Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Zn Treatment
2.2. Cell Viability
2.3. Alkaline Phosphatase (ALP) Activity Assay
2.4. Leptin Quntification
2.5. Transmission Electron Microscopy
2.6. Quantitative Real-Time qPCR Analysis and RT-PCR Analysis
2.7. Western Blotting Analysis
2.8. Fluorescent Microscopy
2.9. Statistical Analysis
3. Results
3.1. Low Zn Decreased Cell Viability, ALP Activity, and Bone-Related Protein Expression in MC3T3-E1 Cells
3.2. Low Zn Increased Leptin Secretion and Leptin mRNA and Protein Expression in MC3T3-E1 Cells
3.3. Leptin Receptor (OB-Rb) mRNA and Protein Expression by Low Zn in MC3T3-E1 Cells
3.4. JAK/p-STAT Protein Expression by Low Zn in MC3T3-E1 Cells
3.5. Low Zn Increased Apoptosis Signals in MC3T3-E1 Cells
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tobeiha, M.; Moghadasian, M.H.; Amin, N.; Jafarnejad, S. RANKL/RANK/OPG Pathway: A mechanism involved in exercise-induced bone remodeling. BioMed Res. Int. 2020, 2020, 6910312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, S.E. The impact of trace minerals on bone metabolism. Biol. Trace Elem. Res. 2019, 188, 26–34. [Google Scholar]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int. 2015, 2015, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.R.; Rubin, C.T.; Rubin, J. Mechanical regulation of signaling pathways in bone. Gene 2012, 503, 179–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell Biochem. 2010, 338, 241–254. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.; Kanjila, D.; Teitelbaum, M.; Lin, S.S.; Cottrell, J.A. Zinc as a therapeutic agent in bone regeneration. Materials 2020, 13, 2211. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Gao, Y.H. Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. Gen. Pharmacol. Vasc. Syst. 1998, 30, 423–427. [Google Scholar] [CrossRef]
- Hie, M.; Tsukamoto, I. Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur. J. Pharmacol. 2011, 668, 140–146. [Google Scholar]
- Hadley, K.B.; Newman, S.M.; Hunt, J.R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 2010, 21, 297–303. [Google Scholar] [CrossRef]
- Cho, Y.E.; Lomeda, R.A.; Ryu, S.H.; Sohn, H.Y.; Shin, H.I.; Beattie, J.H.; Kwun, I.S. Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr. Res. Pract. 2007, 1, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Shin, M.Y.; Son, K.H.; Kim, E.C.; Kwun, I.S.; Shin, H.I. Yam (Dioscorea batatas) root and bark extracts stimulate osteoblast mineralization by increasing Ca and P accumulation and alkaline phosphatase activity. Prev. Nutr. Food Sci. 2014, 19, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Kwun, I.S.; Cho, Y.E.; Lomeda, R.A.R.; Shin, H.I.; Choi, J.Y.; Kang, Y.H.; Beattie, J.H. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010, 6, 732–741. [Google Scholar] [CrossRef]
- Geiser, J.; Venken, K.J.; De, L.R.C.; Andrews, G.K. A mouse model of acrodermatitis enteropathica: Loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 2012, 8, e1002766. [Google Scholar] [CrossRef] [Green Version]
- Rocha, É.D.; de Brito, N.J.; Dantas, M.M.; Silva Ade, A.; Almeida, M.d.; Brandão-Neto, J. Effect of zinc supplementation on GH, IGF1, IGFBP3, OCN, and ALP in non-zinc-deficient children. J. Am. Coll. Nutr. 2015, 34, 290–299. [Google Scholar] [CrossRef]
