Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Carotenoid Intake
2.4. Biochemical Analyses
2.5. Gene Expression Analyses
2.6. Microbiome Analyses
2.7. Mood and Mental Well-Being
2.8. Physical Activity and Sleep
2.9. Statistical Analyses
3. Results
3.1. Safety and Tolerability
3.2. Pharmacokinetics of Plasma Carotenoids
3.3. Gene Expression
3.4. Gut Microbiome
3.5. Mood, Physical Activity, and Sleep
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Burri, B.J.; La Frano, M.R.; Zhu, C. Absorption, metabolism, and functions of beta-cryptoxanthin. Nutr. Rev. 2016, 74, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Burri, B.J. Beta-cryptoxanthin as a source of vitamin A. J. Sci. Food Agric. 2015, 95, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Min, K.B.; Min, J.Y. Serum carotenoid levels and risk of lung cancer death in US adults. Cancer Sci. 2014, 105, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Shroff, M.R.; Chen, X.; Beydoun, H.A.; Wang, Y.; Zonderman, A.B. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J. Nutr. 2011, 141, 903–913. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Zhang, D. Association between dietary carotenoid intakes and hypertension in adults: National Health and Nutrition Examination Survey 2007–2014. J. Hypertens. 2019, 37, 2371–2379. [Google Scholar] [CrossRef]
- Lai, J.S.; Yuan, W.L.; Ong, C.N.; Tan, K.H.; Yap, F.; Chong, Y.S.; Gluckman, P.D.; Godfrey, K.M.; Lee, Y.S.; Chan, J.K.Y.; et al. Perinatal plasma carotenoid and vitamin E concentrations with maternal blood pressure during and after pregnancy. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2811–2821. [Google Scholar] [CrossRef]
- Coyne, T.; Ibiebele, T.I.; Baade, P.D.; Dobson, A.; McClintock, C.; Dunn, S.; Leonard, D.; Shaw, J. Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland, Australia. Am. J. Clin. Nutr. 2005, 82, 685–693. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High-serum carotenoids associated with lower risk for developing type 2 diabetes among Japanese subjects: Mikkabi cohort study. BMJ Open Diabetes Res. Care 2015, 3, e000147. [Google Scholar] [CrossRef]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: Prospective cohort study. PLoS ONE 2012, 7, e52643. [Google Scholar] [CrossRef]
- Lin, S.; Shen, Y. Dietary carotenoids intake and depressive symptoms in US adults, NHANES 2015–2016. J. Affect. Disord. 2021, 282, 41–45. [Google Scholar] [CrossRef]
- Ge, H.; Yang, T.; Sun, J.; Zhang, D. Associations between dietary carotenoid intakes and the risk of depressive symptoms. Food Nutr. Res. 2020, 64, 3920. [Google Scholar] [CrossRef]
- Unno, K.; Noda, S.; Kawasaki, Y.; Iguchi, K.; Yamada, H. Possible Gender Difference in Anti-stress Effect of beta-Cryptoxanthin. Yakugaku Zasshi 2016, 136, 1255–1262. [Google Scholar] [CrossRef]
- Unno, K.; Noda, S.; Nii, H.; Kawasaki, Y.; Iguchi, K.; Yamada, H. Anti-stress Effect of beta-Cryptoxanthin in Satsuma Mandarin Orange on Females. Biol. Pharm. Bull. 2019, 42, 1402–1408. [Google Scholar] [CrossRef]
- Lai, J.S.; Cai, S.; Lee, B.L.; Godfrey, K.M.; Gluckman, P.D.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; Ong, C.N.; et al. Relationships of maternal plasma pro-vitamin A carotenoids and children’s neurocognitive outcomes. Proc. Nutr. Soc. 2020, 79, E447. [Google Scholar] [CrossRef]
- Lai, J.S.; Cai, S.; Lee, B.L.; Godfrey, K.M.; Gluckman, P.D.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; Ong, C.N.; et al. Higher maternal plasma beta-cryptoxanthin concentration is associated with better cognitive and motor development in offspring at 2 years of age. Eur. J. Nutr. 2021, 60, 703–714. [Google Scholar] [CrossRef]
