The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic Characteristics
2.2. Data Collection
2.3. F-Florbetapir PET Imaging and Semi-Quantitative Analysis of PET Images
2.4. Measurements of Plasma Biomarkers Related to AD
2.5. Assessments
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Q.; Liu, W. Inequalities in cognitive impairment among older adults in China and the associated social determinants: A decomposition approach. Int. J. Equity Health 2021, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Zhang, M.; Xu, W.; Li, J.-Q.; Cao, X.-P.; Yu, J.-T.; Tan, L. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr. Alzheimer Res. 2020, 16, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; DelFavero, J.; Ungvari, A.; Papp, M.; Tarantini, A.; Price, N.; de Cabo, R.; Tarantini, S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res. Rev. 2020, 64, 101189. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mañas, L.; Saenz de Pipaón, M.; Miñana, V. The importance of water consumption in health and disease prevention: The current situation. Nutr. Hosp. 2020, 37, 1072–1086. [Google Scholar]
- Rozdowska, A.; Falkenstein, M.; Jendrusch, G.; Platen, P.; Luecke, T.; Kersting, M.; Jansen, K. Water Consumption during a School Day and Children’s Short-Term Cognitive Performance: The CogniDROP Randomized Intervention Trial. Nutrients 2020, 12, 1297. [Google Scholar] [CrossRef]
- Pross, N. Effects of Dehydration on Brain Functioning: A Life-Span Perspective. Ann. Nutr. Metab. 2017, 70 (Suppl. S1), 30–36. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.P.J.; Moreland, A.T.; Marino, F.E. The effect of active hypohydration on cognitive function: A systematic review and meta-analysis. Physiol. Behav. 2019, 204, 297–308. [Google Scholar] [CrossRef]
- Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green tea effects on cognition, mood and human brain function: A systematic review. Phytomedicine 2017, 34, 26–37. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, Y.; Ying, X.; Li, S.; Zhai, Y.; Shang, X.; Li, F.; Wang, X.; He, F.; Lin, J. Tea Consumption and Cognitive Impairment: A Cross-Sectional Study among Chinese Elderly. PLoS ONE 2015, 10, e0137781. [Google Scholar] [CrossRef]
- Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife Coffee and Tea Drinking and the Risk of Late-Life Dementia: A Population-Based CAIDE Study. J. Alzheimer’s Dis. 2009, 16, 85–91. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N. Coffee Consumption and Risk of Dementia and Alzheimer’s Disease: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2018, 10, 1501. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Weintraub, S.; Morris, M.C. Caffeinated Coffee and Tea Consumption, Genetic Variation and Cognitive Function in the UK Biobank. J. Nutr. 2020, 150, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Bryan, J.; Murphy, K.J.; Buckley, J. Review of Dairy Consumption and Cognitive Performance in Adults: Findings and Methodological Issues. Dement. Geriatr. Cogn. Disord. 2010, 30, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D. Meta-Analysis of Milk Consumption and the Risk of Cognitive Disorders. Nutrients 2016, 8, 824. [Google Scholar] [CrossRef]
