The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Heat Stress Test (HST)
2.4. Endurance Training
2.5. Measurements
2.5.1. Maximal Oxygen Uptake ()
2.5.2. HST measurements
Thermoregulatory Variables
Blood Variables
Gastric Emptying Rate
2.5.3. Measurements during Training (Days 2 and 11)
2.6. Statistical Analyses
3. Results
3.1. and the Pedaling Workload
3.2. Thermoregulatory and Subjective during Training
3.3. Thermoregulatory and Subjective during the HST
3.4. Gastrointestinal Damage
3.5. Gastric Emptying Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Wijck, K.; Lenaerts, K.; Grootjans, J.; Wijnands, K.A.P.; Poeze, M.; van Loon, L.J.C.; Dejong, C.H.; Buurman, W.A. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: Strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G155–G168. [Google Scholar] [CrossRef] [Green Version]
- van Wijck, K.; Pennings, B.; van Bijnen, A.A.; Senden, J.M.G.; Buurman, W.A.; Dejong, C.H.; van Loon, L.J.; Lenaerts, K. Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R356–R361. [Google Scholar] [CrossRef] [Green Version]
- Van Houten, J.M.; Wessells, R.J.; Lujan, H.L.; DiCarlo, S.E. My gut feeling says rest: Increased intestinal permeability contributes to chronic diseases in high-intensity exercisers. Med. Hypotheses 2015, 85, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Snipe, R.M.J.; Kitic, C.M.; Gibson, P.R. Systematic review: Exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol. Ther. 2017, 46, 246–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantler, S.; Griffiths, A.; Matu, J.; Davison, G.; Jones, B.; Deighton, K. The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 113–124. [Google Scholar] [CrossRef] [PubMed]
- van Wijck, K.; Lenaerts, K.; van Loon, L.J.C.; Peters, W.H.M.; Buurman, W.A.; Dejong, C.H. Exercise-Induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE 2011, 6, e22366. [Google Scholar] [CrossRef] [Green Version]
- van Wijck, K.; Lenaerts, K.; Van Bijnen, A.A.; Boonen, B.; Van Loon, L.J.C.; Dejong, C.H.; Buurman, W.A. Aggravation of exercise-induced intestinal injury by ibuprofen in athletes. Med. Sci. Sports Exerc. 2012, 44, 2257–2262. [Google Scholar] [CrossRef]
- Neufer, P.D.; Young, A.J.; Sawka, M.N. Gastric emptying during exercise: Effects of heat stress and hypohydration. Eur J. Appl Physiol. Occup. Physiol. 1989, 58, 433–439. [Google Scholar] [CrossRef]
- Horner, K.M.; Schubert, M.M.; Desbrow, B.; Byrne, N.M.; King, N.A. Acute exercise and gastric emptying: A meta-analysis and implications for appetite control. Sports Med. 2015, 45, 659–678. [Google Scholar] [CrossRef]
- Ryan, A.J.; Lambert, G.P.; Shi, X.; Chang, R.T.; Summers, R.W.; Gisolfi, C.V. Effect of hypohydration on gastric emptying and intestinal absorption during exercise. J. Appl. Physiol. 1998, 84, 1581–1588. [Google Scholar] [CrossRef]
- Bi, L.; Triadafilopoulos, G. Exercise and gastrointestinal function and disease: An evidence-based review of risks and benefits. Clin. Gastroenterol. Hepatol. 2013, 1, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Kashima, H.; Harada, N.; Miyamoto, K.; Fujimoto, M.; Fujita, C.; Endo, M.Y.; Kobayashi, T.; Miura, A.; Fukuba, Y. Timing of postexercise carbohydrate-protein supplementation: Roles of gastrointestinal blood flow and mucosal cell damage on gastric emptying in humans. J. Appl Physiol 2017, 123, 606–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snipe, R.M.J.; Khoo, A.; Kitic, C.M.; Gibson, P.R.; Costa, R.J.S. The Impact of Mild Heat Stress During Prolonged Running On Gastrointestinal Integrity, Gastrointestinal Symptoms, Systemic Endotoxin and Cytokine Profiles. Int J. Sports Med. 2018, 39, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Snipe, R.M.J.; Khoo, A.; Kitic, C.M.; Gibson, P.R.; Costa, R.J.S. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur J. Appl. Physiol. 2018, 118, 389–400. [Google Scholar] [CrossRef]