- West, C.E.; Eilander, A.; van Lieshout, M. Consequences of revised estimates of carotenoid bioefficacy for dietary control of vitamin A deficiency in developing countries. J. Nutr. 2002, 132, 2920s–2926s. [Google Scholar] [CrossRef]
- Haidari, F.; Hojhabrimanesh, A.; Helli, B.; Seyedian, S.S.; Ahmadi-Angali, K.; Abiri, B. A hypocaloric high-protein diet supplemented with beta-cryptoxanthin improves non-alcoholic fatty liver disease: A randomized controlled trial. BMC Gastroenterol. 2020, 20, 349. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Igarashi, A.; Uchiyama, S.; Sugawara, K.; Sumida, T.; Morita, S.; Ogawa, H.; Nishitani, M.; Kajimoto, Y. Effect of β-Crytoxanthin on Circulating Bone Metabolic Markers: Intake of Juice (Citrus unshiu) Supplemented with β-Cryptoxanthin Has an Effect in Menopausal Women. J. Health Sci. 2006, 52, 758–768. [Google Scholar] [CrossRef]
- Granado-Lorencio, F.; Lagarda, M.J.; Garcia-Lopez, F.J.; Sanchez-Siles, L.M.; Blanco-Navarro, I.; Alegria, A.; Perez-Sacristan, B.; Garcia-Llatas, G.; Donoso-Navarro, E.; Silvestre-Mardomingo, R.A.; et al. Effect of beta-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1090–1096. [Google Scholar] [CrossRef]
- Iwamoto, M.; Imai, K.; Ohta, H.; Shirouchi, B.; Sato, M. Supplementation of highly concentrated beta-cryptoxanthin in a satsuma mandarin beverage improves adipocytokine profiles in obese Japanese women. Lipids Health Dis. 2012, 11, 52. [Google Scholar] [CrossRef]
- Iwata, A.; Fujiwara, S.; Matsubara, S.; Miyazaki, K. Intake of beta-cryptoxanthin with fat-containing food increases beta-cryptoxanthin serum level and palmar yellowness in healthy adults. Nutr. Res. 2019, 71, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, M.; Kato, M.; Matzsumoto, H.; Nagao, A.; Yanoa, M. Serum Concentration of β-Cryptoxanthin in Japan Reflects the Frequency of Satsuma Mandarin (Citrus unshiu Marc.) Consumption. J. Health Sci. 2002, 48, 350–353. [Google Scholar] [CrossRef]
- Lee, B.L.; New, A.L.; Ong, C.N. Simultaneous determination of tocotrienols, tocopherols, retinol, and major carotenoids in human plasma. Clin. Chem. 2003, 49, 2056–2066. [Google Scholar] [CrossRef]
- Bitarafan, S.; Harirchian, M.H.; Sahraian, M.A.; Keramatipour, M.; Beladi Moghadam, N.; Togha, M.; Nafissi, S.; Siassi, F.; Eshraghian, M.R.; Mohammadzadeh Honarvar, N.; et al. Impact of vitamin A supplementation on RAR gene expression in multiple sclerosis patients. J. Mol. Neurosci. MN 2013, 51, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Brtko, J.; Rock, E.; Nezbedova, P.; Krizanova, O.; Dvorcakova, M.; Minet-Quinard, R.; Farges, M.C.; Ribalta, J.; Winklhofer-Roob, B.M.; Vasson, M.P.; et al. Age-related change in the retinoid X receptor beta gene expression in peripheral blood mononuclear cells of healthy volunteers: Effect of 13-cis retinoic acid supplementation. Mech. Ageing Dev. 2007, 128, 594–600. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Z.; Shi, E.; Nie, M.; Feng, L.; Chen, G.; Gao, R.; Zeng, X.; Li, D. Study on the Interaction between Four Typical Carotenoids and Human Gut Microflora Using an in Vitro Fermentation Model. J. Agric. Food Chem. 2022, 70, 13592–13601. [Google Scholar] [CrossRef]
- Snow, G. Blockrand: Generate a Block Randomization for a Clinical Trial. R Package Documentation. 14 April 2020. Available online: https://rdrr.io/cran/blockrand/man/blockrand.html (accessed on 19 September 2022).