- Auwerx, J.; Staels, B. Leptin. Lancet 1998, 351, 737–742. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Ahima, R.S.; Flier, J.S. Leptin. Annu. Rev. Physiol. 2000, 62, 413–437. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.; Clark, F.T.; Deeds, J.; et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995, 83, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.G.; Hoggard, N.; Williams, L.M.; Lawrence, C.B.; Hannah, L.T.; Trayhurn, P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996, 387, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Mutabaruka, M.S.; Aoulad, A.M.; Delalandre, A.; Lavigne, M.; Lajeunesse, D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res. Ther. 2010, 12, R20. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, J.; Farr, O.M.; Mantzoros, C.S. The role of leptin in regulating bone metabolism. Metabolism 2015, 64, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessler, F.; Baldock, P.A. Hypothalamic regulation of bone. J. Mol. Endocrinol. 2010, 45, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Reseland, J.E.; Syversen, U.; Bakke, I.; Qvigstad, G.; Eide, L.G.; Hjertner, O.; Gordeladze, J.O.; Drevon, C.A. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J. Bone Miner. Res. 2011, 16, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Satomura, K.; Nishisho, S.; Kitaoka, E.; Yamanouchi, K.; Tobiume, S.; Nagayama, M. Potential role of leptin in endochondral ossification. J. Histochem. Cytochem. 2002, 50, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of leptin on the skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.J.; Jeong, J.B.; Cho, Y.E.; Kwun, I.S. Zinc modulation of osterix in MC3T3-E1 cells. J. Nutr. Health 2020, 53, 347. [Google Scholar] [CrossRef]
- Sharif, R.; Thomas, P.; Zalewski, P.; Fenech, M. The role of zinc in genomic stability. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2012, 733, 111–121. [Google Scholar] [CrossRef]
- Ghilardi, N.; Skoda, R.C. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol. Endocrinol. 1997, 11, 393–399. [Google Scholar] [CrossRef]
- Rucci, N. Molecular biology of bone remodelling. Clin. Cases Miner. Bone Metab. 2008, 5, 49–56. [Google Scholar]
- Hadjidakis, D.J.; Androulakis, I.I. Bone remodeling. Ann. N. Y. Acad. Sci. 2006, 1092, 385–396. [Google Scholar] [CrossRef]
- Harada, S.I.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature 2003, 423, 349–355. [Google Scholar] [CrossRef]
- Speakman, J.R.; Stubbs, R.J.; Mercer, J.G. Does body mass play a role in the regulation of food intake? Proc. Nutr. Soc. 2002, 61, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Baltaci, A.K.; Mogulkoc, R. Leptin and zinc relation: In regulation of food intake and immunity. Indian J. Endocrinol. Metab. 2012, 16, S611–S616. [Google Scholar] [CrossRef]
- Grunfeld, C.; Zhao, C.; Fuller, J.; Pollack, A.; Moser, A.; Friedman, J.; Feingold, K.R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Investig. 1996, 97, 2152–2157. [Google Scholar] [CrossRef] [Green Version]
- Mantzoros, C.S.; Prasad, A.S.; Beck, F.W.; Grabowski, S.; Kaplan, J.; Adair, C.; Brewer, G.J. Zinc may regulate serum leptin concentrations in humans. J. Am. Coll. Nutr. 1998, 17, 270–275. [Google Scholar] [CrossRef]
- Mangian, H.F.; Lee, R.G.; Paul, G.L.; Emmert, J.L.; Shay, N.F. Zinc deficiency suppresses plasma leptin concentrations in rats. J. Nutr. Biochem. 1998, 9, 47–51. [Google Scholar] [CrossRef]
- Salas, S.; Jiguet-Jiglaire, C.; Campion, L.; Bartoli, C.; Frassineti, F.; Deville, J.-L.; De Paula, A.M.; Forest, F.; Jézéquel, P.; Gentet, J.C.; et al. Correlation between ERK1 and STAT3 expression and chemoresistance in patients with conventional osteosarcoma. BMC Cancer 2014, 14, 606. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Aksoy, I.; Gonnot, F.; Osteil, P.; Aubry, M.; Hamela, C.; Rognard, C.; Hochard, A.; Voisin, S.; Fontaine, E.; et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat. Commun. 2015, 6, 7095. [Google Scholar] [CrossRef] [Green Version]
- Vaisse, C.; Halaas, J.L.; Horvath, C.M.; Darnell, J.E.; Stoffel, M.; Friedman, J.M. Leptin activation of Stat3 in the hypothalamus of wild–type and ob/ob mice but not db/db mice. Nat. Genet. 1996, 14, 95–97. [Google Scholar] [CrossRef]
