Oxidative Stress and Total Phenolics Concentration in COPD Patients—The Effect of Exercises: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pulmonary Function Tests
2.3. Methodology of Marking Exercise Tolerance of Patients
2.4. Preparation of Blood Samples for Analysis
2.4.1. Determination of Allantoin
2.4.2. Determination of FRAP
2.4.3. Determination of TBARS
2.4.4. Determination of Total Phenolics
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, A.B.; Forman, H.J.; Glass, M. Mechanisms of pulmonary oxygen toxicity. Lung 1984, 162, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; MacNee, W. Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax 1996, 51, 348–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couillard, A.; Prefaut, C. From muscle disuse to myopathy in COPD: Potential contribution of oxidative stress. Eur. Respir. J. 2005, 26, 703–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, T.L.; Gores, G.J.; Nieminen, A.L.; Herman, B.; Lemasters, J.J. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am. J. Physiol. Cell Physiol. 1993, 264, C961–C967. [Google Scholar] [CrossRef] [PubMed]
- Gosker, H.R.; Bast, A.; Haenen, G.R.; Fischer, M.A.; van der Vusse, G.J.; Wouters, E.F.; Schols, A.M. Altered antioxidant status in peripheral skeletal muscle of patients with COPD. Respir. Med. 2005, 99, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; Skwarska, E.; MacNee, W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax 1997, 52, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Lekakis, J.; Rallidis, L.S.; Andreadou, I.; Vamvakou, G.; Kazantzoglou, G.; Magiatis, P.; Skaltsounis, A.L.; Kremastinos, D.T. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 596–600. [Google Scholar] [CrossRef]
- Hertog, M.G.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Bbuzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 1995, 155, 381–386. [Google Scholar] [CrossRef]
- Hellsten, Y.; Apple, F.S.; Sjödin, B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J. Appl. Physiol. 1996, 81, 1484–1487. [Google Scholar] [CrossRef]
- Restani, P. Polyphenol-rich foods for human health. Nutrients 2020, 12, 3738. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food. Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Tullson, P.C.; Richter, E.A.; Bangsbo, J. Oxidation of urate in human skeletal-muscle during exercise. Free Radic. Biol. Med. 1997, 22, 169–174. [Google Scholar] [CrossRef]
- Mikami, T.; Kita, K.; Tomita, S.; Qu, G.J.; Tasaki, Y.; Ito, A. Is Allantoin in serum and urine a useful indicator of exercise-induced oxidative stress in humans? Free Radic. Res. 2000, 32, 235–244. [Google Scholar] [CrossRef]
- Karapolat, H.; Atasever, A.; Atamaz, F.; Kirazlı, Y.; Elmas, F.; Erdinç, E. Do the benefits gained using a short-term pulmonary rehabilitation program remain in COPD patients after participation? Lung 2007, 185, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Puhan, M.A.; Gimeno-Santos, E.; Scharplatz, M.; Troosters, T.; Walters, E.H.; Steurer, J. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011, 12, CD005305. [Google Scholar] [CrossRef]
- Ortega, F.; Toral, J.; Cejudo, P.; Villagomez, R.; Sánchez, H.; Castillo, J.; Montemayor, T. Comparison of Effects of Strength and Endurance Training in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. 2002, 166, 669–674. [Google Scholar] [CrossRef]
