You are currently viewing a new version of our website. To view the old version click .
Nutrients
  • Review
  • Open Access

29 December 2022

Components of the Fiber Diet in the Prevention and Treatment of IBD—An Update

,
and
1
Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
2
Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
3
Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Dietary Fiber and Inflammatory Bowel Disease

Abstract

Inflammatory bowel disease (IBD) is a group of diseases with a chronic course, characterized by periods of exacerbation and remission. One of the elements that could potentially predispose to IBD is, among others, a low-fiber diet. Dietary fiber has many functions in the human body. One of the most important is its influence on the composition of the intestinal microflora. Intestinal dysbiosis, as well as chronic inflammation that occurs, are hallmarks of IBD. Individual components of dietary fiber, such as β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose, can significantly affect preventive effects in IBD by modulating the composition of the intestinal microbiota or sealing the intestinal barrier, among other things. The main objective of the review is to provide information on the effects of individual fiber components of the diet on the risk of IBD, including, among other things, altering the composition of the intestinal microbiota.

1. Introduction

Inflammatory bowel diseases (IBDs) are a group of diseases with a chronic course, characterized by periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood; however, many researchers point to a predisposition to the onset of the disease with the existence of certain genetic, environmental, immunological, and microbiological factors [1,2,3]. IBD can occur in both men and women of all ages. Western lifestyles are causing an increase in the incidence of IBD year after year. Researchers predict that their prevalence will increase significantly in the next few years [4].
A potentially predisposing component to IBD is a Western-type diet, which is, among other things, low in dietary fiber.
Dietary fiber is a broad concept, so different classifications are used to describe it. A division by origin, physicochemical properties, and chemical composition is used [5]. Depending on the solubility of dietary fiber in water, it can be classified as soluble (SDF) and insoluble (IDF). These groups differ in their functionality and mode of action after ingestion [6]. Soluble fiber includes fructooligosaccharides, galactooligosaccharides, pectins, β-glucans and inulin [7]. The second group includes cellulose, hemicellulose, and lignins, among others [8]. Dietary fiber is found in various proportions and in many foods, such as vegetables, fruits, pulses, nuts, seeds, and cereals. However, not all types of fiber are found in the same food groups; pectin is more abundant in fruits and some types of vegetables, and β-glucans are found in cereals [9]. Starchy foods that contain resistant starch include pulses, cereals, and potatoes [10]. Insoluble fiber functions as a means of increasing fecal weight and reducing intestinal transit time, which consequently contributes to relief from constipation [11]. Both soluble and insoluble fibers are indigestible. However, soluble in the presence of water can be quickly and easily fermented by intestinal bacteria into products that act favorably on the intestinal microbiome, mainly short-chain fatty acids (SCFAs) [12]. Therefore, ultimately, it may have some prebiotic functions, but it may also positively impact health by reducing the risk of gastrointestinal diseases, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), or constipation [13].
β-glucans are a natural group of polysaccharides consisting of D-glucose monomer units linked by β-glycosidic bonds (1,3, 1,4, 1,6). β-glucans can be found in yeast, fungi, some bacteria, seaweed, and cereals, mainly in oats and barley [14]. The diversity and biological activity of these compounds depend on their molecular structure, the conformation of each polymer, and their solubility [15]. β-glucans from oats have actions typical of dietary fiber through which they improve metabolic health parameters, that is, cholesterol and glucose levels [16,17]. β-glucans from yeast and fungi act as immunomodulators. These compounds work by activating the immune system by initiating the inflammatory process, increasing the response to infections, and through antitumor effects [18]. β-glucans appear to be an interesting option to support drug therapy in various diseases. In this review, we describe current knowledge on the effects of dietary fiber components with special emphasis on disruting the composition of the intestinal microbiota.

