Dietary Iron and the Elite Dancer
Abstract
:1. Introduction
2. What Are the Physiological Requirements of Dance?
3. What Are the Aesthetic and Artistic Requirements of Classical Ballet and Contemporary Dance?
4. Low Energy Availability
5. Iron Deficiency
- Stage One—Iron Depletion: characterised by decreased iron stores in the bone marrow, liver, and spleen (serum ferritin (sFer) < 35 µg/L, haemoglobin concentration (Hb) > 115g/L, transferring saturation (TS) > 16%).
- Stage Two—Iron Deficient Erythropoiesis: characterised by decreased erythrocyte production due to reduced iron supply to erythroid marrow (sFer < 20 µg/L, Hb > 115g/L, TS < 16%).
- Stage Three—Iron Deficient Anaemia: characterised by critically diminished iron availability and resulting reduction in haemoglobin production (sFer < 12 µg/L, Hb < 115g/L, TS < 16%).
6. Why Is ID Risk High in Dancer Populations?
7. Hepcidin, the Inflammatory Response, and Exercise (Dancing)
8. Hepcidin Diurnal Variation
9. Menstrual Blood Loss
10. Vegetarian/Vegan Diets and ID Conjuncture
11. What Are the Current Treatment Strategies for ID?
12. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koutedakis, Y.; Jamurtas, A. The Dancer as a Performing Athlete: Physiological Considerations. Sports Med. 2004, 34, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Schantz, P.; Åstrand, P.O. Physiological characteristics of classical ballet. Med. Sci. Sports Exerc. 1984, 16, 472–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.L.; Segal, K.R.; Witriol, I.; McArdle, W.D. Cardiorespiratory responses to ballet exercise and the VO2max of elite ballet dancers. Med. Sci. Sports Exerc. 1982, 14, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Twitchett, E.A.; Koutedakis, Y.; Wyon, M.A. Physiological Fitness and Professional Classical Ballet Performance: A Brief Review. J. Strength Cond. Res. 2009, 23, 2732–2740. [Google Scholar] [CrossRef]
- Beck, S.; Redding, E.; Wyon, M.A. Methodological considerations for documenting the energy demand of dance activity: A review. Front. Psychol. 2015, 6, 568. [Google Scholar] [CrossRef]
- Koehler, K.; de Marees, M.; Braun, H.; Schaenzer, W. Evaluation of two portable sensors for energy expenditure assessment during high-intensity running. Eur. J. Sport Sci. 2013, 13, 31–41. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, J.H.; Lee, J.H.; Jung, J.H. Changes in Body Composition, Energy Metabolism, and Appetite-Regulating Hormones in Korean Professional Female Ballet Dancers Before and After Ballet Performance. J. Danc. Med. Sci. 2019, 23, 173–180. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Keay, N.; Overseas, A.; Francis, G. Indicators and correlates of low energy availability in male and female dancers. BMJ Open Sport Exerc. Med. 2020, 6, e000906. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J.; Garthe, I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J. Sports Sci. 2011, 29, S101–S114. [Google Scholar] [CrossRef]
- Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.H. Dietary Supplements and Sports Performance: Minerals. J. Int. Soc. Sports Nutr. 2005, 2, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron considerations for the athlete: A narrative review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.L.; Mitchell, S.; Foskett, A.; Conlon, C.A.; Von Hurst, P.R. Dietary intake, anthropometric characteristics, and iron and Vitamin D status of female adolescent ballet dancers living in New Zealand. Int. J. Sport Nutr. Exerc. Metabol. 2015, 25, 335–343. [Google Scholar] [CrossRef]
- Mahlamaki, E.; Mahlamaki, S. Iron deficiency in adolescent female dancers. Br. J. Sports Med. 1988, 22, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Venderley, A.M.; Campbell, W.W. Vegetarian Diets: Nutritional Considerations for Athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef]
- Pedlar, C.R.; Brugnara, C.; Bruinvels, G.; Burden, R. Iron balance and iron supplementation for the female athlete: A practical approach. Eur. J. Sport Sci. 2018, 18, 295–305. [Google Scholar] [CrossRef]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Trinder, D. Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. Eur. J. Appl. Physiol. 2008, 103, 381–391. [Google Scholar] [CrossRef]
