef]
- Kawamoto, R.; Ninomiya, D.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T.; Abe, M. Handgrip strength is associated with metabolic syndrome among middle-aged and elderly community-dwelling persons. Clin. Exp. Hypertens. 2016, 38, 245–251. [Google Scholar] [CrossRef]
- Sayer, A.A.; Kirkwood, T.B. Grip strength and mortality: A biomarker of ageing? Lancet 2015, 386, 226–227. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113.e2105. [Google Scholar] [CrossRef]
- Rantanen, T.; Harris, T.; Leveille, S.G.; Visser, M.; Foley, D.; Masaki, K.; Guralnik, J.M. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M168–M173. [Google Scholar] [CrossRef]
- Jerez-Mayorga, D.; Ríos, L.J.C.; Reyes, A.; Delgado-Floody, P.; Payer, R.M.; Requena, I.M.G. Muscle quality index and isometric strength in older adults with hip osteoarthritis. PeerJ 2019, 7, e7471. [Google Scholar] [CrossRef]
- Fragala, M.S.; Fukuda, D.H.; Stout, J.R.; Townsend, J.R.; Emerson, N.S.; Boone, C.H.; Beyer, K.S.; Oliveira, L.P.; Hoffman, J.R. Muscle quality index improves with resistance exercise training in older adults. Exp. Gerontol. 2014, 53, 1–6. [Google Scholar] [CrossRef]
- Cooper, R.; Kuh, D.; Hardy, R. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Lubrano, C.; Gnessi, L.; Mariani, S.; Di Martino, M.; Catalano, C.; Lenzi, A.; Donini, L.M. The decline in muscle strength and muscle quality in relation to metabolic derangements in adult women with obesity. Clin. Nutr. 2019, 38, 2430–2435. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; White, D.A.; Kuk, J.L.; Arslanian, S. Relationships between insulin sensitivity, skeletal muscle mass and muscle quality in obese adolescent boys. Eur. J. Clin. Nutr. 2012, 66, 1366–1368. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, H.K.; Lee, M.J.; Bae, S.J.; Kim, K.W.; Choe, J. Association between type 2 diabetes and skeletal muscle quality assessed by abdominal computed tomography scan. Diabetes/Metab. Res. Rev. 2022, 38, e3513. [Google Scholar] [CrossRef]
- Yamada, Y.; Murakami, H.; Kawakami, R.; Gando, Y.; Nanri, H.; Nakagata, T.; Watanabe, D.; Yoshida, T.; Hatamoto, Y.; Yoshimura, E. Impact of low relative skeletal muscle mass and power on the development of metabolic syndrome in Japanese women: A 7-year prospective study. medRxiv 2022. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Maffiuletti, N.A.; Tringali, G.; De Col, A.; Sartorio, A. Obesity-associated poor muscle quality: Prevalence and association with age, sex, and body mass index. BMC Musculoskelet. Disord. 2020, 21, 200. [Google Scholar] [CrossRef]
- Sayer, A.A.; Dennison, E.M.; Syddall, H.E.; Gilbody, H.J.; Phillips, D.I.; Cooper, C. Type 2 diabetes, muscle strength, and impaired physical function: The tip of the iceberg? Diabetes Care 2005, 28, 2541–2542. [Google Scholar] [CrossRef]