2. Influence of Fiber on the Intestinal Microbiota

The intestinal microbiota is all the microorganisms that inhabit the intestines. They include bacteria, viruses, fungi, archaeons, and selected unicellular eukaryotes. On the contrary, the definition of the gut microbiome is the entire collection of genes from microorganisms that reside in the intestines [19]. The human gut microbiome population includes more than 1000 microbial species. The most numerous species are Bacteroidetes and Firmicutes and slightly less numerous are Proteobacteria, Actinobacteria, Verrucomicrobia, Fusobacteria, Cyanobacteria, and others [20]. Most bacteria that live in the intestines are anaerobic microorganisms. The presence of aerobic bacteria has been observed primarily in the cecum.
There are several factors that modulate the composition of the intestinal microbiota. One factor is the use of antibiotics. These are prescription drugs that are often given to children from the first days of life. Due to the dynamic development of the intestinal microbiota in children, it is particularly sensitive to antibiotics. The use of these drugs can affect a decrease in Bifidobacteriaceae and Lactobacillales spp., while it can predispose to an increase in Enterobacteriaceae [21]. In their work, Ianiro et al. point out that the effect of antibiotics on the gut microbiota depends on the type of drug, its dose, and the route of administration, as well as factors that are directly related to humans. However, antibiotic administration can also have a eubiotic effect on the host, that is, it can stimulate the growth of beneficial bacteria [22]. However, the use of this group of drugs is most often associated with the appearance of intestinal dysbiosis, i.e., abnormalities in the composition/function of intestinal microorganisms, which can lead to the development of certain diseases or the appearance of exacerbations [23]. The adverse effects of inadequate antibiotic therapy can also include drug resistance, and thus the development of pathogenic microorganisms and a reduction in the commensal microbiota and its diversity [24].
Another factor that modulates gut microbiota is host genetics [25,26]. The heritability of the microbiome ranges from 2% to 8%. However, the authors of some studies show that environmental factors outweigh the genetic factors responsible for the composition of the host microbiota [27]. In their study, Matsumoto et al. showed, excluding genetic factors, that individual dietary components affect certain bacterial species [28]. Polyphenols, proteins, fats, and dietary fiber are essential components of the metabolic pathways of the intestinal microbiota [29].
There are also scientific reports that highlight the effects of specific types of diet on the intestinal microbiota, so, for example, a vegan diet has a beneficial effect in increasing the number of beneficial microorganisms, while following a low FODMAP diet changes the ratio of Firmicutes to Bacteroidetes and decreases the number of Bifidobacterium [30,31]. Other researchers have also indicated the beneficial effects of a plant-based diet on the gut microbiota [32,33]. Reddel et al. point out that when using low-FODMAP, gluten-free, or ketogenic diets in various pathological conditions, supplementation with selected nutrients should be considered, as these diets can significantly exacerbate already existing changes in the gut microbiota [34]. Other authors also point to the effect of age on the composition of the intestinal microbiota [35,36].
Dietary fiber has a variety of functions in the human body. One of the most important aspects is its effect on the intestinal microbiome and consequently on the prevention of the occurrence of certain diseases. The utilization of dietary fiber by the intestinal microbiota depends on several factors (Figure 1) [37].
Figure 1. Factors affecting fiber utilization by the intestinal microbiota [37].
Dietary fiber, which is only available to the intestinal microbiota, is called MAC (microbiota-accessible carbohydrates). It is mainly a source of energy for the intestinal microbiota. MAC is lower when following a Western-type diet, that is, one with low amounts of dietary fiber. Low MAC can reduce the abundance of some commensal bacterial taxa, which is detrimental to the host [38]. In their work, Usuda et al. indicate that decreased MAC can lead to increased intestinal permeability and the induction of colitis [39]. The reason for this may be a decrease in the production of the receptor agonists of glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2), which are required for intestinal regeneration after the appearance of mucosal inflammation [40]. Increasing the MAC may favorably influence the increase in the abundance of Bacteroides thetaiotaomicron, Bifidobacterium spp. [39]. The failure to include dietary fiber can lead to an increase in Clostridium spp., mucinophilic bacteria, and thus increase the risk of inflammation [41]. In turn, a higher content of this dietary component increases the synthesis of SCFA (short chain fatty acids). Myhrstad et al. indicate that this is due to an increase in bacteria such as Ruminococcus, Lachnospira, Akkermannsia, Bifidobacterium, Lactobacillus, and Roseburia [42]. Furthermore, Angelis et al. indicate that it can also reduce the secretion of pro-inflammatory substances, such as trimethylamine N-oxide (low molecular weight uremic toxin), indoxyl sulfate (metabolic product of tryptophan breakdown), and p-cresyl sulfate (product of metabolism of tyrosine and phenylalanine by intestinal bacteria) [29].
