L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Design and Animals
2.3. Detection of Blood Biochemical Indexes and Intestinal Free AAs in Mice
2.4. Reverse Transcription-Quantitative PCR
2.5. Western Blotting
2.6. Statistical Analyses
3. Results
3.1. Effects of LTA on Serum Biochemical Indexes in Mice
3.2. Effects of LTA on Free AAs in Different Intestinal Tissues of Mice
3.3. Effect of LTA on AAT mRNA Expression in Mouse Duodenum
3.4. Effect of LTA on AAT mRNA Expression in Mouse Jejunum
3.5. Effect of LTA on AAT Protein Expression in Mouse Duodenum
3.6. Effect of LTA on AAT Protein Expression in Mouse Jejunum
3.7. Effects of LTA on mTOR, S6K1, and S6 Phosphorylation Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Li, Q.; Zheng, Y.; Shi, X.; Zhang, J.; Chuang, M.; Guan, B.; Peng, Y.; Yang, M.; Yue, X. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. Eur. Food Res. Technol. 2020, 246, 1119–1128. [Google Scholar] [CrossRef]
- Bifari, F.; Ruocco, C.; Decimo, I.; Fumagalli, G.; Valerio, A.; Nisoli, E. Amino acid supplements and metabolic health: A potential interplay between intestinal microbiota and systems control. Genes Nutr. 2017, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2019, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Gong, Z.; Lin, L.; Xu, W.; Zhang, T.; Zhang, S.; Li, Y.; Chen, J.; Xiao, W. Effects of L-theanine on glutamine metabolism in enterotoxigenic Escherichia coli (E44813)-stressed and non-stressed rats. J. Funct. Foods 2019, 64, 103670. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz. Gastroenterol. 2019, 14, 26. [Google Scholar] [CrossRef]
- Oliveira, E.D.; Burini, R.C.; Jeukendrup, A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med. 2014, 44, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, P.B. Spectrum of short bowel syndrome in adults: Intestinal insufficiency to intestinal failure. JPEN J. Parenter. Enteral. Nutr. 2014, 38, 8S–13S. [Google Scholar] [CrossRef] [Green Version]
- Camargo, S.M.; Vuille-dit-Bille, R.N.; Meier, C.F.; Verrey, F. ACE2 and gut amino acid transport. Clin. Sci. 2020, 134, 2823–2833. [Google Scholar] [CrossRef]
- Jochems, P.G.; Garssen, J.; Van Keulen, A.M.; Masereeuw, R.; Jeurink, P.V. Evaluating human intestinal cell lines for studying dietary protein absorption. Nutrients 2018, 10, 322. [Google Scholar] [CrossRef]
- Odriozola, L.; Corrales, F.J. Discovery of nutritional biomarkers: Future directions based on omics technologies. Int. J. Food Sci. Nutr. 2015, 66 (Suppl. 1), S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Grigore, A.; Cord, D.; Tanase, C.; Albulescu, R. Herbal medicine, a reliable support in COVID therapy. J. Immunoass. Immunochem. 2020, 41, 976–999. [Google Scholar] [CrossRef] [PubMed]