- Osborne, J.O.; Stewart, I.B.; Beagley, K.W.; Minett, G.M. The effect of cycling in the heat on gastrointestinal-induced damage and neuromuscular fatigue. Eur J. Appl. Physiol. 2019, 119, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Kenney, W.L.; Ho, C.W. Age alters regional distribution of blood flow during moderate-intensity exercise. J. Appl. Physiol. 1995, 79, 1112–1119. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.; van Loon, L.J.; Lichtenbelt, W.D. Thermoregulation during exercise in the heat: Strategies for maintaining health and performance. Sports Med. 2007, 37, 669–682. [Google Scholar] [CrossRef]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J. Med. Sci. Sports. 2015, 1, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Travers, G.J.S.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Tyler, C.J.; Reeve, T.; Hodges, G.J.; Cheung, S.S. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Med. 2016, 46, 1699–1724. [Google Scholar] [CrossRef]
- Saunders, P.U.; Garvican-Lewis, L.A.; Chapman, R.F.; Périard, J.D. Special Environments: Altitude and Heat. Int J. Sport Nutr. Exerc. Metab. 2019, 29, 210–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldron, M.; Fowler, R.; Heffernan, S.; Tallent, J.; Kilduff, L.; Jeffries, O. Effects of Heat Acclimation and Acclimatisation on Maximal Aerobic Capacity Compared to Exercise Alone in Both Thermoneutral and Hot Environments: A Meta-Analysis and Meta-Regression. Sports Med. 2021, 51, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Sumi, D.; Nagatsuka, H.; Matsuo, K.; Okazaki, K.; Goto, K. Heat acclimation does not attenuate hepcidin elevation after a single session of endurance exercise under hot condition. Eur. J. Appl. Physiol. 2022, 122, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Travers, G.; Nichols, D.; Riding, N.; González-Alonso, J.; Périard, J.D. Heat Acclimation with Controlled Heart Rate: Influence of Hydration Status. Med. Sci. Sports Exerc. 2020, 52, 1815–1824. [Google Scholar] [CrossRef]
- Gerrett, N.; Alkemade, P.; Daanen, H. Heat Reacclimation Using Exercise or Hot Water Immersion. Med. Sci. Sports Exerc. 2021, 53, 1517–1528. [Google Scholar] [CrossRef]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.C.; Jones, P.W. Long-term reproducibility of Borg scale estimates of breathlessness during exercise. Clin. Sci. 1991, 80, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huizenga, C.; Arens, E.; Wang, D. Thermal sensation and comfort in transient non-uniform thermal environments. Eur. J. Appl. Physiol. 2004, 92, 728–733. [Google Scholar] [CrossRef]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Ghoos, Y.F.; Maes, B.D.; Geypens, B.J.; Mys, G.; Hiele, M.I.; Rutgeerts, P.J.; Vantrappen, G. Measurement of gastric emptying rate of solids by means of a carbon- labeled octanoic acid breath test. Gastroenterology 1993, 104, 1640–1647. [Google Scholar] [CrossRef]
- Braden, B.; Adams, S.; Duan, L.P.; Orth, K.H.; Maul, F.D.; Lembcke, B.; Hör, G.; Caspary, W.F. The [13C] acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology 1995, 108, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Kashima, H.; Sugimura, K.; Taniyawa, K.; Kondo, R.; Endo, M.Y.; Tanimoto, S.; Kobayashi, T.; Miura, A.; Fukuba, Y. Timing of post-resistance exercise nutrient ingestion: Effects on gastric emptying and glucose and amino acid responses in humans. Br. J. Nutr. 2018, 120, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1917, 17, 863–871. [Google Scholar]
- Costa, R.J.S.; Camões-Costa, V.; Snipe, R.M.J.; Dixon, D.; Russo, I.; Huschtscha, Z. Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J. Appl. Physiol. 2019, 126, 1281–1291. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Lenaerts, K.; Smeets, J.S.J.; Kolkman, J.J.; VAN Loon, L.J.C.; Verdijk, L.B. Sucrose but Not Nitrate Ingestion Reduces Strenuous Cycling-induced Intestinal Injury. Med. Sci. Sports Exerc. 2019, 51, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, G.W.; Gillum, T.L.; Lee, B.J.; Romano, P.A.; Schall, Z.J.; Hamilton, A.M.; Kuennen, M.R. Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines. Appl. Physiol. Nutr. Meta. 2020, 45, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Ogden, H.B.; Fallowfield, J.L.; Child, R.B.; Davison, G.; Fleming, S.C.; Delves, S.K.; Millyard, A.; Westwood, C.S.; Layden, J.D. Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test. Eur. J. Appl. Physiol. 2020, 120, 2325–2337. [Google Scholar] [CrossRef]