Adequate mucus production is essential to maintain complete intestinal health. Dietary fiber has the ability to stimulate the intestinal epithelium to secrete mucus through a mechanical action on the epithelium. Acetate, butyrate, and propionate, which belong to the SCFA group, show the ability to regulate pH in the intestinal lumen and are essential for the supply of energy to enterocytes [43]. In addition, they affect the production of mucus in the intestines. Propionate can be synthesized through three different pathways by intestinal bacteria that reside in the human gut: the acrylate, propanediol, and succinate pathways, with succinate being the most common. Butyrate is synthesized from two molecules, the latter of which is CoA-transferase in the presence of acetate, which is essential for efficient synthesis of the compound. On the other hand, acetate production occurs from acetyl-coenzyme A through acetyl-CoA to produce the substance [44,45,46]. Increasing the amount of dietary fiber in the daily diet predisposes to increased amounts of Lactobacillus spp. and Bifidobacterium. This is mainly due to an increase in the intake of fructans and galactooligosaccharides [47]. In a study by Fischer et al. in animal models, it was shown that indirectly through adequate fiber, the intestinal microflora containing A. finegoldii, among others, showed that increased intestinal expression of IL-22. IL-22 is responsible, among other things, for maintaining adequate intestinal barrier function due to the separation of microorganisms from the intestinal epithelium [48]. A high-fiber diet also reduces pro-inflammatory cytokines [49].
The soluble fraction of dietary fiber is used by intestinal microbes to obtain energy through its breakdown into oligosaccharides/monosaccharides [50]. The soluble fraction of dietary fiber includes β-glucans, which are increasingly being studied for their effects on the intestinal microbiome [51]. These polymers composed of D-glucose linked by a β-glycosidic bond show the ability to decrease Enterobacteriaceae, while increasing Bifidobacteria and Lactobacilli [50]. In their study, Wang et al. indicate that β-glucan has the ability to modulate intestinal microflora; however, this depends on its molecular weight. The authors note that for microflora modulation, the use would be to introduce a compound of high molecular weight, since supplementation with 3 g of high-molecular-weight β-glucan increased Bacteroidetes, while it decreased Firmicutes, although diets with 3 g of supplementation per day and 5 g of low molecular weight β-glucan did not change the composition of the intestinal microflora [52]. Carlson et al. analyzed the fermentation of various prebiotics, including β-glucan. They showed that β-glucan and oatmeal containing 28% β-glucan had a significant increase in propionate concentration compared to other compounds they studied (Xyloligosaccharide (XOS) and Inulin, a mixture of dried chicory root containing inulin, pectin, hemi/cellulose) [53]. In another study, the researchers compared the fecal microbiota and metabolomics after a 2-month intervention using 3 g of barley β-glucans. They showed a significant increase in SCFA such as acetic, 2-methylpropanoic, propionic, and butyric acids, suggesting modulation of the composition and metabolic pathways of the intestinal microbiota [54].
Intestinal dysbiosis is one of the features attributed to IBD. It is characterized by a decrease in microbial diversity, an increase in unfavorable pathogenic bacteria, and a decrease in beneficial anaerobic bacteria [55]. Patients with IBD patients show a decrease in the number of bacteria, mainly Firmicutes, while an increase in the population of Proteobacteria. There is a lack of information on whether intestinal dysbiosis in IBD is the cause or one of the consequences of the disease [56]. Intestinal dysbiosis and the associated loss of bacterial diversity can lead to the loss of key functions of the normal intestinal barrier. The result can be a dysregulation of the immune system. These dysfunctions can potentially cause inflammation and a stimulated immune response. As a result, they can contribute to IBD [57]. The fermentation of dietary fiber promotes the formation of short-chain fatty acids (SCFA). These acids have anti-inflammatory effects that protect the intestinal epithelium. One of the bacteria that produce SCFA is F. prauznitzii. Interestingly, a study shows that a lower percentage of these bacteria in the ileum of CD patients is associated with endoscopic recurrence after a period of 6 months. Sokol et al. propose the use of F prausnitzii as a potential probiotic for the treatment of CD [58]. Chiba reports that the amount of F. prausnitzii in CD patients is significantly lower than in healthy individuals. He suggests that a diet rich in fiber does not harm but supports and benefits CD patients [59]. The breakdown of fiber in SCFA by intestinal microbes contributes to a favorable regulation of the intestinal microbiome [60]. Interestingly, it seems that CD patients have a much more pronounced intestinal dysbiosis compared to UC. Lower microbial diversity and poorer stability are observed. Even in the context of the microbiome, CD and UC are distinct disease entities at the microbiome level [61]. UC patients have been found to have a reduced number of butyrate-producing bacteria R. intestinalis and F. prausnitzii. This appears to be strongly correlated with reduced SCFA in patients with UC [62]. Patients with CD showed an increase in Ruminococcus gnavus and a decrease in F. prausnitzii, Bifidobacterium adolescentis, Dialister invisus, and other bacteria that produce butyrates in stool samples. These findings encourage researchers to further investigate the use of SCFA as a complementary treatment for patients with IBD [63]. Currently, the analysis of the gut microbiota has led researchers to the possibility of using microflora transplants as a therapeutic modality for patients with IBD [64].