- Twitchett, E.; Angioi, M.; Koutedakis, Y.; Wyon, M. The demands of a working day among female professional ballet dancers. J. Danc. Med. Sci. 2010, 14, 127–132. [Google Scholar]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Wiegerinck, E.T.; Swinkels, D.W.; Trinder, D. Effects of exercise on hepcidin response and iron metabolism during recovery. Int. J. Sport Nutr. Exerc. Metabol. 2009, 19, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Newlin, M.K.; Williams, S.; McNamara, T.; Tjalsma, H.; Swinkels, D.W.; Haymes, E.M. The effects of acute exercise bouts on hepcidin in women. Int. J. Sport Nutr. Exerc. Metabol. 2012, 22, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kemna, E.H.J.M.; Tjalsma, H.; Podust, V.N.; Swinkels, D.W. Mass Spectrometry-Based Hepcidin Measurements in Serum and Urine: Analytical Aspects and Clinical Implications. Clin. Chem. 2007, 53, 620–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.J. Iron status of vegetarians. Am. J. Clin. Nutr. 1994, 59, 1233S–1237S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, R.; Sim, M.; Dawson, B.; Peeling, P. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med. 2020, 50, 2111–2123. [Google Scholar] [CrossRef]
- Rodrigues-Krause, J.; Krause, M.; Reischak-Oliveira, Á. Cardiorespiratory Considerations in Dance: From Classes to Performances. J. Danc. Med. Sci. 2015, 19, 91–102. [Google Scholar] [CrossRef]
- Manari, D.; Manara, M.; Zurini, A.; Tortorella, G.; Vaccarezza, M.; Prandelli, N.; Ancelotti, D.; Vitale, M.; Mirandola, P.; Galli, D. VO2Max and VO2AT: Athletic performance and field role of elite soccer players. Sport Sci. Health 2016, 12, 221–226. [Google Scholar] [CrossRef]
- Smekal, G.; Von Duvillard, S.P.; Rihacek, C.; Pokan, R.; Hofmann, P.; Baron, R.; Tschan, H.; Bachl, N. A physiological profile of tennis match play. Med. Sci. Sports Exerc. 2001, 33, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Krause, J.; Krause, M.; Cunha, G.D.S.; Perin, D.; Martins, J.B.; Alberton, C.L.; Schaun, M.I.; De Bittencourt, P.I.H., Jr.; Reischak-Oliveira, A. Ballet dancers cardiorespiratory, oxidative and muscle damage responses to classes and rehearsals. Eur. J. Sport Sci. 2014, 14, 199–208. [Google Scholar] [CrossRef]
- Wyon, M.A.; Redding, E. Physiological Monitoring of Cardiorespiratory Adaptations During Rehersal and Performance of Contemporary Dance. J. Strength Cond. Res. 2005, 19, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Bronner, S.; Codman, E.; Hash-Campbell, D.; Ojofeitimi, S. Differences in Preseason Aerobic Fitness Screening in Professional and Pre-professional Modern Dancers. J. Danc. Med. Sci. 2016, 20, 11–22. [Google Scholar] [CrossRef]
- Volkova, V.G.; Black, A.M.; Kenny, S.J. Internal Training Load Measures in Elite Adolescent Ballet Dancers. J. Danc. Med. Sci. 2020, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kozai, A.C.; Twitchett, E.; Morgan, S.; Wyon, M.A. Workload Intensity and Rest Periods in Professional Ballet: Connotations for Injury. Int. J. Sports Med. 2020, 41, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Liiv, H.; Wyon, M.A.; Jürimäe, T.; Saar, M.; Mäestu, J.; Jürimäe, J. Anthropometry, somatotypes, and aerobic power in ballet, contemporary dance, and DanceSport. Med. Probl. Perform. Art. 2013, 28, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; D’Orazio, N. Assessment of body composition and nutritional risks in young ballet dancers—The bioelectrical impedance analysis. J. Electr. Bioimped. 2020, 11, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Doyle-Lucas, A.F.; Akers, J.D.; Davy, B.M. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J. Danc. Med. Sci. 2010, 14, 146–154. [Google Scholar]