- Michiels, J.; Missotten, J.; Van Hoorick, A.; Ovyn, A.; Fremaut, D.; De Smet, S.; Dierick, N. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch. Anim. Nutr. 2010, 64, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, M.; Che, T.M.; Lee, J.J.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection. J. Anim. Sci. 2014, 92, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Juneja, L.R.; Chu, D.C.; Okubo, T.; Nagato, Y.; Yokogoshi, H. L-theanine—A unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci. Technol. 1999, 10, 199–204. [Google Scholar] [CrossRef]
- Lin, L.; Zeng, L.; Liu, A.; Peng, Y.; Yuan, D.; Zhang, S.; Li, Y.; Chen, J.; Xiao, W.; Gong, Z. L-theanine regulates glucose, lipid, and protein metabolism via insulin and AMP-activated protein kinase signaling pathways. Food Funct. 2020, 11, 1798–1809. [Google Scholar] [CrossRef]
- Gong, Z.; Lin, L.; Liu, Z.; Zhang, S.; Liu, A.; Chen, L.; Liu, Q.; Deng, Y.; Xiao, W. Immune-modulatory effects and mechanism of action of l-theanine on etec-induced immune-stressed mice via nucleotide-binding oligomerization domain-like receptor signaling pathway. J. Funct. Foods 2019, 54, 32–40. [Google Scholar] [CrossRef]
- Li, C.; Tong, H.; Yan, Q.; Tang, S.; Han, X.; Xiao, W.; Tan, Z. L-Theanine improves immunity by altering TH2/TH1 cytokine balance, brain neurotransmitters and expression of phospholipase C in rat hearts. Med. Sci. Monit. 2016, 22, 662. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, Y.; Arrazola, P.; Hino, O.; Kobayashi, T.; Yeung, R.S.; Pan, D. Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling. Nat. Cell. Biol. 2002, 4, 699–704. [Google Scholar] [CrossRef]
- Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, S.; Peterson, T.R.; Sabatini, D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell. 2010, 40, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabraccl, V.S.; Guan, K.L. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Campbell, L.E.; Miller, C.M. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 1998, 334, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beugnet, A.; Tee, A.R.; Taylor, P.M. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J. 2003, 372 Pt 2, 555. [Google Scholar] [CrossRef] [Green Version]
- Wyant, G.A.; Abu-Remaileh, M.; Wolfson, R.L.; Chen, W.W.; Freinkman, E.; Danai, L.V.; Mattew, G.; Heiden, V.; Sabatini, D.M. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 2017, 171, 642–654. [Google Scholar] [CrossRef]
- Goberdhan, D.C. Intracellular amino acid sensing and mTORC1-regulated growth: New ways to block an old target? Curr. Opin. Investig. Drugs. 2010, 11, 1360. [Google Scholar] [PubMed]