4. Limitations

A limitation of the review may be that there are too few human and animal studies on the effects of selected components of dietary fiber on specific bacterial strains in intestinal microflora and on the effects of individual components in exacerbation and in remission in patients with IBD. Additionally, studies very often lack homogeneous groups of patients in terms of gender, age, or drugs used. However, in the above review, we selected the most reliable research and articles.

5. Summary

Due to one of the etiological factors of IBD, which is the alteration of the intestinal microbiota, care must be taken to ensure an adequate diet, both during the exacerbation and remission of the disease. One of the main dietary components that have a beneficial effect on the intestinal microbiota is dietary fiber. As a result of the range of action of this component, it is divided into insoluble and soluble. Increasingly, researchers are focusing on studying specific components of dietary fiber—β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose—due to their individual effects in the context of IBD. Dietary fiber has been suggested to be important in the prevention of IBD by reducing pro-inflammatory cytokines, modulating the intestinal microbiota, and reducing gastrointestinal side effects. The introduction of dietary fiber in patients with IBD in remission or exacerbation should be individualized according to the individual needs and digestive capacity of the body. However, research on the properties of various components of dietary fiber and their therapeutic potential is still ongoing.

Author Contributions

Conceptualization, K.F., S.J.-C. and R.F.; writing—original draft preparation, K.F., S.J.-C. and R.F.; writing—review and editing, K.F., S.J.-C. and R.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research did not receive external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sturm, A.; Maaser, C.; Mendall, M.; Karagiannis, D.; Karatzas, P.; Ipenburg, N.; Sebastian, S.; Rizzello, F.; Limdi, J.; Katsanos, K.; et al. European Crohn’s and Colitis Organisation Topical Review on IBD in the Elderly. J. Crohn’s Colitis 2017, 11, 263–273. [Google Scholar] [CrossRef] [PubMed]
  2. de Souza, H.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis, and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–749. [Google Scholar] [CrossRef] [PubMed]
  3. Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J. Crohn’s Colitis 2017, 1, 3–25. [Google Scholar] [CrossRef] [PubMed]
  4. Windsor, J.; Kaplan, G. Evolving Epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar] [CrossRef]
  5. Holscher, H. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
  6. O’Grady, J.; O’Connor, E. Review article: Dietary fibre in the era of mi-crobiome science. Aliment. Pharmacol. Ther. 2019, 49, 506–515. [Google Scholar] [CrossRef]
  7. Dai, F.; Chau, C. Classification and regulatory perspectives of dietary fiber. J. Food Drug Anal. 2017, 25, 37–42. [Google Scholar] [CrossRef]
  8. Nirmala, P.; Joye, I. Dietary fibre from whole grains and their benefits on metabo-lic health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
  9. Grajek, M.; Grabowska; Grot, M.; Białek-Dratwa, A.; Olszewski, Ł. The role of dietary fiber in the nutrition of the elderly. J. Life MEdical Sci. 2020, 4, 61–69. [Google Scholar]
  10. Cione, E.; Fazio, A.; Curcio, R.; Tucci, P.; LAuria, G.; Cappello, A.R.; Dolce, V. Resistant starches and non-communicable disease: A Focus on mediterranean diet. Foods 2021, 10, 2062. [Google Scholar] [CrossRef]
  11. Nie, Y.; Luo, F. Dietary fiber: An opportunity for a global control of hyperlipidemia. Oxid. Med. Cell. Longev. 2021, 2021, 5542342. [Google Scholar] [CrossRef] [PubMed]
  12. Soliman, G. Dietary fiber, atherosclerosis and cardiovascular disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef]
  13. Currò, D.; Ianiro, G.; Pecere, S.; Bibbò, S.; Cammarota, G. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders. Br. J. Pharmacol. 2017, 174, 1426–1449. [Google Scholar] [CrossRef]
  14. Du, B.; Meenu, M.; Liu, H.; Xu, B. A concise review on the molecular structure and func-tion relationship of β-glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [PubMed]
  15. Majtan, J.; Jesenak, M. β-glucans: Multi-functional modulator of wound healing. Molecules 2018, 23, 806. [Google Scholar] [CrossRef] [PubMed]
  16. Zurbau, A.; Noronha, J.; Khan, T.; Sievenpiper, J.; Wolever, T. The effect of oat β-glucan on postprandial blood glucose and insulin responses: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2021, 75, 1540–1554. [Google Scholar] [CrossRef]
  17. Ho, H.; Sievenpiper, J.; Zurbau, A.; Mejia, A.B.; Jovanovski, E.; Au-Yeug, F.; Jenkins, A.L.; Vuksan, V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic revie and meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016, 116, 1369–1382. [Google Scholar] [CrossRef]
  18. Murphy, E.J.; Rezoagli, E.; Major, I.; Rowan, N.; Laffey, J. β-glucan metabolic and immunomodulatory properties and potential for clnical application. J. Fungi 2020, 6, 356. [Google Scholar] [CrossRef]
  19. D’Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 2015, 451, 97–102. [Google Scholar] [CrossRef]
  20. Walsh, C.; Guinane, C.; O’Toole, P.; Cotter, P. Beneficial modulation of the gut microbiota. FEBS Lett. 2014, 588, 4120–4130. [Google Scholar] [CrossRef]
  21. Gibson, M.; Crofts, T.; Dantas, G. Antibiotics and the developing infant gut microbiota and resistome. Curr. Opin. Microbiol. 2015, 27, 51–56. [Google Scholar] [CrossRef] [PubMed]
  22. Ianiro, G.; Tilg, H.; Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 2016, 65, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
  23. Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