- Tint, M.T.; Ward, L.C.; Soh, S.E.; Aris, I.M.; Chinnadurai, A.; Saw, S.M.; Gluckman, P.D.; Godfrey, K.M.; Chong, Y.S.; Kramer, M.S.; et al. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis. Br. J. Nutr. 2016, 115, 1033–1042. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Neelakantan, N.; Whitton, C.; Seah, S.; Koh, H.; Rebello, S.A.; Lim, J.Y.; Chen, S.; Chan, M.F.; Chew, L.; van Dam, R.M. Development of a Semi-Quantitative Food Frequency Questionnaire to Assess the Dietary Intake of a Multi-Ethnic Urban Asian Population. Nutrients 2016, 8, 528. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Li, M.; Shao, D.; Zhou, J.; Gu, J.; Qin, J.; Chen, W.; Wei, W. Signatures within esophageal microbiota with progression of esophageal squamous cell carcinoma. Chin. J. Cancer Res. 2020, 32, 755–767. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Hamady, M.; Lozupone, C.; Knight, R. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010, 4, 17–27. [Google Scholar] [CrossRef]
- McDonald, D.; Vázquez-Baeza, Y.; Koslicki, D.; McClelland, J.; Reeve, N.; Xu, Z.; Gonzalez, A.; Knight, R. Striped UniFrac: Enabling microbiome analysis at unprecedented scale. Nat. Methods 2018, 15, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons. Biol. Skr. 1948, 5, 1–34. [Google Scholar]
- Baldwin, J.A. The Detection of Psychiatric Illness by Questionnaire. By D. P. Goldberg. Maudsley Monograph No. 21. Oxford University Press. 1972. Br. J. Psychiatry 2018, 122, 483. [Google Scholar] [CrossRef]
- Friedrich, F.; Alexandrowicz, R.; Benda, N.; Cerny, G.; Wancata, J. The criterion validity of different versions of the General Health Questionnaire among non-psychiatric inpatients. Soc. Psychiatry Psychiatr. Epidemiol. 2011, 46, 635–641. [Google Scholar] [CrossRef]
- Endicott, J.; Nee, J.; Harrison, W.; Blumenthal, R. Quality of Life Enjoyment and Satisfaction Questionnaire: A new measure. Psychopharmacol. Bull. 1993, 29, 321–326. [Google Scholar]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation of Australia: Sydney, Australia, 1995. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Crawford, J.R.; Henry, J.D. The Depression Anxiety Stress Scales (DASS): Normative data and latent structure in a large non-clinical sample. Br. J. Clin. Psychol. 2003, 42, 111–131. [Google Scholar] [CrossRef]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sport. Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sport. 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Maharshak, N.; Shapiro, J.; Trau, H. Carotenoderma—A review of the current literature. Int. J. Dermatol. 2003, 42, 178–181. [Google Scholar] [CrossRef]