- Steele, R.M.; Brage, S.; Corder, K.; Wareham, N.J.; Ekelund, U. Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth. J. Appl. Physiol. 2008, 105, 342–351. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Qie, R.; Han, M.; Zhang, M.; Shi, X.; Yang, Y.; Lu, J.; Hu, D.; Sun, L. Association between cardiorespiratory fitness and risk of all-cause and cause-specific mortality. Eur. J. Clin. Investig. 2022, 52, e13770. [Google Scholar] [CrossRef]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. Cardiorespiratory fitness in youth: An important marker of health: A scientific statement from the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef]
- Lee, D.-C.; Artero, E.G.; Sui, X.; Blair, S.N. Mortality trends in the general population: The importance of cardiorespiratory fitness. J. Psychopharmacol. 2010, 24, 27–35. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Church, T.S.; Janssen, I.; Ross, R.; Blair, S.N. Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness. Diabetes Care 2005, 28, 391–397. [Google Scholar] [CrossRef]
- Weisstaub, G.; Bravo, M.A.G.; García-Hermoso, A.; Salazar, G.; López-Gil, J.F. Cross-sectional association between physical fitness and cardiometabolic risk in Chilean schoolchildren: The fat but fit paradox. Transl. Pediatr. 2022, 11, 1085. [Google Scholar] [CrossRef]
- Jun, J.E.; Lee, S.-E.; Lee, Y.-B.; Kim, G.; Jin, S.-M.; Jee, J.H.; Kim, J.H. Low skeletal muscle mass accompanied by abdominal obesity additively increases the risk of incident type 2 diabetes. J. Clin. Endocrinol. Metab. 2023, 108, 1173–1180. [Google Scholar] [CrossRef]
- Borel, A.-L.; Coumes, S.; Reche, F.; Ruckly, S.; Pépin, J.-L.; Tamisier, R.; Wion, N.; Arvieux, C. Waist, neck circumferences, waist-to-hip ratio: Which is the best cardiometabolic risk marker in women with severe obesity? The SOON cohort. PLoS ONE 2018, 13, e0206617. [Google Scholar] [CrossRef]
- Choi, S.; Nah, S.; Jang, H.; Moon, J.; Han, S. Association between Relative Handgrip Strength and Chronic Lower Back Pain: A Nationwide Cross-Sectional Analysis of the Korea National Health and Nutrition Examination Survey. Int. J. Environ. Res. Public Health 2021, 18, 10770. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A. 2013 ESH/ESC practice guidelines for the management of arterial hypertension: ESH-ESC the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2014, 23, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Burr, J.F.; Bredin, S.S.; Faktor, M.D.; Warburton, D.E. The 6-minute walk test as a predictor of objectively measured aerobic fitness in healthy working-aged adults. Physician Sportsmed. 2011, 39, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Preacher, k.; Hayes, A. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sport. Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef]
- Tanaka, M.; Okada, H.; Hashimoto, Y.; Kumagai, M.; Nishimura, H.; Fukui, M. Trunk muscle quality and quantity predict the development of metabolic syndrome and the increase in the number of its components in individuals without metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1161–1168. [Google Scholar] [CrossRef]
- Murai, J.; Nishizawa, H.; Otsuka, A.; Fukuda, S.; Tanaka, Y.; Nagao, H.; Sakai, Y.; Suzuki, M.; Yokota, S.; Tada, H.; et al. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc. Diabetol. 2018, 17, 112. [Google Scholar] [CrossRef]