- Lee, J.; Fu, Z.; Chung, M.; Jang, D.-J.; Lee, H.-J. Role of milk and dairy intake in cognitive function in older adults: A systematic review and meta-analysis. Nutr. J. 2018, 17, 82. [Google Scholar] [CrossRef]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernández-Pérez, C.; Martín-Sánchez, F.J. Effect of Milk and Other Dairy Products on the Risk of Frailty, Sarcopenia, and Cognitive Performance Decline in the Elderly: A Systematic Review. Adv. Nutr. Int. Rev. J. 2019, 10, S105–S119. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, M.; Wang, X.; Wu, K.; Li, Y.; Li, L.; Yang, J.; Ruan, Y.; Bai, R.; Ma, C.; et al. Sex differences in the association between green tea consumption and hypertension in elderly Chinese adults. BMC Geriatr. 2021, 21, 486. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Bae, Y.-W.; Lee, S.M.; Kim, K.-O. Age and gender differences in the influence of extrinsic product information on acceptability for RTD green tea beverages. J. Sci. Food Agric. 2016, 96, 1362–1372. [Google Scholar] [CrossRef]
- Meyer, P.; Ashton, N.J.; Karikari, T.K.; Strikwerda-Brown, C.; Köbe, T.; Gonneaud, J.; Binette, A.P.; Ozlen, H.; Yakoub, Y.; Simrén, J.; et al. Plasma p-tau231, p-tau181, PET Biomarkers, and Cognitive Change in Older Adults. Ann. Neurol. 2022, 91, 548–560. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, L.; Dong, C. A Review of Application of Abeta42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J. Alzheimers Dis. 2022, 90, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, A.; Grothe, M.J.; Ashton, N.J.; Karikari, T.K.; Rodriguez, J.L.; Snellman, A.; Suárez-Calvet, M.; Zetterberg, H.; Blennow, K.; Schöll, M.; et al. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 2021, 144, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, Y.; Xie, F.; Guo, Q. Associations of plasma phosphorylated tau181 and neurofilament light chain with brain amyloid burden and cognition in objectively defined subtle cognitive decline patients. CNS Neurosci. Ther. 2022, 28, 2195–2205. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Verberk, I.M.W.; Thijssen, E.H.; Vermunt, L.; Hansson, O.; Zetterberg, H.; van der Flier, W.M.; Mielke, M.M.; Del Campo, M. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation. Lancet Neurol. 2022, 21, 66–77. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, Y.; Cui, L.; Huang, L.; Guo, Q.; Huang, G. Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients 2023, 15, 1243. [Google Scholar] [CrossRef]
- Lundeen, T.F.; Seibyl, J.P.; Covington, M.F.; Eshghi, N.; Kuo, P.H. Signs and Artifacts in Amyloid PET. RadioGraphics 2018, 38, 2123–2133. [Google Scholar] [CrossRef]
- Wilson, D.H.; Rissin, D.M.; Kan, C.W.; Fournier, D.R.; Piech, T.; Campbell, T.G.; Meyer, R.E.; Fishburn, M.W.; Cabrera, C.; Patel, P.P.; et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. J. Lab. Autom. 2016, 21, 533–547. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Johnson, L.A. APOE in Alzheimer’s disease and neurodegeneration. Neurobiol. Dis. 2020, 139, 104847. [Google Scholar] [CrossRef]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, G.; Du, S.; Liu, S.; Zhang, N. Effects of Water Restriction and Supplementation on Cognitive Performances and Mood among Young Adults in Baoding, China: A Randomized Controlled Trial (RCT). Nutrients 2021, 13, 3645. [Google Scholar] [CrossRef] [PubMed]