- Turner, T.; Burri, B.J.; Jamil, K.M.; Jamil, M. The effects of daily consumption of β-cryptoxanthin-rich tangerines and β-carotene-rich sweet potatoes on vitamin A and carotenoid concentrations in plasma and breast milk of Bangladeshi women with low vitamin A status in a randomized controlled trial. Am. J. Clin. Nutr. 2013, 98, 1200–1208. [Google Scholar] [CrossRef]
- Rothman, K.J.; Moore, L.L.; Singer, M.R.; Nguyen, U.S.; Mannino, S.; Milunsky, A. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 1995, 333, 1369–1373. [Google Scholar] [CrossRef]
- Mulder, G.B.; Manley, N.; Grant, J.; Schmidt, K.; Zeng, W.; Eckhoff, C.; Maggio-Price, L. Effects of excess vitamin A on development of cranial neural crest-derived structures: A neonatal and embryologic study. Teratology 2000, 62, 214–226. [Google Scholar] [CrossRef]
- Lobo, G.P.; Hessel, S.; Eichinger, A.; Noy, N.; Moise, A.R.; Wyss, A.; Palczewski, K.; von Lintig, J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin A production. FASEB J. 2010, 24, 1656–1666. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Haddad, E.N.; Sugino, K.Y.; Vevang, K.R.; Peterson, L.A.; Koratkar, R.; Gross, M.D.; Kerver, J.M.; Comstock, S.S. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. J. Food Sci. 2021, 86, 602–613. [Google Scholar] [CrossRef]
- Andersen, L.F.; Jacobs, D.R., Jr.; Gross, M.D.; Schreiner, P.J.; Dale Williams, O.; Lee, D.H. Longitudinal associations between body mass index and serum carotenoids: The CARDIA study. Br. J. Nutr. 2006, 95, 358–365. [Google Scholar] [CrossRef]
- Liu, J.; Shi, W.Q.; Cao, Y.; He, L.P.; Guan, K.; Ling, W.H.; Chen, Y.M. Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults. Br. J. Nutr. 2014, 112, 2041–2048. [Google Scholar] [CrossRef]
Placebo | 3 mg β-Cryptoxanthin | 6 mg β-Cryptoxanthin | p-Value | |
---|---|---|---|---|
Participants (n) | 28 | 26 | 26 | |
Age (years) | 27.5 (8.5) | 22.5 (7.75) | 25.5 (7.5) | 0.131 |
Height (cm) | 162.01 ± 5.87 | 161.1 ± 4.28 | 161.6 ± 4.28 | 0.794 |
Weight (kg) | 58.3 ± 7.68 | 55.9 ± 6.75 | 57.1 ± 6.31 | 0.446 |
BMI (kg/m2) | 21.75 (3.70) | 21.2 (3.75) | 21.65 (3.56) | 0.594 |
Ethnicity (n(%)) | ||||
Chinese | 22 (78.6%) | 25 (96.2%) | 24 (92.3%) | |
Malay | 0 (0%) | 0 (0%) | 1 (3.8%) | |
Indian | 6 (21.4%) | 0 (0%) | 1 (3.8%) | |
Others | 0 (0%) | 1 (3.8%) | 0 (0%) | |
Carotenoid intake | ||||
Retinol intake (μg/day) | 179 (677) | 228 (5433) | 1136 (5777) | 0.039 |
β-carotene intake (μg/day) | 2359 (3123) | 2550 (2566) | 2909 (2534) | 0.790 |
α-carotene intake (μg/day) | 243 (390) | 168 (279) | 316 (385) | 0.272 |
β-cryptoxanthin intake (μg/day) | 110 (119) | 117 (137) | 117 (99) | 0.751 |
Lycopene intake (μg/day) | 1192 (1173) | 649 (915) | 1406 (1526) | 0.115 |
Lutein + zeaxanthin intake (μg/day) | 1829 (1692) | 2219 (2244) | 1749 (1659) | 0.695 |
Plasma carotenoid concentrations | ||||