- Mesinovic, J.; McMillan, L.B.; Shore-Lorenti, C.; De Courten, B.; Ebeling, P.R.; Scott, D. Metabolic Syndrome and Its Associations with Components of Sarcopenia in Overweight and Obese Older Adults. J. Clin. Med. 2019, 8, 145. [Google Scholar] [CrossRef]
- Melin, E.O.; Thulesius, H.O.; Hillman, M.; Landin-Olsson, M.; Thunander, M. Abdominal obesity in type 1 diabetes associated with gender, cardiovascular risk factors and complications, and difficulties achieving treatment targets: A cross sectional study at a secondary care diabetes clinic. BMC Obes. 2018, 5, 15. [Google Scholar] [CrossRef]
- Ji, C.; Xia, Y.; Tong, S.; Wu, Q.; Zhao, Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: The national health and nutrition examination survey. Aging (Albany N. Y.) 2020, 12, 7818. [Google Scholar] [CrossRef]
- Chen, Z.; Smith, M.; Du, H.; Guo, Y.; Clarke, R.; Bian, Z.; Collins, R.; Chen, J.; Qian, Y.; Wang, X. Blood pressure in relation to general and central adiposity among 500 000 adult Chinese men and women. Int. J. Epidemiol. 2015, 44, 1305–1319. [Google Scholar] [CrossRef] [PubMed]
- Agostinis-Sobrinho, C.; Ruiz, J.R.; Moreira, C.; Lopes, L.; Ramírez-Vélez, R.; García-Hermoso, A.; Mota, J.; Santos, R. Changes in muscular fitness and its association with blood pressure in adolescents. Eur. J. Pediatr. 2018, 177, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Lobelo, F.; Izquierdo, M.; Alonso-Martínez, A.; Rodríguez-Rodríguez, F.; Cristi-Montero, C. High muscular fitness has a powerful protective cardiometabolic effect in adults: Influence of weight status. BMC Public Health 2016, 16, 1012. [Google Scholar] [CrossRef]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. The muscle quality index and mortality among males and females. Ann. Epidemiol. 2016, 26, 648–653. [Google Scholar] [CrossRef]
- Farmer, R.E.; Mathur, R.; Schmidt, A.F.; Bhaskaran, K.; Fatemifar, G.; Eastwood, S.V.; Finan, C.; Denaxas, S.; Smeeth, L.; Chaturvedi, N. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: A cohort study and Mendelian randomization analysis using the UK Biobank. J. Am. Heart Assoc. 2019, 8, e011638. [Google Scholar] [CrossRef]
- Mallah, M.A.; Liu, M.; Liu, Y.; Xu, H.-F.; Wu, X.-J.; Chen, X.-T.; Wang, H.; Liu, C.-L.; Tian, Y.-R.; Li, M.-X. Association of handgrip strength with the prevalence of hypertension in a Chinese Han population. Chronic Dis. Transl. Med. 2019, 5, 113–121. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Picoloto, A.; Nunes, J.P.; Bezerra, E.S.; Schoenfeld, B.J.; Cyrino, E.S. Effects of different resistance training loads on the muscle quality index in older women. J. Strength Cond. Res. 2022, 36, 1445–1449. [Google Scholar] [CrossRef]
- Palacio-Agüero, A.; Díaz-Torrente, X.; Quintiliano Scarpelli Dourado, D. Relative handgrip strength, nutritional status and abdominal obesity in Chilean adolescents. PLoS ONE 2020, 15, e0234316. [Google Scholar] [CrossRef]
- Palacio, A.C.; Díaz-Torrente, X.; Quintiliano-Scarpelli, D. Higher abdominal adiposity is associated with lower muscle strength in chilean adults. Front. Nutr. 2022, 9, 167. [Google Scholar] [CrossRef]