- Bethancourt, H.J.; Kenney, W.L.; Almeida, D.M.; Rosinger, A.Y. Cognitive performance in relation to hydration status and water intake among older adults, NHANES 2011–2014. Eur. J. Nutr. 2020, 59, 3133–3148. [Google Scholar] [CrossRef] [PubMed]
- Masento, N.; Golightly, M.; Field, D.T.; Butler, L.T.; Van Reekum, C.M. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 2014, 111, 1841–1852. [Google Scholar] [CrossRef]
- Białecka-Dębek, A.; Pietruszka, B. The association between hydration status and cognitive function among free-living elderly volunteers. Aging Clin. Exp. Res. 2019, 31, 695–703. [Google Scholar] [CrossRef]
- Abe, S.K.; Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan; Saito, E.; Sawada, N.; Tsugane, S.; Ito, H.; Lin, Y.; Tamakoshi, A.; Sado, J.; Kitamura, Y.; et al. Green tea consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan. Eur. J. Epidemiol. 2019, 34, 917–926. [Google Scholar] [CrossRef]
- Shirai, Y.; Kuriki, K.; Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H. Green tea and coffee intake and risk of cognitive decline in older adults: The National Institute for Longevity Sciences, Longitudinal Study of Aging. Public Health Nutr. 2020, 23, 1049–1057. [Google Scholar] [CrossRef]
- Arab, L.; Biggs, M.L.; O’Meara, E.S.; Longstreth, W.T.; Crane, P.K.; Fitzpatrick, A.L. Gender Differences in Tea, Coffee, and Cognitive Decline in the Elderly: The Cardiovascular Health Study. J. Alzheimer’s Dis. 2011, 27, 553–566. [Google Scholar] [CrossRef]
- Chen, P.B.; Kim, J.H.; Young, L.; Clark, J.M.; Park, Y. Epigallocatechin gallate (EGCG) alters body fat and lean mass through sex-dependent metabolic mechanisms in Drosophila melanogaster. Int. J. Food Sci. Nutr. 2019, 70, 959–969. [Google Scholar] [CrossRef]
- Pastoriza, S.; Mesías, M.; Cabrera, C.; Rufián-Henares, J.A. Healthy properties of green and white teas: An update. Food Funct. 2017, 8, 2650–2662. [Google Scholar] [CrossRef]
- Kaplan, A.; Zelicha, H.; Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Levakov, G.; Prager, O.; Salti, M.; Yovell, Y.; Ofer, J.; et al. The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age -related brain atrophy: The Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS). Am. J. Clin. Nutr. 2022, 115, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Harangozo, Ľ.; Kántor, A.; Kačániová, M. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J. Food Sci. Technol. 2020, 57, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.-H.S.; Hakim, I.A. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacol. Res. 2011, 64, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic, N.; Smith, A.; Lin, X.; Yuan, F.; Copes, N.; Delic, V.; Tan, J.; Cao, C.; Shytle, R.D.; Bradshaw, P.C. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J. Alzheimers Dis. 2011, 26, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.A.; Ortiz, F.; Varghese, T.; Fabara, S.P.; Batth, A.S.; Sandesara, D.P.; Sabir, A.; Khurana, M.; Datta, S.; Patel, U.K. The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review. Cureus 2021, 13, e20828. [Google Scholar]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Ran, L.S.; Liu, W.H.; Fang, Y.Y.; Xu, S.B.; Li, J.; Luo, X.; Pan, D.J.; Wang, M.H.; Wang, W. Alcohol, coffee and tea intake and the risk of cognitive deficits: A dose–response meta-analysis. Epidemiol. Psychiatr. Sci. 2021, 30, e13. [Google Scholar] [CrossRef]
- Shi, M.; Cao, L.; Liu, H.; Zhou, Y.; Zhao, Y.; Xia, Y. Association Between Tea Drinking and Cognitive Disorders in Older Adults: A Meta-Analysis of Observational Studies. Front. Aging Neurosci. 2022, 14, 845053. [Google Scholar] [CrossRef]
- Liu, X.; Du, X.; Han, G.; Gao, W. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 2017, 8, 43306–43321. [Google Scholar] [CrossRef]
- Dong, X.; Li, S.; Sun, J.; Li, Y.; Zhang, D. Association of Coffee, Decaffeinated Coffee and Caffeine Intake from Coffee with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutrients 2020, 12, 840. [Google Scholar] [CrossRef]
- Paz-Graniel, I.; The PREDIMED-Plus Investigators; Babio, N.; Becerra-Tomás, N.; Toledo, E.; Camacho-Barcia, L.; Corella, D.; Castañer-Niño, O.; Romaguera, D.; Vioque, J.; et al. Association between coffee consumption and total dietary caffeine intake with cognitive functioning: Cross-sectional assessment in an elderly Mediterranean population. Eur. J. Nutr. 2020, 60, 2381–2396. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Montandon, M.-L.; Rodriguez, C.; Herrmann, F.R.; Giannakopoulos, P. Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and MRI Parameters in Old Age. Nutrients 2018, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Jung, G.; Lee, H.N.; Sohn, B.K.; Lee, J.Y.; Kim, Y.K.; et al. Coffee intake and decreased amyloid pathology in human brain. Transl. Psychiatry 2019, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Kozlow, M.; Kritz-Silverstein, D.; Barrett-Connor, E.; Morton, D. Coffee Consumption and Cognitive Function among Older Adults. Am. J. Epidemiol. 2002, 156, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.; Carrière, I.; de Mendonca, A.; Portet, F.; Dartigues, J.F.; Rouaud, O.; Barberger-Gateau, P.; Ancelin, M.L. The neuroprotective effects of caffeine: A prospective population study (the Three City Study). Neurology 2007, 69, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, K.; Kakio, S.; Nakazawa, Y.; Kobata, K.; Funakoshi-Tago, M.; Suzuki, T.; Tamura, H. Roasted Coffee Reduces beta-Amyloid Production by Increasing Proteasomal beta-Secretase Degradation in Human Neuroblastoma SH-SY5Y Cells. Mol. Nutr. Food Res. 2018, 62, e1800238. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, J.; Yang, H.; Pham, P.; Khan, U.; Brown, B.; Wang, Y.; Zieneldien, T.; Cao, C. Commercial and Instant Coffees Effectively Lower Abeta1-40 and Abeta1-42 in N2a/APPswe Cells. Front. Nutr. 2022, 9, 850523. [Google Scholar] [CrossRef]
- Mancini, R.S.; Wang, Y.; Weaver, D.F. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front. Neurosci. 2018, 12, 735. [Google Scholar] [CrossRef]