  24. Kim, S.; Covington, A.; Pamer, E. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef] [PubMed]
  25. Kurilshikov, A.; Wijmenga, C.; Fu, J.; Zhernakova, A. Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends Immunol. 2017, 38, 633–647. [Google Scholar] [CrossRef] [PubMed]
  26. Chen, C.; Huang, X.; Fang, S.; Yang, H.; He, M.; Zhao, Y.; Huang, L. Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Front. Microbiol. 2018, 9, 2626. [Google Scholar] [CrossRef]
  27. Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
  28. Matsumoto, N.; Park, J.; Tomizawa, R.; Kawashima, H.; Hosomi, K.; Mizuguchi, K.; Honda, C.; Ozaki, R.; Iwatani, Y.; Watanabe, M.; et al. Relationship between Nutrient Intake and Human Gut Microbiota in Monozygotic Twins. Medicina 2021, 57, 275. [Google Scholar] [CrossRef]
  29. De Angelis, M.; Garruti, G.; Minervini, F.; Bonfrate, L.; Portincasa, P.; Gobbetti, M. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Curr. Med. Chem. 2019, 26, 3567–3583. [Google Scholar] [CrossRef]
  30. Sakkas, H.; Bozidis, P.; Touzios, C.; Kolios, D.; Athanasiou, G.; Athanasopoulou, E.; Gerou, I.; Gartzonika, C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina 2020, 56, 88. [Google Scholar] [CrossRef]
  31. Hills, R.J.; Pontefract, B.; Mishcon, H.; Black, C.; Sutton, S.; Theberge, C. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
  32. Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
  33. Dahl, W.; Rivero Mendoza, D.; Lambert, J. Diet, nutrients and the microbiome. Prog. Mol. Biol. Transl. Sci. 2020, 171, 237–263. [Google Scholar] [CrossRef] [PubMed]
  34. Reddel, S.; Putignani, L.; Del Chierico, F. The Impact of Low-FODMAPs, Gluten-Free, and Ketogenic Diets on Gut Microbiota Modulation in Pathological Conditions. Nutrients 2019, 11, 373. [Google Scholar] [CrossRef]
  35. Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef]
  36. Bosco, N.; Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021, 22, 289–303. [Google Scholar] [CrossRef]
  37. Abreu, A.A.Y.; Milke-García, M.; Argüello-Arévalo, G.; la Barca, A.C.-D.; Carmona-Sánchez, R.; Consuelo-Sánchez, A.; Coss-Adame, E.; García-Cedillo, M.; Hernández-Rosiles, V.; Icaza-Chávez, M.; et al. Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de Gastroenterología. Rev. Gastroenterol. Mex. 2021, 86, 287–304. [Google Scholar] [CrossRef]
  38. Sonnenburg, E.; Smits, S.; Tikhonov, M.; Higginbottom, S.; Wingreen, N.; Sonnenburg, J. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212–215. [Google Scholar] [CrossRef] [PubMed]
  39. Usuda, H.; Okamoto, T.; Wada, K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int. J. Mol. Sci. 2021, 22, 7613. [Google Scholar] [CrossRef]
  40. Hytting-Andreasen, R.; Balk-Møller, E.; Hartmann, B.; Pedersen, J.; Windeløv, J.; Holst, J.; Kissow, H. Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice. PLoS ONE 2018, 13, e0198046. [Google Scholar] [CrossRef]
  41. Tanes, C.; Bittinger, K.; Gao, Y.; Friedman, E.S.; Nessel, L.; Paladhi, U.R.; Chau, L.; Panfen, E.; Fischbach, M.A.; Braun, J.; et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 2021, 29, 394–407. [Google Scholar] [CrossRef] [PubMed]
  42. Myhrstad, M.; Tunsjø, H.; Charnock, C.; Telle-Hansen, V. Dietary Fiber, Gut Microbiota, and Metabolic Regulation-Current Status in Human Randomized Trials. Nutrients 2020, 12, 859. [Google Scholar] [CrossRef]
  43. Makki, K.; Deehan, E.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
  44. Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; Van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–445. [Google Scholar] [CrossRef] [PubMed]
  45. Louis, P.; Duncan, S.; McCrae, S.; Millar, J.; Jackson, M.S.; Flint, H.J. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 2004, 186, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
  46. Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
  47. So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef]
  48. Fischer, F.; Romero, R.; Hellhund, A.; Linne, U.; Bertrams, W.; Pinkenburg, O. Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes 2020, 12, 1829962. [Google Scholar] [CrossRef]
  49. Dürholz, K.; Hofmann, J.; Iljazovic, A.; Häger, J.; Lucas, S.; Sarter, K.; Strowig, T.; Bang, H.; Rech, J.; Schett, G.; et al. Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients 2020, 12, 3207. [Google Scholar] [CrossRef]
  50. Guan, Z.; Yu, E.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
  51. Ciecierska, A.; Drywień, M.; Hamulka, J.; Sadkowski, T. Nutraceutical functions of beta-glucans in human nutrition. Rocz. Panstw. Zakl. Hig. 2019, 70, 315–324. [Google Scholar] [CrossRef] [PubMed]
  52. Wang, Y.; Ames, N.; Tun, H.; Tosh, S.; Jones, P.; Khafipour, E. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front. Microbiol. 2016, 7, 129. [Google Scholar] [CrossRef] [PubMed]
  53. Carlson, J.; Erickson, J.; Hess, J.; Gould, T.; Slavin, J. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients 2017, 9, 1361. [Google Scholar] [CrossRef] [PubMed]
  54. De Angelis, M.; Montemurno, E.; Vannini, L.; Cosola, C.; Cavallo, N.; Gozzi, G.; Maranzano, V.; Di Cagno, R.; Gobbeti, M.; Gesualdo, L. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome. Appl. Environ. Microbiol. 2015, 81, 7945–7956. [Google Scholar] [CrossRef] [PubMed]
  55. Wark, G.; Samocha-Bonet, D.; Ghaly, S.; Danta, M. The role of diet in the pathogenesis and management of inflammatory bowe disease: A review. Nutrients 2021, 13, 135. [Google Scholar] [CrossRef] [PubMed]
  56. Lee, M.; Chang, E. Inflammatory bowel diseases and the microbiome: Searching the crime scene for clues. Gastroenterology 2021, 160, 524–537. [Google Scholar] [CrossRef]
  57. Alipour, M.; Zaidi, D.; Valcheva, R.; Jovel, J.; Martínez, I.; Sergi, C.; Walter, J.; Mason, A.; Wong, G.K.-S.; Dieleman, L.A.; et al. Mucosal barier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. J. Crohn’s Colitis 2016, 10, 462–471. [Google Scholar] [CrossRef]