- Pérez-Sousa, M.Á.; del Pozo-Cruz, J.; Cano-Gutiérrez, C.A.; Ferrebuz, A.J.; Sandoval-Cuellar, C.; Izquierdo, M.; Hernández-Quiñonez, P.A.; Ramírez-Vélez, R. Glucose levels as a mediator of the detrimental effect of abdominal obesity on relative handgrip strength in older adults. J. Clin. Med. 2020, 9, 2323. [Google Scholar] [CrossRef]
- Koster, A.; Ding, J.; Stenholm, S.; Caserotti, P.; Houston, D.K.; Nicklas, B.J.; You, T.; Lee, J.S.; Visser, M.; Newman, A.B. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2011, 66, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.O.; Straight, C.; Schmidt, M.; Evans, E. Impact of body mass index on the relationship between muscle quality and physical function in older women. J. Nutr. Health Aging 2014, 18, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Wearing, J.; deBruin, E.D.; Stokes, M. Investigations on muscle composition and muscle power in older people. J. Bodyw. Mov. Ther. 2018, 22, 855. [Google Scholar] [CrossRef]
- Pasdar, Y.; Darbandi, M.; Mirtaher, E.; Rezaeian, S.; Najafi, F.; Hamzeh, B. Associations between muscle strength with different measures of obesity and lipid profiles in men and women: Results from RaNCD cohort study. Clin. Nutr. Res. 2019, 8, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, I.P.; Delgado-Floody, P.; Gutiérrez-Pérez, I.A.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Zaragoza-García, Ó.; Parra-Rojas, I. Asociación entre la fuerza prensil relativa de la mano y la obesidad abdominal, la diabetes de tipo 2 y la hipertensión en una población mexicana. Nutr. Hosp. 2022, 39, 82–92. [Google Scholar]
- Yi, D.; Khang, A.R.; Lee, H.W.; Son, S.M.; Kang, Y.H. Relative handgrip strength as a marker of metabolic syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014–2015). Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 227–240. [Google Scholar] [CrossRef]
- Sénéchal, M.; Johannsen, N.M.; Swift, D.L.; Earnest, C.P.; Lavie, C.J.; Blair, S.N.; Church, T.S. Association between changes in muscle quality with exercise training and changes in cardiorespiratory fitness measures in individuals with type 2 diabetes mellitus: Results from the HART-D study. PLoS ONE 2015, 10, e0135057. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Kim, Y.J.; Lee, E.J.; Kim, M.-K.; Kim, J.M.; Ko, K.S.; Rhee, B.D.; Won, J.C. Association of low muscle mass and combined low muscle mass and visceral obesity with low cardiorespiratory fitness. PLoS ONE 2014, 9, e100118. [Google Scholar] [CrossRef]
- Boo, S.-H.; Joo, M.C.; Lee, J.M.; Kim, S.C.; Yu, Y.M.; Kim, M.-S. Association between skeletal muscle mass and cardiorespiratory fitness in community-dwelling elderly men. Aging Clin. Exp. Res. 2019, 31, 49–57. [Google Scholar] [CrossRef]
- Carvalho, L.P.; Di Thommazo-Luporini, L.; Aubertin-Leheudre, M.; Bonjorno Junior, J.C.; de Oliveira, C.R.; Luporini, R.L.; Mendes, R.G.; Zangrando, K.T.L.; Trimer, R.; Arena, R. Prediction of cardiorespiratory fitness by the six-minute step test and its association with muscle strength and power in sedentary obese and lean young women: A cross-sectional study. PLoS ONE 2015, 10, e0145960. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Pion, C.H.; Leduc-Gaudet, J.-P.; Rolland, Y.; Aubertin-Leheudre, M. Exploring the Role of Muscle Mass, Obesity, and Age in the Relationship Between Muscle Quality and Physical Function. J. Am. Med. Dir. Assoc. 2014, 15, 303.e313–303.e320. [Google Scholar] [CrossRef] [PubMed]