- Ozawa, M.; Ohara, T.; Ninomiya, T.; Hata, J.; Yoshida, D.; Mukai, N.; Nagata, M.; Uchida, K.; Shirota, T.; Kitazono, T.; et al. Milk and Dairy Consumption and Risk of Dementia in an Elderly Japanese Population: The Hisayama Study. J. Am. Geriatr. Soc. 2014, 62, 1224–1230. [Google Scholar] [CrossRef]
- Muñoz-Garach, A.; Cornejo-Pareja, I.; Martínez-González, M.; Bulló, M.; Corella, D.; Castañer, O.; Romaguera, D.; Vioque, J.; Alonso-Gómez, M.; Wärnberg, J.; et al. Milk and Dairy Products Intake Is Related to Cognitive Impairment at Baseline in Predimed Plus Trial. Mol. Nutr. Food Res. 2021, 65, e2000728. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, W.; Zhang, D. Association between Dietary Protein Intake and Cognitive Function in Adults Aged 60 Years and Older. J. Nutr. Health Aging 2020, 24, 223–229. [Google Scholar] [CrossRef]
- Ylilauri, M.P.T.; Hantunen, S.; Lönnroos, E.; Salonen, J.T.; Tuomainen, T.-P.; Virtanen, J.K. Associations of dairy, meat, and fish intakes with risk of incident dementia and with cognitive performance: The Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD). Eur. J. Nutr. 2022, 61, 2531–2542. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Assmann, K.E.; Andreeva, V.A.; Ferry, M.; Hercberg, S.; Galan, P. SU.VI.MAX 2 Research Group. Consumption of Dairy Products and Cognitive Functioning: Findings from the SU.VI.MAX 2 Study. J. Nutr. Health Aging 2016, 20, 128–137. [Google Scholar] [CrossRef]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [CrossRef]
- Alonso, A.; Beunza, J.J.; Delgado-Rodríguez, M.; Martínez, J.A.; Martínez-Gonza’lez, M.A. Low-fat dairy consumption and reduced risk of hypertension: The Seguimiento Universidad de Navarra (SUN) cohort. Am. J. Clin. Nutr. 2005, 82, 972–979. [Google Scholar] [CrossRef]
NC Group | SCD Group | p a | MCI Group | AD Group | p a | Objective Cognitive Unimpaired Group | Objective Cognitive Impairment Group | p a | |
---|---|---|---|---|---|---|---|---|---|
N | 185 | 227 | 296 | 184 | 412 | 480 | |||
APOE ε4 allele carries | 0.043 | <0.001 | <0.001 | ||||||
YES | 33 (18.0) | 42 (18.8) | 70 (23.6) | 93 (50.8) | 75 (18.3) | 163 (34.0) | |||
NO | 150 (82.0) | 181 (81.2) | 226 (76.4) | 90 (49.2) | 334 (81.7) | 316 (66.0) | |||
Beverages consumption | |||||||||
Daily water consumption | |||||||||
>1500 mL | 43 (23.2) | 50 (22.4) | 0.585 | 76 (26.0) | 23 (12.8) | <0.001 | 93 (22.8) | 99 (21.0) | 0.009 |
1000–1500 mL | 70 (37.8) | 83 (37.2) | 86 (29.5) | 52 (28.9) | 153 (37.5) | 138 (29.2) | |||
500–1000 mL | 64 (34.6) | 73 (32.7) | 110 (37.7) | 76 (42.2) | 137 (33.6) | 186 (39.4) | |||
<500 mL | 8 (4.3) | 17 (7.6) | 20 (6.8) | 29 (16.1) | 25 (6.1) | 49 (10.4) | |||
Long-term drinking water | |||||||||
Mineral water | 16 (8.6) | 15 (6.7) | 0.585 | 16 (5.5) | 9 (4.9) | 0.024 | 31 (7.6) | 25 (5.3) | 0.007 |
Tea | 57 (30.8) | 59 (26.3) | 72 (24.6) | 24 (13.2) | 116 (28.4) | 96 (20.2) | |||
boiled water | 92 (49.7) | 125 (55.8) | 174 (59.4) | 128 (70.3) | 217 (53.1) | 302 (63.6) | |||
purified water | 20 (10.8) | 25 (11.2) | 31 (10.6) | 21 (11.5) | 45 (11.0) | 52 (10.9) | |||