- Wang, D.; Cai, M.; Wang, T.; Liu, T.; Huang, J.; Wang, Y.; Granato, D. Ameliorative effects of L-theanine on dextran sulfate sodium induced colitis in C57BL/6J mice are associated with the inhibition of inflammatory responses and attenuation of intestinal barrier disruption. Food Res. Int. 2020, 137, 109409. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, N.; Zheng, J.; Wang, W.; Wu, J. Epigenetic regulation of hepatocellular carcinoma progression through the mtor signaling pathway. Can. J. Gastroenterol. Hepatol. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Kandasamy, P.; Zlobec, I.; Nydegger, D.T.; Pujol-Giménez, J.; Bhardwaj, R.; Shirasawa, S.; Tsunoda, S.; Hediger, M.A. Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1. Mol. Oncol. 2021, 15, 2782–2800. [Google Scholar] [CrossRef]
- Miho, O.; Chisato, W.; Noriko, S.; Hiroaki, H.; Kotaro, H.; Toshita, T.; Hayato, O.; Tsutomu, O.; Hiroshi, K. Effffect of L-theanine on glutamatergic function in patients with schizophrenia. Acta Neuropsychiatr. 2015, 27, 291–296. [Google Scholar]
- Sarris, J.; Byrne, G.J.; Cribb, L.; Oliver, G.; Murphy, J.; Macdonald, P. L-theanine in the adjunctive treatment of generalized anxiety disorder: A double-blind, randomised, placebo-controlled trial. J. Psychiatr. Res. 2019, 110, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, T.; Honda, H.; Oikawa, M.; Kakita, T.; Oyama, A.; Oishi, H.; Tochikubo, K.; Hashimoto, T.; Kurihara, S.; Shibakusa, T.; et al. Oral administration of the amino acids cystine and theanine attenuates the adverse events of S-1 adjuvant chemotherapy in gastrointestinal cancer patients. Int. J. Clin. Oncol. 2016, 21, 1085–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Ma, X. Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf. 2019, 18, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, M.; Li, Z.; Zhang, H.; He, X.; Song, Z. Protective Effects of L-Theanine on IPEC-J2 Cells Growth Inhibition Induced by Dextran Sulfate Sodium via p53 Signaling Pathway. Molecules 2021, 26, 7002. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Chen, K.; Zhao, X.; Geng, Z. Effect of L-theanine on growth performance, intestinal development and health, and peptide and amino acid transporters expression of broilers. J. Sci. Food Agric. 2020, 100, 1718–1725. [Google Scholar] [CrossRef]
- García-Villalobos, H.; Morales-Trejo, A.; Araiza-Piña, B.A.; Htoo, J.K.; Cervantes-Ramírez, M. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. Arch. Anim. Nutr. 2012, 66, 257–270. [Google Scholar] [CrossRef]
- Simon, O.; Bergner, H.; Münchmeyer, R.; Zebrowska, T. Studies on the range of tissue protein synthesis in pigs: The effect of thyroid hormones. Br. J. Nutr. 1982, 48, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.; Chang, X.; Fan, M.Z.; Reeds, P.J.; Burrin, D.G. Enteral nutrient intake level determines intestinal protein synthesis and accretion rates in neonatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G288–G294. [Google Scholar] [CrossRef]