- Peltz, G.; Aguirre, M.T.; Sanderson, M.; Fadden, M.K. The role of fat mass index in determining obesity. Am. J. Hum. Biol. 2010, 22, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.; Kustiyah, L.; Kuswari, M. Percent fat mass and body mass index as cardiorespiratory fitness predictors in young adults. J. Gizi Dan Pangan 2015, 10, 179–184. [Google Scholar]
- Chatterjee, S.; Chatterjee, P.; Bandhopadhyay, A. Cardiorespiratory fitness of obese boys. Indian J. Physiol. Pharmacol. 2005, 49, 353. [Google Scholar]
- Gallagher, M.J.; Franklin, B.A.; Ehrman, J.K.; Keteyian, S.J.; Brawner, C.A.; dejong, A.T.; McCullough, P.A. Comparative impact of morbid obesity vs. heart failure on cardiorespiratory fitness. Chest 2005, 127, 2197–2203. [Google Scholar] [CrossRef]
All Participants (n = 86) | High-MQI (n = 41) | Low-MQI (n = 45) | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | p Value | |
Age (y) | 41.1 ± 11.9 | 40.2 ± 12.6 | 42.0 ± 11.4 | p = 0.492 (F = 0.48) |
Anthropometrics parameters | ||||
Body mass (kg) | 110.7 ± 21.1 | 108.0 ± 20.6 | 113.1 ± 21.4 | p = 0.265 (F = 1.26) |
Body mass index (kg/m2) | 43.4 ± 7.2 | 40.5 ± 5.8 | 46.0 ± 7.4 | p < 0.001 (F = 14.72) |
Waist circumference (cm) | 121.0 ± 15.2 | 119.6 ± 14.0 | 122.4 ± 16.3 | p = 0.402 (F = 0.71) |
WtHR (WC/size) | 0.8 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | p = 0.011 (F = 6.73) |
Blood pressure | ||||
Systolic blood pressure (mmHg) | 136.7 ± 16.6 | 133.0 ± 17.5 | 140.1 ± 15.1 | p = 0.048 (F = 4.03) |
Diastolic blood pressure (mmHg) | 86.3 ± 10.3 | 85.1 ± 10.4 | 87.4 ± 10.2 | p = 0.308 (F = 1.05) |
Plasmatic variables | ||||
Fasting Glucose (mg/dL) | 102.4 ± 18.7 | 103.6 ± 21.3 | 101.4 ± 16.3 | p = 0.607 (F = 0.27) |
Total Cholesterol (mg/dL) | 185.2 ± 37.4 | 188.9 ± 36.3 | 181.9 ± 38.6 | p = 0.395 (F = 0.73) |
Triglycerides (mg/dL) | 132.0 ± 64.9 | 127.5 ± 53.8 | 136.0 ± 74.0 | p = 0.557 (F = 0.35) |
cLDL (mg/dL) | 115.3 ± 30.6 | 120.2 ± 28.8 | 110.7 ± 31.9 | p = 0.155 (F = 2.06) |
cHDL (mg/dL) | 48.3 ± 10.9 | 48.2 ± 12.0 | 48.3 ± 10.0 | p = 0.969 (F = 0.00) |
Fitness | ||||
6 Mwt (m) | 521.9 ± 116.6 | 571.0 ± 72.7 | 477.2 ± 131.0 | p < 0.001 (F = 16.38) |
VO2max (mL/kg/min) | 24.2 ± 6.3 | 26.3 ± 5.9 | 22.4 ± 6.1 | p = 0.003 (F = 9.09) |
Handgrip strength (kg) | 31.4 ± 12.3 | 40.6 ± 11.1 | 23.1 ± 5.4 | p < 0.001 (F = 89.61) |
Muscle quality index (ratio) | 0.7 ± 0.3 | 1.0 ± 0.3 | 0.5 ± 0.1 | p < 0.001 (F = 120.96) |
Total (n = 86) | High-MQI (n = 41) | Low-MQI (n = 45) | p-Value | ||
---|---|---|---|---|---|
Systolic blood pressure (mmHg) (hypertension) | Normal | 45 (52.3%) | 24 (58.5%) | 21 (46.7%) | p = 0.188 |
Impaired | 41 (47.7%) | 17 (41.5%) | 24 (53.3%) | ||
Fasting Glucose (mg/dL) (>100 mg/dL) | Normal | 43 (53.1%) | 21 (55.3%) | 22 (51.2%) | p = 0.442 |