Tea drinking frequency | |||||||||
≥3 cups/day | 55 (29.9) | 52 (23.2) | 0.120 | 71 (24.1) | 31 (17.1) | <0.001 | 107 (26.2) | 102 (21.5) | <0.001 |
1–2 cups/day | 45 (24.5) | 44 (19.6) | 53 (18.0) | 19 (10.5) | 89 (21.8) | 72 (15.2) | |||
<1 cups/day | 24 (13.0) | 31 (13.8) | 36 (12.2) | 15 (8.3) | 55 (13.5) | 51 (10.7) | |||
Rarely | 60 (32.6) | 97 (43.3) | 134 (45.6) | 116 (64.1) | 157 (38.5) | 250 (52.6) | |||
Coffee drinking frequency | |||||||||
1–2 cups/WKD | 42 (49.4) | 38 (48.1) | 0.550 | 53 (59.6) | 20 (52.6) | 0.559 | 80 (48.8) | 73 (57.5) | 0.188 |
3–6 cups/WKD | 12 (14.1) | 16 (20.3) | 14 (15.7) | 9 (23.7) | 28 (17.1) | 23 (18.1) | |||
Everyday | 31 (36.5) | 25 (31.6) | 22 (24.7) | 9 (23.7) | 56 (34.1) | 31 (24.4) | |||
Coffee consumption | |||||||||
YES | 75 (40.5) | 65 (28.9) | 0.013 | 72 (24.4) | 32 (17.5) | 0.075 | 140 (34.1) | 104 (21.8) | <0.001 |
NO | 110 (59.5) | 160 (71.1) | 223 (75.6) | 151 (82.5) | 270 (65.9) | 374 (78.2) | |||
Tea consumption | |||||||||
Green tea | 58 (31.7) | 63 (28.1) | 0.071 | 88 (29.9) | 34 (18.6) | 0.001 | 121 (29.7) | 122 (25.6) | <0.001 |
Black tea | 51 (27.9) | 46 (20.5) | 45 (15.3) | 18 (9.8) | 97 (23.8) | 63 (13.2) | |||
None | 74 (40.4) | 115 (51.3) | 161 (54.8) | 131 (71.6) | 189 (46.4) | 292 (61.2) | |||
Weekly milk intake | |||||||||
Everyday | 96 (52.2) | 118 (52.4) | 0.854 | 142 (48.5) | 78 (43.3) | 0.027 | 214 (52.3) | 220 (46.5) | 0.129 |
≥3 times | 41 (22.3) | 53 (23.6) | 74 (25.3) | 32 (17.8) | 94 (23.0) | 106 (22.4) | |||
<3 times | 21 (11.4) | 20 (8.9) | 37 (12.6) | 32 (17.8) | 41 (10.0) | 69 (14.6) | |||
None | 26 (14.1) | 34 (15.1) | 40 (13.7) | 38 (21.1) | 60 (14.7) | 78 (16.5) | |||
Daily milk intake | |||||||||
One cup | 116 (65.5) | 140 (64.5) | 0.992 | 171 (62.2) | 99 (56.9) | 0.112 | 256 (65.0) | 270 (60.1) | 0.458 |
Half a cup | 28 (15.8) | 35 (16.1) | 52 (18.9) | 31 (17.8) | 63 (16.0) | 83 (18.5) | |||
<Half a cup | 11 (6.2) | 13 (6.0) | 18 (6.5) | 8 (4.6) | 24 (6.1) | 26 (5.8) | |||
Rarely | 22 (12.4) | 29 (13.4) | 34 (12.4) | 36 (20.7) | 51 (12.9) | 70 (15.6) | |||
Yogurt consumption | |||||||||
YES | 114 (61.6) | 139 (62.1) | 0.929 | 161 (54.6) | 87 (47.5) | 0.135 | 253 (61.9) | 248 (51.9) | 0.003 |
NO | 71 (38.4) | 85 (37.9) | 134 (45.4) | 96 (52.5) | 156 (38.1) | 230 (48.1) | |||
Pure milk consumption | |||||||||
YES | 121 (65.4) | 162 (72.3) | 0.132 | 205 (69.5) | 104 (57.1) | 0.006 | 283 (69.2) | 309 (64.8) | 0.164 |
NO | 64 (34.6) | 62 (27.7) | 90 (30.5) | 78 (42.9) | 126 (30.8) | 168 (35.2) |
Group | Categorical Variable | Model | Reference Group | B | SE | p | OR | 95%CI | |
---|---|---|---|---|---|---|---|---|---|
The NC group and the SCD group (female) | |||||||||
Coffee consumption | |||||||||
a | NO | YES | −0.693 | 0.253 | 0.006 | 0.500 | 0.305–0.820 | ||
b | NO | YES | −0.735 | 0.262 | 0.005 | 0.479 | 0.287–0.801 | ||
c | NO | YES | −0.779 | 0.315 | 0.013 | 0.459 | 0.248–0.851 |
Group | Categorical Variable | Model | Reference Group | B | SE | p | OR | 95%CI | |
---|---|---|---|---|---|---|---|---|---|
The MCI group and the AD group | |||||||||
Daily water consumption | |||||||||