- Edwards, K.H.; Ahuja, K.D.; Watson, G.; Dowling, C.; Musgrave, H.; Reyes, J.; Cherry, J.; Kitic, C.M. The influence of exercise intensity and exercise mode on gastrointestinal damage. Appl. Physiol. Nutr. Metab. 2021, 46, 1105–1110. [Google Scholar] [CrossRef]
- Nielsen, B.; Hales, J.R.; Strange, S.; Christensen, N.J.; Warberg, J.; Saltin, B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J. Physiol. 1993, 460, 467–485. [Google Scholar] [CrossRef]
- Nielsen, B.; Strange, S.; Christensen, N.J.; Warberg, J.; Saltin, B. Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch. 1997, 434, 49–56. [Google Scholar] [CrossRef]
- Lorenzo, S.; Halliwill, J.R.; Sawka, M.N.; Minson, C.T. Heat acclimation improves exercise performance. J. Appl. Physiol. 2010, 109, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Neal, R.A.; Massey, H.C.; Tipton, M.J.; Young, J.S.; Corbett, J. Effect of Permissive Dehydration on Induction and Decay of Heat Acclimation, and Temperate Exercise Performance. Front. Physiol. 2016, 7, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.P.; Ketelaar, M.A.; Schulze-Delrieu, K.; Abu-Yousef, M.M.; Brown, C.K. Strenous exercise decrease motility and cross-sectional area of human gastric antrum. Dig. Dis. Sci. 1994, 39, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Neufer, P.D.; Costill, D.L.; Fink, W.J.; Kirwan, J.P.; Fielding, R.A.; Flynn, M.G. Effects of exercise and carbohydrate composition on gastric emptying. Med. Sci. Sports Exerc. 1986, 18, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Leiper, J.B.; Broad, N.P.; Maughan, R.J. Effect of intermittent high-intensity exercise on gastric emptying in man. Med. Sci. Sports Exerc. 2001, 33, 1270–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammack, J.; Read, N.W.; Cann, P.A.; Greenwood, B.; Holgate, A.M. Effect of prolonged exercise on the passage of a solid meal through the stomach and small intestine. Gut 1982, 23, 957–961. [Google Scholar] [CrossRef]
Day2 | Day11 | |||
---|---|---|---|---|
HOT Group | COOL Group | HOT Group | COOL Group | |
Peak Trec (°C) | 38.30 ± 0.32 † | 37.96 ± 0.12 | 38.13 ± 0.24 *,† | 37.89 ± 0.22 |
HR (bpm) | 155 ± 16 † | 131 ± 7 | 148 ± 16 *,† | 126 ± 10 |
Sweat loss (kg) | −0.74 ± 0.4 † | −0.44 ± 0.2 | −0.83 ± 0.3 † | −0.30 ± 0.4 |
TS | 7 ± 2 † | 3 ± 1 | 6 ± 1 *,† | 2 ± 1 |
RPE | 6 ± 2 † | 4 ± 2 | 5 ± 1 *,† | 3 ± 1 |
Before Training Period | After Training Period | |||
---|---|---|---|---|
HOT Group | COOL Group | HOT Group | COOL Group | |
Rest Trec (°C) | 36.94 ± 0.27 | 36.93 ± 0.32 | 36.78 ± 0.22 | 36.87 ± 0.18 |
Peak Trec (°C) | 38.86 ± 0.45 | 38.65 ± 0.37 | 38.44 ± 0.42 * | 38.50 ± 0.34 |
ΔTrec (°C) | 1.92 ± 0.61 | 1.71 ± 0.42 | 1.66 ± 0.42 * | 1.63 ± 0.45 |
Tsk (°C) | 35.03 ± 0.50 | 34.62 ± 0.50 | 35.01 ± 0.52 | 34.84 ± 1.00 |
HR (bpm) | 178 ± 1 | 178 ± 5 | 170 ± 12 * | 169 ± 6 * |
Sweat loss (kg) | −0.87 ± 0.30 | −0.88 ± 0.15 | −0.98 ± 0.37 | −0.82 ± 0.18 |
TS | 8 ± 2 | 7 ± 1 | 7 ± 2 * | 7 ± 1 |
RPE | 8 ± 2 | 7 ± 1 | 6 ± 2 * | 7 ± 2 |
ΔPV (%) | - | - | 7.7 ± 7.2 * | 4.6 ± 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumi, D.; Nagatsuka, H.; Matsuo, K.; Okazaki, K.; Goto, K. The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients 2023, 15, 216. https://doi.org/10.3390/nu15010216
Sumi D, Nagatsuka H, Matsuo K, Okazaki K, Goto K. The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients. 2023; 15(1):216. https://doi.org/10.3390/nu15010216
Chicago/Turabian StyleSumi, Daichi, Haruna Nagatsuka, Kaori Matsuo, Kazunobu Okazaki, and Kazushige Goto. 2023. "The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment" Nutrients 15, no. 1: 216. https://doi.org/10.3390/nu15010216
APA StyleSumi, D., Nagatsuka, H., Matsuo, K., Okazaki, K., & Goto, K. (2023). The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients, 15(1), 216. https://doi.org/10.3390/nu15010216