Impaired | 38 (46.9%) | 17 (44.7%) | 21 (48.8%) | ||
Triglycerides (mg/dL) (>150 mg/dL). | Normal | 59 (72.0%) | 26 (66.7%) | 33 (76.7%) | p = 0.221 |
Impaired | 23 (28.0%) | 13 (33.3%) | 10 (23.3%) | ||
cHDL (mg/dL) (<50 women, <40 men mg/dL), | Normal | 34 (39.5%) | 17 (41.5%) | 17 (37.8%) | p = 0.494 |
Impaired | 52 (60.5%) | 24 (58.5%) | 28 (62.2%) | ||
Abdominal obesity (WtHR ≥ 0.5) | Impaired | 86 (100.0%) | 41 (100.0%) | 45 (100.0%) | - |
β (95% CI) | Beta | SE | t Value | p-Value | |
---|---|---|---|---|---|
Waist circumference (cm) | −3.84 (−13.94; 6.27) | −0.08 | 5.08 | −0.76 | p = 0.452 |
Adjusted | −11.95 (−21.94; −1.96) | −0.26 | 5.02 | −2.38 | p = 0.020 |
WtHR (WC/height) | −0.07 (−0.13; −0.02) | −0.28 | 0.03 | −2.61 | p = 0.011 |
Adjusted | −0.10 (−0.17; −0.04) | −0.39 | 0.03 | −3.43 | p = 0.001 |
Systolic blood pressure (mmHg) | −18.47 (−28.69; −8.25) | −0.37 | 5.14 | −3.59 | p = 0.001 |
Adjusted | −17.89 (−29.47; −6.31) | −0.35 | 5.82 | −3.07 | p = 0.003 |
Diastolic blood pressure (mmHg) | −8.21 (−14.79; −1.63) | −0.26 | 3.31 | −2.48 | p = 0.015 |
Adjusted | −10.45 (−17.76 −3.15) | −0.33 | 3.67 | −2.85 | p = 0.006 |
Fasting Glucose (mg/dL) | 2.94 (−10.83; 16.71) | 0.05 | 6.92 | 0.43 | p = 0.672 |
Adjusted | −1.31 (−17.56; 14.94) | −0.02 | 8.16 | −0.16 | p = 0.873 |
Total Cholesterol (mg/dL) | 10.15 (−14.51; 34.82) | 0.09 | 12.40 | 0.82 | p = 0.415 |
Adjusted | 12.01 (−15.02; 39.04) | 0.11 | 13.59 | 0.88 | p = 0.379 |
Triglycerides (mg/dL) | −4.72 (−48.09; 38.65) | −0.02 | 21.79 | −0.22 | p = 0.829 |
Adjusted | −19.02 (−67.04; 29.00) | −0.10 | 24.12 | −0.79 | p = 0.433 |
cLDL (mg/dL) | 6.15 (−14.34; 26.64) | 0.07 | 10.30 | 0.60 | p = 0.552 |
Adjusted | 6.43 (−16.90; 29.76) | 0.07 | 11.72 | 0.55 | p = 0.585 |
cHDL(mg/dL) | −1.98 (−9.19; 5.24) | −0.06 | 3.63 | −0.54 | p = 0.587 |
Adjusted | 1.36 (−6.29; 9.01) | 0.04 | 3.85 | 0.35 | p = 0.725 |
6 MwT | 134.70 (63.30; 206.10) | 0.38 | 35.90 | 3.75 | p < 0.001 |
Adjusted | 128.61 (47.41; 209.82) | 0.36 | 40.82 | 3.15 | p = 0.002 |
VO2max (mL/kg/min) | 5.21 (1.21; 9.20) | 0.27 | 2.00 | 2.59 | p = 0.011 |
Adjusted | 8.61 (4.37; 12.85) | 0.45 | 2.13 | 4.00 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Alvarez, C.; del-Cuerpo, I.; Cresp-Barría, M.; Delgado-Floody, P. Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness. Nutrients 2023, 15, 2458. https://doi.org/10.3390/nu15112458
Caamaño-Navarrete F, Jerez-Mayorga D, Alvarez C, del-Cuerpo I, Cresp-Barría M, Delgado-Floody P. Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness. Nutrients. 2023; 15(11):2458. https://doi.org/10.3390/nu15112458
Chicago/Turabian StyleCaamaño-Navarrete, Felipe, Daniel Jerez-Mayorga, Cristian Alvarez, Indya del-Cuerpo, Mauricio Cresp-Barría, and Pedro Delgado-Floody. 2023. "Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness" Nutrients 15, no. 11: 2458. https://doi.org/10.3390/nu15112458
APA StyleCaamaño-Navarrete, F., Jerez-Mayorga, D., Alvarez, C., del-Cuerpo, I., Cresp-Barría, M., & Delgado-Floody, P. (2023). Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness. Nutrients, 15(11), 2458. https://doi.org/10.3390/nu15112458