- Takarada, T.; Nakamichi, N.; Nakazato, R.; Kakuda, T.; Kokubo, H.; Ikeno, S.; Nakamura, S.; Kuramoto, N.; Hinoi, E.; Yoneda, Y. Possible activation by the green tea amino acid theanine of mammalian target of rapamycin signaling in undifferentiated neural progenitor cells in vitro. Biochem. Biophys. Rep. 2016, 5, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Brennan, M.; Li, S.; Zhao, H.; Lange, K.W.; Brennan, C. How does the tea L-theanine buffer stress and anxiety. Food Sci. Hum. Well. 2022, 11, 467–475. [Google Scholar] [CrossRef]
- Dai, Z.; Li, X.; Xi, P.; Zhang, J.; Wu, G.; Zhu, W. L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 2013, 45, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.E.; Marano, M.A.; Campbell, R.G. Splanchnic bed utilization of glutamine and glutamic acid in humans. Am. J. Physiol. Endocrinol. Metab. 1993, 264, E848–E854. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, K.; Derveaux, E.; Graulus, G.J.; Mesotten, L.; Thomeer, M.; Noben, J.P.; Adriaensens, P. Glutamine addiction and therapeutic strategies in lung cancer. Int. J. Mol. Sci. 2019, 20, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokogoshi, H.; Kobayashi, M. Hypotensive effect of γ-glutamylmethylamide in spontaneously hypertensive rats. Life Sci. 1998, 62, 1065–1068. [Google Scholar] [CrossRef]
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Sadzuka, Y. Theanine and glutamate transporter inhibitors enhance the antitumor efficacy of chemotherapeutic agents. Biochim. Biophys. Acta 2003, 1653, 47–59. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C. Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef]
- Cui, Y.; Han, J.; Ren, J.; Chen, H.; Xu, B.; Song, N.; Li, H.; Liang, A.; Shen, G. Untargeted LC-MS-based metabonomics revealed that aristolochic acid I induces testicular toxicity by inhibiting amino acids metabolism, glucose metabolism, β-oxidation of fatty acids and the TCA cycle in male mice. Toxicol. Appl. Pharmacol. 2019, 373, 26–38. [Google Scholar] [CrossRef]
CK | LG | LLT | MLT | HLT | |
---|---|---|---|---|---|
TP/(g/L) | 56.69 ± 11.29 a | 71.37 ± 19.39 b | 54.34 ± 8.54 ab | 59.49 ± 17.21 ab | 76.98 ± 18.26 b |
TG/(mmol/L) | 1.39 ± 0.44 ab | 1. 86 ± 0.61 c | 1.06 ± 0.31 a | 1.34 ± 0.21 ab | 1.74 ± 0.69 bc |
AST/(U/L) | 101.24 ± 18.98 | 106.23 ± 11.84 | 110.2 ± 24.56 | 100.41 ± 35.56 | 110.21 ± 26.31 |
ALT/(U/L) | 34.17 ± 2.98 | 35.99 ± 5.74 | 35.28 ± 5.42 | 37.89 ± 6.01 | 36.25 ± 6.33 |
LDL-C/(mmol/L) | 1.62 ± 0.81 | 1.57 ± 0.63 | 1.51 ± 0.48 | 1.66 ± 0.71 | 1.59 ± 0.84 |
Alb/(g/L) | 38.59 ± 3.46 | 40.09 ± 8.33 | 35.39 ± 5.08 | 42.33 ± 8.21 | 41.84 ± 9.34 |
BUN/(mmol/L) | 7.62 ± 0.54 b | 6.79 ± 0.59 a | 7.12 ± 0.26 b | 7.02 ± 0.21 a | 7.47 ± 0.26 a |
Glucose/(mmol/L) | 4.39 ± 0.81 | 5.12 ± 1.82 | 4.55 ± 1.26 | 5.39 ± 0.95 | 4.96 ± 1.38 |