a | >1500 mL | 1000–1500 mL | 0.692 | 0.296 | 0.019 | 1.998 | 1.119–3.568 | ||
>1500 mL | 500–1000 mL | 0.825 | 0.281 | 0.003 | 2.283 | 1.317–3.959 | |||
>1500 mL | <500 mL | 1.567 | 0.376 | 0.000 | 4.791 | 2.295–10.005 | |||
b | >1500 mL | 1000–1500 mL | 0.734 | 0.337 | 0.029 | 2.083 | 1.076–4.032 | ||
>1500 mL | 500–1000 mL | 0.701 | 0.322 | 0.030 | 2.015 | 1.071–3.792 | |||
>1500 mL | <500 mL | 1.364 | 0.419 | 0.001 | 3.911 | 1.721–8.887 | |||
c | >1500 mL | 1000–1500 mL | 0.586 | 0.354 | 0.098 | 1.798 | 0.897–3.601 | ||
>1500 mL | 500–1000 mL | 0.557 | 0.341 | 0.102 | 1.745 | 0.895–3.403 | |||
>1500 mL | <500 mL | 1.131 | 0.444 | 0.011 | 3.097 | 1.298–7.389 | |||
The MCI group and the AD group (female) | |||||||||
Tea consumption | |||||||||
a | None | Green tea | −1.133 | 0.305 | 0.000 | 0.322 | 0.177–0.585 | ||
b | None | Green tea | −0.970 | 0.333 | 0.004 | 0.379 | 0.197–0.729 | ||
d | None | Green tea | −0.845 | 0.404 | 0.037 | 0.430 | 0.195–0.948 | ||
Pure milk consumption | |||||||||
a | NO | YES | −0.936 | 0.253 | 0.000 | 0.392 | 0.239–0.644 | ||
b | NO | YES | −0.892 | 0.286 | 0.002 | 0.410 | 0.234–0.718 | ||
e | NO | YES | −0.818 | 0.330 | 0.013 | 0.441 | 0.231–0.843 |
Group | Categorical Variable | Model | Reference Group | B | SE | p | OR | 95%CI | |
---|---|---|---|---|---|---|---|---|---|
The objective cognitive unimpaired group and the objective cognitive impairment group (male) | |||||||||
Tea consumption | |||||||||
a | None | Green tea | −1.157 | 0.270 | 0.000 | 0.314 | 0.185–0.533 | ||
b | None | Green tea | −1.223 | 0.307 | 0.000 | 0.294 | 0.161–0.537 | ||
c | None | Green tea | −1.068 | 0.323 | 0.001 | 0.344 | 0.182–0.647 | ||
Tea drinking frequency | |||||||||
a | Rarely | ≥3 cups/day | −1.003 | 0.308 | 0.001 | 0.367 | 0.201–0.671 | ||
Rarely | 1–2 cups/day | −0.870 | 0.338 | 0.010 | 0.419 | 0.216–0.812 | |||
Rarely | <1 cups/day | −1.106 | 0.431 | 0.010 | 0.331 | 0.141–0.770 | |||
b | Rarely | ≥3 cups/day | −1.216 | 0.361 | 0.001 | 0.296 | 0.146–0.602 | ||
Rarely | 1–2 cups/day | −0.985 | 0.384 | 0.010 | 0.374 | 0.176–0.792 | |||
Rarely | <1 cups/day | −1.405 | 0.512 | 0.006 | 0.245 | 0.090–0.669 | |||
c | Rarely | ≥3 cups/day | −1.005 | 0.381 | 0.008 | 0.336 | 0.174–0.772 | ||
Rarely | 1–2 cups/day | −0.816 | 0.403 | 0.043 | 0.442 | 0.201–0.974 | |||
Rarely | <1 cups/day | −1.343 | 0.527 | 0.011 | 0.261 | 0.093–0.733 |
Groups | Biomarkers (pg/mL) a | ||||||
---|---|---|---|---|---|---|---|
PET (+) | |||||||
Pure milk consumption | Tea consumption | ||||||
YES | NO | p b | Green tea | None | p b | ||
N | 77 | 49 | 47 | 71 | |||
Aβ42 | 9.8 (3.7) | 8.8 (3.7) | 0.132 | 8.5 (4.0) | 9.9 (3.5) | 0.053 | |
Aβ40 | 199.7 (64.8) | 198.8 (69.4) | 0.941 | 186.0 (68.8) | 209.2 (63.3) | 0.066 | |
Aβ42/40 | 0.050 (0.014) | 0.047 (0.017) | 0.270 | 0.049 (0.017) | 0.048 (0.014) | 0.693 | |
t-Tau | 2.5 (0.9) | 2.6 (1.0) | 0.332 | 2.4 (1.0) | 2.6 (0.9) | 0.553 | |
p-Tau-181 | 2.6 (1.9) | 3.2 (1.5) | 0.042 | 2.3 (1.6) | 3.2 (1.8) | 0.014 | |
NfL | 20.0 (10.3) | 19.4 (8.5) | 0.740 | 18.1 (7.1) | 20.5 (9.4) | 0.144 | |
PET (−) | |||||||
Pure milk consumption | Tea consumption | ||||||