  58. Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humaran, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
  59. Chiba, M.; Tsuji, T.; Nakane, K.; Komatsu, M. High amount of dietary fiber not harmful but favorable for crohn disease. Perm. J. 2015, 19, 58–61. [Google Scholar] [CrossRef]
  60. Akbar, A.; Shreenath, A. High Fiber Diet; StatPearls [Internet] StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  61. Pascal, V.; Pozuelo, M.; Borruel, N.; Casellas, F.; Campos, D.; Santiago, A.; Martinez, X.; Varela, E.; Sarrabayrouse, G.; Machiels, K.; et al. A microbial signature for Crohn’s disease. Gut 2017, 66, 813–822. [Google Scholar] [CrossRef]
  62. Kumari, R.; Ahuja, V.; Paul, J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J. Gastroenterol. 2013, 19, 3404–3414. [Google Scholar] [CrossRef] [PubMed]
  63. Joossens, M.; Huys, G.; Cnockaert, M.; De Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 2011, 60, 631–637. [Google Scholar] [CrossRef] [PubMed]
  64. Tan, P.; Li, X.; Shen, J.; Feng, Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: An update Front. Pharmacol. 2020, 11, 574533. [Google Scholar] [CrossRef] [PubMed]
  65. Owczarek, D.; Rodacki, T.; Domagała-Rodacka, R.; Cibor, D.; Mach, T. Diet and nutritional factors in inflammatory bowel diseases. World J. Gastroenterol. 2016, 22, 895–905. [Google Scholar] [CrossRef] [PubMed]
  66. Sasson, A.; Ananthakrishnan, A.; Raman, M. Diet in treatment of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 425–435. [Google Scholar] [CrossRef]
  67. Fritsch, J.; Garces, L.; Quintero, M.A.; Pignac-Kobinger, J.; Santander, A.M.; Fernández, I.; Ban, Y.J.; Kwon, D.; Phillips, M.C.; Knight, K.; et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 2021, 16, 1189–1199. [Google Scholar] [CrossRef]
  68. Yusuf, K.; Saha, S.; Umar, S. Health benefits of dietary fiber for the management of inflammatory bowel disease. Biomedicines 2022, 10, 1242. [Google Scholar] [CrossRef]
  69. Swan, O.; Kilpatrick, M.; Breslin, M.; Oddy, W. Dietary fiber and its associations with depression and inflammation. Nutr. Rev. 2020, 78, 394–411. [Google Scholar] [CrossRef]
  70. Stidham, R.; Higgins, P. Colorectal cancer in inflammatory bowel disease. Clin. Colon Rectal Surg. 2018, 31, 168–178. [Google Scholar] [CrossRef]
  71. Yang, J.; Yu, J. The association of diet, gut microbiota and colorectal canceer: What we eat may imply what we get. Protein Cell 2018, 9, 474–487. [Google Scholar] [CrossRef]
  72. Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; et al. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production and suppresses colon carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed]
  73. Hullings, A.; Sinha, R.; Liao, L. Whole grain and dietary fiber intake and risk colorectal cancer in the NIH-AARP diet and healthy study cohort. Am. J. Clin. Nutr. 2020, 112, 603–612. [Google Scholar] [CrossRef] [PubMed]
  74. Kunzmann, A.; Coleman, H.G.; Huang, W. Dietary fiber intake and risk of colorectal cancer and incydent and recurrent adenoma in the prostatę, lung, colorectal and ovarian cancer screening trial. Am. J. Clin. Nutr. 2015, 102, 881–890. [Google Scholar] [CrossRef]
  75. Song, M.; Wu, K.; Meyerhardt, J. Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncol. 2018, 4, 71–79. [Google Scholar] [CrossRef] [PubMed]
  76. Liu, B.; Lin, Q.; Yang, T.; Zeng, L.; Shi, L.; Chen, Y.; Luo, F. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015, 6, 3454–3463. [Google Scholar] [CrossRef]
  77. Bai, J.; Zhao, J.; Al-Ansi, W.; Wang, J.; Xue, L.; Liu, J.; Wang, Y.; Fan, M.; Qian, H.; Li, Y.; et al. Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct. 2021, 12, 8976–8993. [Google Scholar] [CrossRef]
  78. Chen, M.; Tian, S.; Li, S.; Pang, X.; Sun, J.; Zhu, X.; Lv, F.; Lu, Z.; Li, X. β-glucan extracted from highland barley alleviates destran sulfate dosium-induced ulcerative colitis in C57BL/6J. Mice. Molecules 2021, 26, 5812. [Google Scholar] [CrossRef]
  79. Vu, V.; Muthuramalingan, K.; Singh, V.; Hyun, C.; Kim, Y.M.; Unno, T.; Cho, M. Effects of β-glucan probiotics and symbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J. mice. Eur. J. Nutr. 2022, 61, 793–807. [Google Scholar] [CrossRef]
  80. Muthuramalingam, K.; Singh, V.; Choi, C.; Choi, S.; Kim, Y.M.; Unno, T.; Cho, M. Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat-diet-induced metabolic distress and alters beneficially the ut microbiota in mice model. Eur. J. Nutr. 2020, 59, 2617–2629. [Google Scholar] [CrossRef]
  81. Mio, K.; Otake, N.; Nakashima, S.; Matsuoka, T.; Aoe, S. Ingestion of High β-glucan barley flour enhances the intestinal immune system of diet-induced obese mice by prebiotic effects. Nutrients 2021, 13, 907. [Google Scholar] [CrossRef]
  82. Faghfoori, Z.; Shakerhosseini, R.; Navai, L.; Somi, M.; Nikniaz, Z.; Abadi, A. Effects of an oral supplementation of germinated barley foodstuff on serum CRP level and clinical signs in patients with ulcerative colitis. Health Promot. Perspect 2014, 4, 116–121. [Google Scholar] [CrossRef] [PubMed][Green Version]
  83. Zhou, Z.; Cao, J.; Liu, X.; Li, M. Evidence for the butyrate metabolism as key pathway improving ulcerative colitis in both pediatric and adult patients. Bioengineered 2021, 12, 8309–8324. [Google Scholar] [CrossRef]
  84. Williams, B.; Mikkelsen, D.; Flanagan, B.; Gidley, M. Dietary fibre: Moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
  85. McRorie, J.; McKeown, N. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [PubMed]
  86. Spagnuolo, R.; Cosco, C.; Mancina, R.; Ruggiero, R.; Garieri, P.; Cosco, V.; Doldo, P. Beta-glucan, inositol and digestive enzymes improve quality of life of patients with inflammatory bowel disease and irritable bowel syndrome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 102–107. [Google Scholar]