All-trans-retinol (μmol/L) | 1.68 (0.42) | 1.68 (0.45) | 1.78 (0.38) | 0.418 |
β-carotene (μmol/L) | 0.54 (0.32) | 0.54 (0.43) | 0.56 (0.26) | 0.913 |
α-carotene (μmol/L) | 0.07 (0.06) | 0.07 (0.02) | 0.07 (0.04) | 0.870 |
β-cryptoxanthin (μmol/L) | 0.34 (0.18) | 0.36 (0.24) | 0.33 (0.33) | 0.511 |
α-cryptoxanthin (μmol/L) | 0.07 (0.02) | 0.07 (0.02) | 0.07 (0.02) | 0.329 |
Lycopene (μmol/L) | 0.32 (0.15) | 0.30 (0.15) | 0.28 (0.17) | 0.961 |
Lutein (μmol/L) | 0.30 (0.09) | 0.32 (0.14) | 0.32 (0.09) | 0.997 |
Zeaxanthin (μmol/L) | 0.14 (0.04) | 0.16 (0.05) | 0.14 (0.04) | 0.657 |
Placebo | 3 mg β-Cryptoxanthin | 6 mg β-Cryptoxanthin | Total | |
---|---|---|---|---|
Any event | 3 | 2 | 13 | 18 |
COVID-19 | 2 | 0 | 5 | 7 |
Carotenemia | 0 | 1 | 5 | 6 |
Skin rashes | 0 | 0 | 1 | 1 |
Urticaria | 0 | 1 | 0 | 1 |
Acute upper respiratory tract infection | 1 | 0 | 0 | 1 |
Urinary tract infection | 0 | 0 | 1 | 1 |
Eye infection | 0 | 0 | 1 | 1 |
Placebo | 3 mg β-Cryptoxanthin | 6 mg β-Cryptoxanthin | p-Value | |
---|---|---|---|---|
BMI (kg/m2) | ||||
Baseline | 21.75 (3.70) | 21.2 (3.75) | 21.35 (3.56) | 0.594 |
Week 8 | 22 (3.17) | 21.1 (3.45) | 21.35 (3.63) | 0.494 |
p-value | 0.896 | 0.957 | 0.898 | |
Fat percentage (%) | ||||
Baseline | 30.77 ± 7.02 | 28.36 ± 4.64 | 30.85 ± 5.75 | 0.252 |
Week 8 | 31.82 ± 7.46 | 28.89 ± 4.58 | 31.42 ± 5.39 | 0.102 |
p-value | 0.599 | 0.694 | 0.714 | |
Systolic blood pressure (mmHg) | ||||
Baseline | 110.79 ± 8.88 | 110.46 ± 8.65 | 109.08 ± 9.11 | 0.759 |
Week 8 | 108.25 ± 10.53 | 109.15 ± 6.66 | 110.92 ± 8.97 | 0.539 |
p-value | 0.334 | 0.544 | 0.465 | |
Diastolic blood pressure (mmHg) | ||||
Baseline | 72.00 ± 6.98 | 71.15 ± 7.92 | 69.81 ± 8.00 | 0.572 |
Week 8 | 70.64 ± 6.74 | 69.27 ± 7.01 | 70.92 ± 7.94 | 0.677 |
p-value | 0.462 | 0.368 | 0.616 | |
Heart rate (bpm) | ||||
Baseline | 70.96 ± 7.82 | 73.88 ± 11.41 | 72.85 ± 8.16 | 0.262 |
Week 8 | 73.07 ± 8.46 | 72.96 ± 10.73 | 73.81 ± 12.88 | 0.905 |
p-value | 0.175 | 0.620 | 0.615 | |
Haemoglobin (g/dL) | ||||
Baseline | 12.45 (1.30) | 12.30 (1.28) | 12.15 (1.55) | 0.972 |
Week 8 | 12.35 (1.20) | 12.15 (1.53) | 12.60 (1.72) | 0.889 |
p-value | 0.717 | 0.636 | 0.992 | |
Haematocrit (%) | ||||
Baseline | 37.80 (3.85) | 37.75 (3.22) | 38.30 (4.42) | 0.732 |
Week 8 | 38.00 (2.85) | 37.35 (3.47) | 38.85 (4.40) | 0.822 |
p-value | 0.447 | 0.545 | 0.957 | |
Creatinine (μmol/L) | ||||
Baseline | 63.5 (9.8) | 61.0 (9.3) | 62.0 (14.8) | 0.716 |
Week 8 | 60.0 (14.0) | 60.0 (7.0) | 63.0 (12.5) | 0.964 |
p-value | 0.620 | 0.962 | 0.922 | |
Alanine transaminase (U/L) | ||||
Baseline | 10.5 (6.8) | 11.5 (6.3) | 12.0 (4.0) | 0.626 |
Week 8 | 13.0 (7.0) | 11.5 (4.8) | 13.0 (5.5) | 0.156 |
p-value | 0.225 | 0.953 | 0.346 | |
Aspartate transaminase (U/L) | ||||