YES | NO | p b | Green tea | None | p b | ||
N | 87 | 54 | 69 | 65 | |||
Aβ42 | 10.8 (3.8) | 10.5 (3.9) | 0.571 | 10.6 (3.5) | 10.9 (4.2) | 0.663 | |
Aβ40 | 199.0 (57.8) | 194.0 (71.2) | 0.654 | 199.3 (60.4) | 196.5 (67.3) | 0.798 | |
Aβ42/40 | 0.056 (0.016) | 0.055 (0.012) | 0.776 | 0.055 (0.014) | 0.056 (0.015) | 0.625 | |
t-Tau | 2.5 (1.2) | 2.6 (1.3) | 0.523 | 2.6 (1.3) | 2.6 (1.3) | 0.940 | |
p-Tau-181 | 1.8 (1.0) | 1.7 (0.9) | 0.498 | 1.8 (0.9) | 1.7 (1.0) | 0.850 | |
NfL | 15.4 (9.6) | 13.2 (4.2) | 0.064 | 15.2 (9.2) | 14.4 (6.7) | 0.572 |
Groups | Biomarkers (pg/mL) a | ||||||||
---|---|---|---|---|---|---|---|---|---|
PET (+) | |||||||||
Coffee consumption | Daily water consumption | ||||||||
YES | NO | p b | >1500 mL | 1000–1500 mL | 500–1000 mL | <500 mL | p c | ||
N | 31 | 110 | 19 | 38 | 54 | 11 | |||
Aβ42 | 9.7 (3.8) | 9.3 (3.6) | 0.533 | 9.1 (3.6) | 9.5 (3.7) | 9.6 (3.8) | 9.0 (3.6) | 0.950 | |
Aβ40 | 201.8 (64.3) | 198.4 (67.4) | 0.798 | 176.4 (64.5) | 208.7 (61.5) | 203.4 (69.3) | 190.8 (65.8) | 0.334 | |
Aβ42/40 | 0.050 (0.017) | 0.048 (0.015) | 0.411 | 0.055 (0.015) | 0.047 (0.017) | 0.048 (0.014) | 0.050 (0.014) | 0.262 | |
t-Tau | 2.5 (1.2) | 2.5 (0.9) | 0.972 | 2.6 (1.1) | 2.4 (0.7) | 2.6 (1.0) | 2.8 (0.9) | 0.700 | |
p-Tau-181 | 2.5 (1.9) | 3.0 (1.7) | 0.198 | 2.4 (2.1) | 2.5 (1.3) | 3.2 (1.9) | 3.2 (1.8) | 0.180 | |
NfL | 20.4 (11.1) | 19.5 (9.0) | 0.628 | 15.6 (7.2) | 19.3 (10.3) | 21.7 (10.4) | 20.1 (6.1) | 0.134 | |
PET (−) | |||||||||
Coffee consumption | Daily water consumption | ||||||||
YES | NO | p b | >1500 mL | 1000–1500 mL | 500–1000 mL | <500 mL | p c | ||
N | 31 | 110 | 33 | 52 | 48 | 6 | |||
Aβ42 | 9.9 (3.8) | 10.9 (3.8) | 0.209 | 9.9 (4.4) | 10.4 (3.8) | 11.5 (3.7) | 11.9 (2.5) | 0.246 | |
Aβ40 | 196.5 (72.7) | 197.3 (60.3) | 0.953 | 179.4 (75.7) | 200.2 (55.2) | 207.8 (66.1) | 202.5 (45.8) | 0.277 | |
Aβ42/40 | 0.053 (0.015) | 0.056 (0.014) | 0.280 | 0.057 (0.013) | 0.053 (0.015) | 0.056 (0.015) | 0.059 (0.009) | 0.543 | |
t-Tau | 2.6 (1.2) | 2.5 (1.3) | 0.891 | 2.8 (1.6) | 2.5 (1.2) | 2.4 (1.0) | 2.8 (1.4) | 0.525 | |
p-Tau-181 | 1.6 (0.9) | 1.8 (1.0) | 0.368 | 1.7 (1.0) | 1.8 (1.0) | 1.7 (0.9) | 1.6 (0.6) | 0.930 | |
NfL | 15.4 (11.3) | 14.3 (6.9) | 0.527 | 16.0 (10.4) | 14.5 (7.3) | 14.2 (7.3) | 14.5 (2.6) | 0.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Cui, L.; Huang, L.; Guo, Y.; Huang, G.; Guo, Q. The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population. Nutrients 2023, 15, 2309. https://doi.org/10.3390/nu15102309
Jiang X, Cui L, Huang L, Guo Y, Huang G, Guo Q. The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population. Nutrients. 2023; 15(10):2309. https://doi.org/10.3390/nu15102309
Chicago/Turabian StyleJiang, Xinting, Liang Cui, Lin Huang, Yihan Guo, Gaozhong Huang, and Qihao Guo. 2023. "The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population" Nutrients 15, no. 10: 2309. https://doi.org/10.3390/nu15102309
APA StyleJiang, X., Cui, L., Huang, L., Guo, Y., Huang, G., & Guo, Q. (2023). The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population. Nutrients, 15(10), 2309. https://doi.org/10.3390/nu15102309