- Hanneke, A.C.; van Helvoort, H.A.; Heijdra, Y.F.; Heunks, L.M.; Meijer, P.L.; Ruitenbeek, W.; Thijs, H.M.; Dekhuijzen, P.R. Supplemental oxygen prevents exercise-induced oxidative stress in muscle-wasted patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006, 173, 1122–1129. [Google Scholar]
- Carpagnano, G.E.; Kharitonov, S.A.; Foschino-Barbaro, M.P.; Resta, O.; Gramiccioni, E.; Barnes, P.J. Supplemental oxygen in healthy subjects and those with COPD increases oxidative stress and airway inflammation. Thorax 2004, 59, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Philips, M.; Cataneo, R.N.; Greenberg, J.; Grodman, R.; Gunawardena, R.; Naidu, A. Effect of oxygen on breath markers of oxidative stress. Eur. Respir. J. 2003, 21, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Hankinson, J.A.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. ATS/ERS Task Force: Standardisation of lung function testing—Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.A.C.; Barreto, S.P.; Simões, J.G.; Pereira, F.W.L.; Gerstler, J.G.; Nakatani, J. Valores de referência para espirometria em uma amostra da população brasileira. J. Pneumol. 1992, 18, 10–12. [Google Scholar]
- Jetté, M.; Campbell, J.; Mongeon, J.; Routhier, R. The Canadian Home Fitness Test as a predictor of aerobic capacity. Can. Med. Assoc. J. 1976, 114, 680–682. [Google Scholar] [PubMed]
- Kock, R.; Delvoux, B.; Greiling, H. A high-performance liquid chromatographic method for the determination of hypoxanthine, xanthine, uric acid and allantoin in serum. Eur. J. Clin. Chem. Clin. Biochem. 1993, 31, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Mehri, S.N.; Khoshnevis, M.A.; Zarrehbinan, F.; Hafezi, S.; Ghasemi, A.; Ebadi, A. Effect of treadmill exercise training on VO2 peak in chronic obstructive pulmonary disease. Tanaffos 2007, 6, 18–24. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Podgórski, T.; Kowalczyk, K.; Barinow-Wojewódzki, A. Antioxidative potential of plasma and free radical reactions in the plasma of patients with chronic obstructive pulmonary disease (COPD). In Monographe; Poznan University of Physical Education: Poznań, Poland, 2006; Volume 370, pp. 102–108. [Google Scholar]
- Podgórski, T.; Domaszewska, K.; Rąglewska, P.; Barinow-Wojewódzki, A.; Rychlewski, T.; Pawlak, M. Physical rehabilitation effects on oxidant-antioxidant balance and blood oxypurines concentration in patients with Chronic Obstructive Pulmonary Disease (COPD). Acta Biochim. Pol. 2006, 53 (Suppl. S1), 136–137. [Google Scholar]
- Nadeem, A.; Raj, H.G.; Chhabra, S.K. Increased oxidative stress and altered levels of antioxidants in chronic obstructive pulmonary disease. Inflammation 2005, 29, 23–32. [Google Scholar] [CrossRef]
- Miyazaki, H.; Oh-ishi, S.; Ookawara, T.; Kizaki, T.; Toshinai, K.; Ha, S.; Haga, S.; Ji, L.L.; Ohno, H. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur. J. Appl. Physiol. 2001, 84, 1–6. [Google Scholar] [CrossRef]
- Woźniak, A. Signs of oxidative stress after exercise. Biol. Sport. 2003, 20, 93–112. [Google Scholar]
- Robertson, J.D.; Maughan, R.J.; Duthie, G.G.; Morrice, P.C. Increased blood antioxidant systems of runners in response to training load. Clin. Sci. 1991, 80, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Dhaliwal, R.; Suchner, U.; Berger, M.M. Antioxidant nutrients: A systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005, 31, 327–337. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partyka, Ł.; Hartwich, J.; Drożdż, W.; Gruca, A.; Jopek, R.; Karcz, D.; Dembińska-Kieć, A. Changes in oxidative stress parameters in patients with peripheral vascular disease in response to conservative and surgical treatment. Acta Angiol. 2001, 7, 29–41. [Google Scholar]