  87. Gudej, D.; Filip, R.; Harasym, J.; Wilczak, J.; Dziendzikowska, K.; Oczkowski, M.; Jałosińska, M.; Juszczak, M.; Lange, E.; Gromadzka-Ostrowska, J. Clinical Outcomes after Oat Beta-Glucans Dietary Treatment in Gastritis Patients. Nutrients 2021, 13, 2791. [Google Scholar] [CrossRef]
  88. Ishisono, K.; Mano, T.; Yabe, T.; Kitaguchi, K. Dietary fiber pectins ameliorates experimental colitis in a neutral sugar side chain-dependent manner. Front. Immunol. 2019, 10, 2979. [Google Scholar] [CrossRef]
  89. Llewellyn, S.R.; Britton, G.J.; Contijoch, E.J.; Vennaro, O.H.; Mortha, A.; Colombel, J.-F.; Grinspan, A.; Clemente, J.C.; Merad, M.; Faith, J.J. Interactions between diet and the intestinal microbiota alter intestinal premeability and colitis severity in mice. Gastroenterology 2018, 154, 1037–1046. [Google Scholar] [CrossRef]
  90. Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Korzenik, J.R.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 2013, 145, 970–977. [Google Scholar] [CrossRef]
  91. Ananthakrishnan, A.; Khalili, H.; Song, M. High School Diet and Risk of Crohn’s Disease and Ulcerative Colitis. Inflamm. Bowel Dis. 2015, 21, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
  92. Wu, D.; Chen, S.; Ye, X.; Ahmadi, S.; Hu, W.; Yu, C.; Zhu, K.; Cheng, H.; Linhardt, R.J.; He, Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll. 2021, 127, 107209. [Google Scholar] [CrossRef]
  93. Wójcik-Pastuszka, D.; Potempa, A.; Musiał, W. Bipolymeric pectin milibeads doped with functionall polymers as matrices for the controlled and targeted release of mesalazine. Molecules 2020, 25, 5711. [Google Scholar] [CrossRef] [PubMed]
  94. Svagan, A.J.; Kusic, A.; De Gobba, C.; Larsen, F.H.; Sassene, P.; Zhou, Q.; van de Weert, M.; Mullertz, A.; Jørgensen, B.; Ulvskov, P. Rhamnogalacturonan-I based microcapsules for targeted drug release. PLoS ONE 2016, 11, E0168050. [Google Scholar] [CrossRef] [PubMed]
  95. Zhang, Y.; Chen, L.; Hu, M.; Kim, J.J.; Lin, R.; Xu, J.; Fan, L.; Qi, Y.; Wang, L.; Liu, W.; et al. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet. Aging 2020, 12, 9173–9187. [Google Scholar] [CrossRef]
  96. Ren, M.; Li, M.; Lu, L.; Liu, Y.; Ann, F.; Huang, K.; Fu, Z. Arenga pinnata resistant starch modulate gut microbiota and ameliorate intestinal inflammation in aged mice. Nutrients 2022, 14, 3931. [Google Scholar] [CrossRef]
  97. Keenan, M.; Zhou, J.; Hegsted, M.; Pelkman, C.; Durham, H.A.; Coulon, D.B.; Martin, R.J. Role of resistant starch in improving gut health, adiposity and inssulin resistance. Adv. Nutr. 2015, 6, 198–205. [Google Scholar] [CrossRef]
  98. Trachsel, J.; Briggs, C.; Gabler, N.; Allen, H.K.; Loving, C.L. Dietary resistant potato starch alters intestinal microbial communities and their metabolites and markers of immune regulation and barrier function in swine. Front. Immunol. 2019, 19, 1381. [Google Scholar] [CrossRef]
  99. Wan, J.; Zhang, J.; Chen, D.; Yu, B.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Influences of dietary starch structure on intestinal morphology, barrier functions and epithelium apoptosis in weaned pigs. Food Funct. 2020, 11, 4446–4455. [Google Scholar] [CrossRef]
  100. Metzler-Zebeli, B.; Canibe, N.; Motagne, L. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs. Animal 2019, 13, 64–73. [Google Scholar] [CrossRef]
  101. Shen, D.; Bai, H.; Li, Z.; Yu, Y.; Zhang, H.; Chen, L. Positive effects of resistant starch supplementation on bowel function in healthy adults: A systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2017, 68, 149–157. [Google Scholar] [CrossRef]
  102. Montroy, J.; Berjawi, R.; Lalu, M.; Podolsky, E.; Peixoto, C.; Sahin, L.; Stintzi, A.; Mack, D.; Fergusson, D.A. The effects of resistant starches on inflammatory bowel disease in preclinical and clinical settings: A systematic review and meta-analysis. BMC Gastroenterol. 2020, 20, 372. [Google Scholar] [CrossRef] [PubMed]
  103. Rose, D.; Venema, K.; Keshavarzian, A.; Hamaker, B. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. Br. J. Nutr. 2010, 103, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
  104. Brotherton, C.; Taylor, A. Dietary fiber information for individuals with Crohn disease: Reports of gastrointestinal effects. Gastroenterol. Nurs. 2013, 36, 320–327. [Google Scholar] [CrossRef]
  105. Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
  106. Liu, Z.; Liu, F.; Wang, W.; Sun, C.; Gao, D.; Ma, J.; Hussain, M.A.; Xu, C.; Jiang, Z.; Hou, J. Study of the alleviation effects of a combination of Lactobacillus rhamnosus and inulin on mice with colitis. Food Funct. 2020, 11, 3823–3837. [Google Scholar] [CrossRef]
  107. Qiao, H.; Zhao, T.; Yin, J.; Zhang, Y.; Ran, H.; Chen, S.; Wu, Z.; Zhang, R.; Wang, X.; Gan, L.; et al. Structural characteristics of inulin and microcrystalline cellulose and their effect on ameliorating colitis and altering colonic microbiota in destran sodium sulfate-induced colitis mice. ACS Omega 2022, 7, 10921–10932. [Google Scholar] [CrossRef]
  108. Song, J.; Li, Q.; Everaert, N.; Liu, R.; Zheng, M.; Zhao, G.; Wen, J. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J. Anim. Sci. 2020, 98, 396. [Google Scholar] [CrossRef]
  109. Beisner, J.; Filipe Rosa, L.; Kaden-Volynets, V.; Stolzer, I.; Günther, C.; Bischoff, S. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front. Immunol. 2021, 12, 678360. [Google Scholar] [CrossRef]
  110. Akram, W.; Garud, N.; Joshi, R. Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov. Ther. 2019, 13, 1–8. [Google Scholar] [CrossRef]
  111. Ali, M.S.; Hussein, R.M.; Gaber, Y.; Hamman, O.A.; Kandeil, M.A. Modulation of JNK-1/β-catein signaling by Lactobacillus casei, inulin and their combination in 1,2-dimethylhydrazine-induced colon cancer in mice. RSC Adv. 2019, 9, 29368–29383. [Google Scholar] [CrossRef]