T-CHO/(mmol/L) | 4.33 ± 0.81 | 4.32 ± 0.58 | 4.06 ± 0.58 | 4.87 ± 0.39 | 4.22 ± 0.79 |
HDL-C/(mmol/L) | 2.04 ± 0.29 | 2.39 ± 0.34 | 1.77 ± 0.24 | 2.06 ± 0.74 | 2.1 ± 0.63 |
AKP/(U/L) | 158.51 ± 24.98 a | 171.58 ± 16.68 b | 137.28 ± 11.25 a | 151.34 ± 12.39 a | 161.24 ± 24.33 b |
CK | LG | LLT | MLT | HLT | Transporter | |
---|---|---|---|---|---|---|
Orn | 159.97 ± 23.14 a | 362.35 ±25.85 c | 276 ± 22.36 b | 255.84 ± 23.28 b | 256.32 ± 15.32 b | CAT1 |
Arg | 1458.78 ± 158.89 a | 2175.23 ±76.39 c | 1489.36 ± 124.27 a | 1839.42 ± 310.22 b | 2043.5 ± 168.58 bc | CAT1, 4F2hc+y+LAT1 |
Lys | 1192.08 ± 198.74 a | 2038.21 ± 144.43 d | 1570.75 ±126.37 b | 1748.23 ±188.96 c | 1885.23 ± 126.66 cd | CAT1, 4F2hc+y+LAT1 |
His | 240.13 ± 24.36 a | 341.25 ± 23.79 bc | 332.26 ± 17.32 b | 358.28 ± 15.32 bc | 355.56 ±16.2 c | CAT1, 4F2hc+y+LAT1 |
Gly | 651.14 ± 15.87 a | 746.36 ± 28.97 b | 842.89 ± 34.82 c | 903.25 ± 34.45 d | 855.23 ± 56.32 c | B0AT1 |
Ile | 683.31 ± 43.28 a | 1004.3 ±58.89 b | 921.57 ± 48.59 b | 1005.37 ± 44.45 b | 1084.23 ± 48.96 c | B0AT1 |
Val | 632.79 ± 58.23 a | 894.28 ± 98.74 bc | 826.52 ± 83.59 b | 966.2 ± 87.32 bc | 967.78 ± 98.56 c | B0AT1 |
Phe | 913.17 ± 88.23 a | 1527.18 ± 148.58 c | 1189.37 ± 86.59 b | 1244.59 ± 245.6 bc | 1396 ± 133.58 c | B0AT1 |
Tyr | 873.56 ± 94.31 a | 1501.2 ± 103.25 c | 1221.35 ± 122.32 b | 1127 ± 213.31 bc | 1298.98 ± 188.65 c | B0AT1 |
Trp | 264.85 ± 23.37 a | 415.01 ± 43.23 cd | 322.58 ± 34.32 b | 401.12 ± 48.86 bc | 387.86 ± 43.23 c | B0AT1 |
Pro | 473.85 ± 76.36 a | 573.18 ± 96.26 ab | 538.28 ± 43.54 a | 711.9 ± 97.23 c | 654.59 ± 84.23 bc | B0AT1 |
Asp | 769.48 ± 39.28 a | 845.58 ± 23.36 ab | 911.23 ± 41.25 b | 1211.23 ± 56.59 c | 943.82 ± 58.64 b | EAAT1, EAAT3 |
Glu | 1628.12 ± 141.28 a | 1889 ± 58.72 b | 1844.28 ± 87.27 b | 2335.2 ± 156.36 c | 2021.32 ± 144.23 b | EAAT1, EAAT3 |
Ala | 1003.25 ± 48.69 a | 1012.29 ± 56.34 c | 1186.58 ± 46.69 b | 1354.23 ± 54.39 d | 1417.68 ± 18.37 d | ASCT2, B0AT1 |
Ser | 799.31 ± 36.52 a | 965.33 ± 28.34 b | 1000.23 ± 33.28 b | 1133.57 ± 134.34 c | 1078.23 ± 62.58 c | ASCT2, B0AT1 |
Cys | 14.88 ± 2.02 a | 21.15 ± 2.18 c | 18.23 ± 1.3 b | 21.64 ± 2.37 c | 22.89 ± 5.35 c | ASCT2, B0AT1 |
Thr | 591.48 ± 54.28 a | 803.26 ± 69.56 bc | 784.56 ± 72.23 b | 831.26 ± 58.88 c | 852.69 ± 48.83 c | ASCT2, B0AT1 |
Met | 229.14 ± 20.37 a | 358 ± 28.35 c | 288.37 ± 35.28 b | 343.27 ± 48.29 bc | 348.33 ± 33.23 c | 4F2hc+y+LAT1, B0AT1 |
Leu | 1382.85 ± 93.21 a | 2315.28 ± 232.28 c | 2002.31 ± 245.58 b | 2012.67 ± 94.73 b | 2338 ± 83.26 c | 4F2hc+y+LAT1, B0AT1 |
CK | LG | LLT | MLT | HLT | Transporter | |
---|---|---|---|---|---|---|
Orn | 107.31 ± 8.01 a | 131.24 ± 12.1 b | 135.3 ± 21.09 b | 171.85 ± 21.33 c | 213.25 ± 42.32 d | CAT1 |
Arg | 1389.69 ± 184.43 a | 1784.38 ± 201.32 b | 1398.21 ± 84.67 a | 2258.33 ± 142.25 c | 2731.78 ± 200.8 d | CAT1, 4F2hc+y+LAT1 |