- Lee, Y.J.; Park, J.H.; Ju, S.K.; You, K.H.; Ko, J.S.; Kim, H.M. Leptin receptor isoform expression in rat osteoblasts and their functional analysis. FEBS Lett. 2002, 528, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, I.; Fujino, T.; Douchi, T. The leptin receptor in human osteoblasts and the direct effect of leptin on bone metabolism. Gynecol. Endocrinol. 2004, 19, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Armour, K.J.; Armour, K.E.; Van’t Hof, R.J.; Reid, D.M.; Wei, X.Q.; Liew, F.Y.; Ralston, S.H. Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2001, 44, 2790–2796. [Google Scholar] [CrossRef]
- Guo, B.; Yang, M.; Liang, D.; Yang, L.; Cao, J.; Zhang, L. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol. Cell. Biochem. 2012, 361, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Rozovski, U.; Harris, D.M.; Li, P.; Liu, Z.; Wu, J.Y.; Grgurevic, S.; Faderl, S.; Ferrajoli, A.; Wierda, W.G.; Martinez, M.; et al. At high levels, constitutively activated STAT3 induces apoptosis of chronic lymphocytic leukemia cells. J. Immunol. 2016, 196, 4400–4409. [Google Scholar] [CrossRef] [Green Version]
- Faderl, S.; Harris, D.; Van, Q.; Kantarjian, H.M.; Talpaz, M.; Estrov, Z. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia. Blood 2003, 102, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Yin, X.M.; Wang, K.; Wei, M.C.; Jockel, J.; Milliman, C.; Erdjument, B.H.; Tempst, P.; Korsmeyer, S.J. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 1999, 274, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Satoh, M.S.; Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992, 356, 356–358. [Google Scholar] [CrossRef]
- Schreiber, V.; Hunting, D.; Trucco, C.; Gowans, B.; Grunwald, D.; De Murcia, G.; De Murcia, J.M. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc. Natl. Acad. Sci. USA 1995, 92, 4753–4757. [Google Scholar] [CrossRef]
Transcript | Forward Primer | Reverse Primer |
---|---|---|
Leptin | GAG ACC CCT GTG TCG GTT C | CTG CGT GTG TGA AAT GTC ATT G |
OB-Rb | GGG TAA TAC TTA AAC AGT GAC C | CTA TCT GAA AAT AAA AAC TTC ATG |
Caspase-3 | TGG TGA TGA AGG GGT CAT TTA TG | TTC GGC TTT CCA GTC AGA CTC |
Bax | CTA CAG GGT TTC ATC CAG | CCA GTT CAT CTC CAA TTC G |
GAPDH | TCC ACT CAC GGC AAA TTC AAC | TAG ACT CCA CGA CAT ACT CAG C |
Antibody | Dilution Factor | Corporation | Cat. No. | |
---|---|---|---|---|
Primary antibody | ALP | 1:1000 | Santa Cruz | sc-271431 |
Pro COL-I | 1:1000 | Santa Cruz | sc-166572 | |
Leptin | 1:1000 | Santa Cruz | sc-471278 | |
OB-R | 1:1000 | Santa Cruz | sc-8391 | |
JAK2 | 1:1000 | Cell signaling | #3230 | |
p-JAK2 | 1:1000 | Cell signaling | #3774 | |
STAT3 | 1:1000 | Cell signaling | #9139 | |
p-STAT3 | 1:1000 | Cell signaling | #52075 | |
c-Caspase-3 | 1:1000 | Santa Cruz | sc-7272 | |
Bax | 1:1000 | Santa Cruz | Sc-7480 | |
c-PARP1 | 1:1000 | Santa Cruz | sc-8007 | |
GAPDH | 1:1000 | Cell signaling | #2118 | |
Secondary antibody | Goat anti-mouse-HRP | 1:5000 | Santa Cruz | sc-516102 |
Goat anti-rabbit-HRP | 1:5000 | Santa Cruz | sc-2357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.K.; Ha, J.-H.; Kim, D.-K.; Kwon, J.; Cho, Y.-E.; Kwun, I.-S. Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3. Nutrients 2023, 15, 77. https://doi.org/10.3390/nu15010077
Lee JK, Ha J-H, Kim D-K, Kwon J, Cho Y-E, Kwun I-S. Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3. Nutrients. 2023; 15(1):77. https://doi.org/10.3390/nu15010077
Chicago/Turabian StyleLee, Jennifer K., Jung-Heun Ha, Do-Kyun Kim, JaeHee Kwon, Young-Eun Cho, and In-Sook Kwun. 2023. "Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3" Nutrients 15, no. 1: 77. https://doi.org/10.3390/nu15010077