  112. Del Fabbro, S.; Calder, P.; Cholds, C. Microbiota-independent immunological effects of non-digestible oligosaccharides in the context of inflammatory bowel diseases. Proc. Nutr. Soc. 2020, 79, 468–478. [Google Scholar] [CrossRef] [PubMed]
  113. Casellas, F.; Borruel, N.; Torrejón, A.; Varela, E.; Antolin, M.; Guarner, F.; Malagelada, J.R. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment. Pharmacol. Ther. 2007, 25, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
  114. Wagas, A.; Summer, R. Functional and therapeutic potential of inulin: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–13. [Google Scholar] [CrossRef]
  115. Sun, Q.; Arif, M.; Chi, Z.; Li, G.; Liu, C. Macrophages-targeting mannosylated nanoparticles basen on inulin for the treatment of inflammatory bowel disease (IBD). Int. J. Biol. Macromol. 2021, 169, 206–215. [Google Scholar] [CrossRef] [PubMed]
  116. Shahdadi Sardou, H.; Akhgari, A.; Mohammadpour, A.; Kamali, H.; Jafarian, A.; Garekani, H.; Sadeghi, F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int. J. Pharm. 2021, 597, 120347. [Google Scholar] [CrossRef]
  117. Singh, V.; Yeoh, B.S.; Walker, R.; Xiao, X.; Saha, P.; Golonka, R.M.; Cai, J.; Bretin, A.C.A.; Cheng, X.; Liu, Q.; et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 2019, 68, 1801–1812. [Google Scholar] [CrossRef]
  118. Cherbut, C.; Michel, C.; i Lecannu, G. The Prebiotic Characteristics of Fructooligosaccharides Are Necessary for Reduction of TNBS-Induced Colitis in Rats. J. Nutr. 2003, 133, 21–27. [Google Scholar] [CrossRef]
  119. Kim, H.; Jeong, Y.; Kang, S.; You, H.; Ji, G. Co-culture with Bifidobacterium catenulatum improves the growth, gut colonization and butyrate production of Faecalibacterium prausnitzii: In vitro and in vivo studies. Microorganisms 2020, 8, 788. [Google Scholar] [CrossRef]
  120. Koleva, P.; Ketabi, A.; Valcheva, R.; Ganzle, M.G.; Dieleman, L.A. Chemically definited diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats. PLoS ONE 2014, 9, e111717. [Google Scholar] [CrossRef]
  121. Anderson, J.L.; Hedin, C.R.; Benjamin, J.L.; Koutsoumpas, A.; Ng, S.C.; Hart, A.L.; Forbes, A.; Stagg, A.J.; Lindsay, J.O.; Whelan, K. Dietary intake of inulin-type fructans in active and inactive Crohn’s disease and healthy controls: A case-control study. J. Crohn’s Colitis 2015, 9, 1024–1031. [Google Scholar] [CrossRef]
  122. Lindsay, J.; Whelan, K.; Stagg, A.; Gobin, P.; Al-Hassi, H.; Rayment, N.; Kamm, M.; Knight, S.; Forbes, A. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 2006, 55, 348–355. [Google Scholar] [CrossRef] [PubMed]
  123. Benjamin, J.L.; Hedin, C.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.; Hart, A.L.; Kamm, M.A.; Sanderson, J.D.; Knight, S.C.; Forbes, A.; et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 2011, 60, 923–929. [Google Scholar] [CrossRef] [PubMed]
  124. Caviglia, G.; De Blasio, F.; Vernero, M.; Armandi, A.; Ross, C.; Saracco, G.M.; Bugianesi, E.; Astegiano, M.; Ribaldone, D.G. Efficacy of a Preparation Based on Calcium Butyrate, Bifidobacterium bifidum, Bifidobacterium lactis, and Fructooligosaccharides in the Prevention of Relapse in Ulcerative Colitis: A Prospective Observational Study. J. Clin. Med. 2021, 10, 4961. [Google Scholar] [CrossRef] [PubMed]
  125. Szczeklik, A.; Gajewski, P. Interna Szczeklika 2018/2019. Medycyna Prakt. 2018, 1, 1033–1045. [Google Scholar]
  126. Bamba, T.; Andoh, A.; Fujiyama, Y. A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J. Gatroenterol. Hepatol. 2002, 17, 818–824. [Google Scholar] [CrossRef]
  127. Mach, T.; Szczeklik, K.; Garlicka, M.; Owczarek, D. Owrzodzenia w obrębie jamy ustnej u chorego z aktywną chorobą Leśniowskiego-Crohna. Przegląd astroenterol. 2007, 2, 201–213. [Google Scholar]
  128. Araki, Y.; Andoh, A.; Koyana, S.; Fujiyama, Y.; Kanauchi, O.; Bamba, T. Effects of germinated barley foodstuff on microflora and short chain fatty acid production in dextran sulfate sodium-induced coltis in rats. Bioscence Biotechnol. Biochem. 2000, 64, 1794–1800. [Google Scholar] [CrossRef]
  129. Kanauchi, O.; Suga, T.; Tochihara, M.; Hibi, T.; Naganuma, M.; Homma, T.; Asakura, H.; Nakano, H.; Takahama, K.; Fujiyama, Y.; et al. Treatment of ulcerative coltis by feeding with germinated barley foodstuff: First report of a multcenter open control trial. J. Gastroenterol. 2002, 37, 67–72. [Google Scholar] [CrossRef]
  130. Payne, A.; Barker, H. Dietetyka I Żywienie Kliniczne. Edra Urban Partn. 2017, 1, 71–76. [Google Scholar]
  131. Serra, J.; Pohl, D.; Azpiroz, F.; Chiarioni, G.; Ducrotté, P.; Gourcerol, G.; Hungin, A.P.S.; Layer, P.; Mendive, J.; Pfeifer, J.; et al. Functional Constipation Guidelines Working Group. European society of neurogastroenterology and motility guidelines on functional constipation in adults. Neurogastroenterol. Motil. 2020, 32, e13762. [Google Scholar] [CrossRef]
  132. Van der Schoot, A.; Drysdale, C.; Whelan, K.; Dimidi, E. The effect of fiber supplementation on chronic constipation in adults: An updated systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2022, 116, 953–969. [Google Scholar] [CrossRef] [PubMed]
  133. Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
  134. Wagenaar, C.A.; van de Put, M.; Bisschops, M.; Walrabenstein, W.; de Jonge, C.S.; Herrema, H.; van Schaardenburg, D. The effect of dietary interventions on chronic inflammatory diseases in relation to the microbiome: A systematic review. Nutrients 2021, 13, 3208. [Google Scholar] [CrossRef]
  135. McRae, M.P. Effectiveness of fiber supplementation for constipation, weight loss and supporting gastrointestinal function: A narrative review of meta-analyses. J. Chiropr Med. 2020, 19, 58–64. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.