Baseline | 19.5 (5.8) | 21.0 (5.3) | 20.0 (3.0) | 0.530 |
Week 8 | 20.0 (7.0) | 19.0 (3.8) | 21.0 (7.0) | 0.131 |
p-value | 0.560 | 0.165 | 0.282 | |
Glucose (mmol/L) | ||||
Baseline | 4.74 ± 0.24 | 4.75 ± 0.33 | 4.74 ± 0.35 | 0.991 |
Week 8 | 4.62 ± 0.36 | 4.72 ± 0.28 | 4.76 ± 0.44 | 0.361 |
p-value | 0.184 | 0.792 | 0.862 | |
Insulin (mU/L) | ||||
Baseline | 4.60 (2.13) | 5.15 (3.05) | 5.90 (2.98) | 0.217 |
Week 8 | 4.60 (3.10) | 4.50 (3.28) | 5.95 (3.60) | 0.338 |
p-value | 0.858 | 0.339 | 0.402 | |
Total cholesterol (mmol/L) | ||||
Baseline | 4.68 (0.91) | 4.82 (1.32) | 4.74 (1.22) | 0.954 |
Week 8 | 4.82 (1.12) | 4.72 (1.19) | 4.74 (1.44) | 0.897 |
p-value | 0.393 | 0.372 | 0.992 | |
Triglycerides (mmol/L) | ||||
Baseline | 0.71 (0.32) | 0.71 (0.26) | 0.85 (0.45) | 0.070 |
Week 8 | 0.63 (0.23) | 0.74 (0.34) | 0.73 (0.35) | 0.208 |
p-value | 0.707 | 0.672 | 0.613 | |
HDL-cholesterol (mmol/L) | ||||
Baseline | 1.61 (0.30) | 1.61 (0.45) | 1.60 (0.37) | 0.735 |
Week 8 | 1.70 (0.29) | 1.60 (0.34) | 1.54 (0.40) | 0.538 |
p-value | 0.595 | 0.851 | 0.571 | |
LDL-cholesterol (mmol/L) | ||||
Baseline | 2.66 (0.78) | 2.76 (1.10) | 2.61 (0.85) | 0.936 |
Week 8 | 2.72 (1.02) | 2.55 (1.39) | 2.74 (1.01) | 0.964 |
p-value | 0.449 | 0.660 | 0.276 |
Placebo | 3 mg β-Cryptoxanthin | 6 mg β-Cryptoxanthin | p-Value | |
---|---|---|---|---|
General health questionnaire (GHQ) scores | ||||
Baseline | 11.0 (5.0) | 10.5 (4.5) | 10.0 (5.0) | 0.669 |
Week 8 | 10.0 (5.0) | 10.0 (6.5) | 10.0 (5.0) | 0.529 |
p-value | 0.383 | 0.582 | 0.613 | |
Quality of Life Enjoyment and Satisfaction Questionnaire (QLES) scores | ||||
Baseline | 68.6 (14.6) | 70.0 (12.9) | 71.7 (13.4) | 0.771 |
Week 8 | 71.7 (12.1) | 74.2 (11.2) | 71.7 (15.7) | 0.669 |
p-value | 0.229 | 0.073 | 0.921 | |
Satisfaction With Life Scale (SWLS) scores | ||||
Baseline | 22.5 (12.0) | 25.0 (10.0) | 25.0 (6.8) | 0.411 |
Week 8 | 24.5 (9.3) | 23.5 (6.0) | 26.5 (7.0) | 0.308 |
p-value | 0.555 | 0.499 | 0.596 | |
State Trait Anxiety Inventory (STAI) Trait scores | ||||
Baseline | 43.5 (10.5) | 41.0 (8.8) | 41.0 (12.8) | 0.519 |
Week 8 | 38.0 (12.3) | 40.0 (8.8) | 42.0 (9.0) | 0.339 |
p-value | 0.082 | 0.749 | 0.702 | |
State Trait Anxiety Inventory (STAI) State scores | ||||
Baseline | 39.0 (15.0) | 39.0 (9.8) | 34.5 (13.8) | 0.449 |
Week 8 | 35.5 (14.5) | 34.5 (11.5) | 37.0 (12.0) | 0.693 |
p-value | 0.209 | 0.134 | 0.730 | |
Depression Anxiety Stress Scale (DASS) Depression scores | ||||
Baseline | 5.5 (11.3) | 3.0 (5.8) | 2.0 (6.8) | 0.455 |
Week 8 | 2.0 (9.3) | 2.0 (2.0) | 4.0 (4.8) | 0.667 |
p-value | 0.181 | 0.650 | 0.208 | |
Depression Anxiety Stress Scale (DASS) Anxiety scores | ||||
Baseline | 4.0 (3.8) | 4.0 (5.5) | 3.5 (4.5) | 0.928 |
Week 8 | 3.0 (4.3) | 3.0 (4.0) | 3.0 (4.5) | 0.806 |