Lys | 1000.74 ± 135.32 a | 1321.54 ± 142.32 b | 1352.3 ± 162.36 b | 1821.5 ± 274.36 c | 2001.46 ± 312.25 d | CAT1, 4F2hc+y+LAT1 |
His | 274.32 ± 30.26 a | 371.16 ± 31.28 b | 263.54 ± 23.14 a | 374.18 ± 51.39 b | 513.45 ± 105.11 c | CAT1, 4F2hc+y+LAT1 |
Gly | 1471.41 ± 103.54 a | 1698.87 ± 103.9 a | 1691.34 ± 203.1 a | 2256.64 ± 266.32 b | 2301.32 ± 288.87 b | B0AT1 |
Ile | 864.59 ± 144.36 a | 1031.48 ± 85.38 b | 1024.43 ± 214.36 b | 1632.12 ± 103.74 c | 1701.25 ± 587.32 c | B0AT1 |
Val | 846.34 ± 113.58 a | 1058.64 ± 148.32 b | 1034.25 ± 132.71 ab | 15385.37 ± 233.41 c | 1721.82 ± 186.54 d | B0AT1 |
Phe | 1161.47 ± 153.73 a | 1284.3 ± 201.31 a | 1187.6 ± 177.36 a | 1864.64 ± 135.37 b | 2121.53 ± 155.31 c | B0AT1 |
Tyr | 1196.54 ± 105.41 a | 1498.29 ± 102.3 b | 1289.54 ± 86.52 a | 2013.54 ± 143.54 c | 2418.31 ± 112.35 d | B0AT1 |
Trp | 322.3 ± 53.2 a | 379.27 ± 52.54 b | 339.73 ± 27.64 ab | 499.28 ± 29.34 c | 562.27 ± 56.38 c | B0AT1 |
Pro | 341.58 ± 27.61 a | 446.29 ± 56.35 b | 584.6 ± 69.45 c | 801.38 ± 84.65 d | 881.83 ± 74.39 d | B0AT1 |
Asp | 1337 ± 172.47 a | 1293.4 ± 112.3 a | 1487.25 ± 201.36 a | 1881.26 ± 136.97 b | 1843.21 ± 111.36 b | EAAT1, EAAT3 |
Glu | 3986.3 ± 397.84 a | 4026.76 ±503.29 a | 4258.31 ±871.24 ab | 5084.63 ±614.85 b | 5023.65 ± 540.32 b | EAAT1, EAAT3 |
Ala | 2010.48 ± 121.59 a | 2085.64 ± 103.2 a | 2489.66 ± 187.36 b | 2917.35 ± 147.23 c | 3128.25 ± 188.98 c | ASCT2, B0AT1 |
Ser | 1001.54 ± 82.38 a | 1336.57 ± 142.05 b | 1022.59 ± 124.31 a | 1501 ± 142.32 c | 1854.58 ± 155.32 d | ASCT2, B0AT1 |
Cys | 25.84 ± 1.89 a | 30.28 ± 2.56 b | 28.56 ± 2.33 ab | 31.08 ± 3.56 b | 30.02 ± 3.21 b | ASCT2, B0AT1 |
Thr | 784.25 ± 74.66 a | 978.24 ± 143.69 b | 996.27 ± 100.2 b | 1321.28 ± 91.23 c | 1563.21 ± 108.28 d | ASCT2, B0AT1 |
Met | 271.69 ± 26.31 a | 361.32 ± 62.38 b | 321.83 ± 41.85 ab | 459.26 ± 71.23 c | 504.1 ± 58.23 c | 4F2hc+y+LAT1, B0AT1 |
Leu | 1842.36 ± 351.87 a | 2018.37 ± 312.56 a | 2063.89 ± 141.54 a | 3233.16 ± 399.98 b | 3269.58 ± 532.34 b | 4F2hc+y+LAT1, B0AT1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Peng, Y.; Lin, L.; Gong, Z.; Xiao, W.; Li, Y. L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients 2023, 15, 142. https://doi.org/10.3390/nu15010142
Liu K, Peng Y, Lin L, Gong Z, Xiao W, Li Y. L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients. 2023; 15(1):142. https://doi.org/10.3390/nu15010142
Chicago/Turabian StyleLiu, Kehong, Yingqi Peng, Ling Lin, Zhihua Gong, Wenjun Xiao, and Yinhua Li. 2023. "L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway" Nutrients 15, no. 1: 142. https://doi.org/10.3390/nu15010142
APA StyleLiu, K., Peng, Y., Lin, L., Gong, Z., Xiao, W., & Li, Y. (2023). L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients, 15(1), 142. https://doi.org/10.3390/nu15010142