- Van Iersel, L.E.; Beijers, R.J.; Gosker, H.R.; Schols, A.M. Nutrition as a modifiable factor in the onset and progression of pulmonary function impairment in COPD: A systematic review. Nutr. Rev. 2021, nuab077. [Google Scholar] [CrossRef] [PubMed]
- Ilari, S.; Vitiello, L.; Russo, P.; Proietti, S.; Milić, M.; Muscoli, C.; Cardaci, V.; Tomino, C.; Bonassi, G.; Bonassi, S. Daily Vegetables Intake and Response to COPD Rehabilitation. The Role of Oxidative Stress, Inflammation and DNA Damage. Nutrients 2021, 13, 2787. [Google Scholar] [CrossRef]
Study Group (n = 20) | Control Group (n = 12) | p-Value | |
---|---|---|---|
Age(years) | 62.10 (11.28) | 60.33 (9.61) | 0.6262 |
Body weight (kg) | 79.40 (19.39) | 79.50 (11.98) | 0.8761 |
Body height (cm) | 166.45 (8.10) | 169.92 (7.01) | 0.2490 |
BMI (kg/m2) | 28.39 (5.98) | 27.38 (2.00) | 0.4478 |
Study Group | Control Group | |||||
---|---|---|---|---|---|---|
Variable | I | II | p-Value | I | II | p-Value |
FEV1/FVC (%) | 60.52 (16.39) | 67.43 (15.31) | 0.0010 (ES: 0.436) | 54.05 (15.99) | 58.02 (19.12) | 0.3017 |
Distance (km) | 0.28 (0.12) | 0.33 (0.11) | 0.1141 | 0.24 (0.10) | 0.19 (0.13) | 0.0179 (ES: 0.431) |
Velocity (km/h) | 4.33 (0.79) | 4.66 (0.69) | 0.0801 | 3.96 (0.80) | 3.82 (0.96) | 0.1088 |
VO2max (mL/kg/min) | 19.77 (5.74) | 21.37 (5.81) | 0.0702 | 15.38 (4.76) | 15.32 (5.02) | 0.8240 |
Study Group | Control Group | ||||||
---|---|---|---|---|---|---|---|
Variable | Period | Rest | Post-Exercise | p-Value | Rest | Post-Exercise | p-Value |
Allantoin (μmol/L) | I | 46.31 (29.15) | 63.88 (29.50) | 0.0030 (ES: 0.599) | 24.90 (18.63) | 46.06 (27.97) | 0.0022 (ES: 0.890) |
II | 40.69 (27.73) | 54.14 (25.73) | 0.0031 (ES: 0.503) | 26.37 (18.10) | 43.87 (22.60) | 0.0022 (ES: 0.855) | |
FRAP (μmol/L) | I | 693.08 (158.15) | 718.65 (134.26) | 0.6149 | 917.88 (165.72) | 953.75 (141.07) | 0.3269 |
II | 689.95 (146.83) | 706.44 (135.12) | 0.8228 | 761.86 (175.82) | 781.29 (173.57) | 0.0277 (ES: 0.111) | |
TBARS (μmol/L) | I | 3.10 (20.97) | 3.07 (1.05) | 0.2477 | 4.65 (1.23) | 4.80 (1.34) | 0.2361 |
II | 3.55 (1.57) | 3.29 (1.25) | 0.1729 | 5.96 (1.52) | 5.51 (0.91) | 0.4468 | |
Total phenolics (g GAE/L) | I | 1.91 (0.19) | 2.11 (0.22) | 0.0098 (ES: 0.973) | 2.73 (0.40) | 2.69 (0.54) | 0.8589 |
II | 1.83 (0.39) | 1.99 (0.39) | 0.0526 | 2.69 (0.42) | 2.77 (0.38) | 0.3105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaszewska, K.; Górna, S.; Pietrzak, M.; Podgórski, T. Oxidative Stress and Total Phenolics Concentration in COPD Patients—The Effect of Exercises: A Randomized Controlled Trial. Nutrients 2022, 14, 1947. https://doi.org/10.3390/nu14091947
Domaszewska K, Górna S, Pietrzak M, Podgórski T. Oxidative Stress and Total Phenolics Concentration in COPD Patients—The Effect of Exercises: A Randomized Controlled Trial. Nutrients. 2022; 14(9):1947. https://doi.org/10.3390/nu14091947
Chicago/Turabian StyleDomaszewska, Katarzyna, Sara Górna, Malwina Pietrzak, and Tomasz Podgórski. 2022. "Oxidative Stress and Total Phenolics Concentration in COPD Patients—The Effect of Exercises: A Randomized Controlled Trial" Nutrients 14, no. 9: 1947. https://doi.org/10.3390/nu14091947
APA StyleDomaszewska, K., Górna, S., Pietrzak, M., & Podgórski, T. (2022). Oxidative Stress and Total Phenolics Concentration in COPD Patients—The Effect of Exercises: A Randomized Controlled Trial. Nutrients, 14(9), 1947. https://doi.org/10.3390/nu14091947