p-value | 0.115 | 0.462 | 0.492 | |
Depression Anxiety Stress Scale (DASS) Stress scores | ||||
Baseline | 7.5 (7.5) | 6.5 (5.8) | 7.5 (8.8) | 0.711 |
Week 8 | 4.5 (11.0) | 6.5 (7.8) | 7.0 (8.5) | 0.525 |
p-value | 0.259 | 0.770 | 0.463 | |
Perceived Stress Scale (PSS) scores | ||||
Baseline | 18.0 (5.0) | 16.5 (6.5) | 16.5 (9.8) | 0.777 |
Week 8 | 14.0 (9.3) | 15.5 (7.0) | 15.5 (5.0) | 0.970 |
p-value | 0.146 | 0.640 | 0.617 | |
Inactivity (sedentary) (min/day) | ||||
Baseline | 657.8 (123.6) | 650.1 (132.2) | 689.5 (107.3) | 0.059 |
Week 8 | 625.0 (112.4) | 658.6 (149.4) | 610.8 (128.3) | 0.919 |
p-value | 0.919 | 0.970 | 0.073 | |
Light physical activity (min/day) | ||||
Baseline | 253.8 (85.6) | 278.2 (71.5) | 235.4 (80.7) | 0.007 |
Week 8 | 253.2 (81.6) | 237.1 (132.7) | 246.1 (95.1) | 0.284 |
p-value | 0.755 | 0.536 | 0.589 | |
Moderate physical activity (min/day) | ||||
Baseline | 87.3 ± 38.3 | 92.5 ± 30.2 | 79.3 ± 31.8 | 0.391 |
Week 8 | 89.4 ± 28.4 | 91.9 ± 40.8 | 84.0 ± 30.5 | 0.716 |
p-value | 0.827 | 0.957 | 0.605 | |
Vigorous physical activity (min/day) | ||||
Baseline | 2.9 (3.9) | 3.6 (11.3) | 3.0 (4.7) | 0.158 |
Week 8 | 2.9 (3.8) | 4.7 (10.3) | 3.1 (5.4) | 0.522 |
p-value | 0.661 | 0.398 | 0.268 | |
Sleep (min/day) | ||||
Baseline | 433.6 (79.8) | 418.6 (59.2) | 431.5 (52.5) | 0.279 |
Week 8 | 440.8 (69.5) | 417.4 (106.4) | 432.9 (100.7) | 0.311 |
p-value | 0.985 | 0.636 | 0.160 | |
Pittsburgh Sleep Quality Index (PSQI) scores | ||||
Baseline | 6.0 (3.0) | 5.0 (3.0) | 5.0 (2.0) | 0.249 |
Week 8 | 6.0 (4.0) | 5.5 (3.0) | 5.0 (3.0) | 0.499 |
p-value | 0.980 | 0.201 | 0.778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, K.M.L.; Chee, J.; Lim, K.L.M.; Ng, M.; Gong, M.; Xu, J.; Tin, F.; Natarajan, P.; Lee, B.L.; Ong, C.N.; et al. Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 2325. https://doi.org/10.3390/nu15102325
Tan KML, Chee J, Lim KLM, Ng M, Gong M, Xu J, Tin F, Natarajan P, Lee BL, Ong CN, et al. Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients. 2023; 15(10):2325. https://doi.org/10.3390/nu15102325
Chicago/Turabian StyleTan, Karen M. L., Jolene Chee, Kezlyn L. M. Lim, Maisie Ng, Min Gong, Jia Xu, Felicia Tin, Padmapriya Natarajan, Bee Lan Lee, Choon Nam Ong, and et al. 2023. "Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial" Nutrients 15, no. 10: 2325. https://doi.org/10.3390/nu15102325
APA StyleTan, K. M. L., Chee, J., Lim, K. L. M., Ng, M., Gong, M., Xu, J., Tin, F., Natarajan, P., Lee, B. L., Ong, C. N., Tint, M. T., Kee, M. Z. L., Müller-Riemenschneider, F., Gluckman, P. D., Meaney, M. J., Kumar, M., Karnani, N., Eriksson, J. G., Nandanan, B., ... Cameron-Smith, D. (2023). Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients, 15(10), 2325. https://doi.org/10.3390/nu15102325