- Brown, M.A.; Howatson, G.; Quin, E.; Redding, E.; Stevenson, E.J. Energy intake and energy expenditure of pre-professional female contemporary dancers. PLoS ONE 2017, 12, e0171998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ghoch, M.; Soave, F.; Calugi, S.; Dalle Grave, R. Eating disorders, physical fitness and sport performance: A systematic review. Nutrients 2013, 5, 5140–5160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcelus, J.; Witcomb, G.L.; Mitchell, A. Prevalence of Eating Disorders amongst Dancers: A Systemic Review and Meta-Analysis: Eating Disorders and Dance. Eur. Eat. Disord. Rev. 2014, 22, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Nordin-Bates, S.M.; Walker, I.J.; Redding, E. Correlates of Disordered Eating Attitudes Among Male and Female Young Talented Dancers: Findings From the UK Centres for Advanced Training. Eat. Dis. 2011, 19, 211–233. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J.; Torstveit, M.K. Prevalence of Eating Disorders in Elite Athletes Is Higher Than in the General Population. Clin. J. Sport Med. 2004, 14, 25–32. [Google Scholar] [CrossRef]
- Van Rens, F.E.; Metse, A.P.; Heritage, B. Exploring the mental health of circus artists: Circus factors, psychological resilience, and demographics predict disordered eating and exercise addictions. Psychol. Sport Exerc. 2022, 59, 102107. [Google Scholar] [CrossRef]
- Keay, N.; Francis, G. Infographic. Energy availability: Concept, control and consequences in relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2019, 53, 1310–1311. [Google Scholar] [CrossRef] [PubMed]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar]
- Koehler, K.; De Souza, M.J.; Williams, N.I. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations. Eur. J. Clin. Nutr. 2017, 71, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, J.L.; De Souza, M.J.; Wagstaff, D.A.; Williams, N.I. Menstrual disruption with exercise is not linked to an energy availability threshold. Med. Sci. Sports Exerc. 2018, 50, 551. [Google Scholar] [CrossRef]
- Williams, N.I.; Leidy, H.J.; Hill, B.R.; Lieberman, J.L.; Legro, R.S.; De Souza, M.J. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am. J. Physiol. Endocrinol. Metabol. 2015, 308, E29–E39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logue, D.; Madigan, S.M.; Delahunt, E.; Heinen, M.; McDonnell, S.J.; Corish, C.A. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018, 48, 73–96. [Google Scholar] [CrossRef]
- Schofield, K.L.; Thorpe, H.; Sims, S.T. Where are all the men? Low energy availability in male cyclists: A review. Eur. J. Sport Sci. 2020, 21, 1567–1578. [Google Scholar] [CrossRef]
- Slater, J.; Brown, R.; McLay-Cooke, R.; Black, K. Low Energy Availability in Exercising Women: Historical Perspectives and Future Directions. Sports Med. 2017, 47, 207–220. [Google Scholar] [CrossRef]
- Alwan, N.; Moss, S.L.; Elliott-Sale, K.J.; Davies, I.G.; Enright, K. A narrative review on female physique athletes: The physiological and psychological implications of weight management practices. Int. J. Sport Nutr. Exerc. Metabol. 2019, 29, 682–689. [Google Scholar] [CrossRef]
- Meng, K.; Qiu, J.; Benardot, D.; Carr, A.; Yi, L.; Wang, J.; Liang, Y. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J. Int. Soc. Sports Nutr. 2020, 17, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-McGehee, T.M.; Emerson, D.M.; Pritchett, K.; Moore, E.M.; Smith, A.B.; Uriegas, N.A. Energy Availability with or without Eating Disorder Risk in Collegiate Female Athletes and Performing Artists. J. Athl. Train. 2020, 56, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Villa-Vicente, J.G.; Seco-Calvo, J.; Mielgo-Ayuso, J.; Collado, P.S. Body Composition, Dietary Intake and the Risk of Low Energy Availability in Elite-Level Competitive Rhythmic Gymnasts. Nutrients 2021, 13, 2083. [Google Scholar] [CrossRef]
- Civil, R.; Lamb, A.; Loosmore, D.; Ross, L.; Livingstone, K.; Strachan, F.; Dick, J.R.; Stevenson, E.J.; Brown, M.A.; Witard, O.C. Assessment of dietary intake, energy status, and factors associated with RED-S in vocational female ballet students. Front. Nutr. 2019, 5, 136. [Google Scholar] [CrossRef] [PubMed]
- Sygo, J.; Coates, A.M.; Sesbreno, E.; Mountjoy, M.L.; Burr, J.F. Prevalence of indicators of low energy availability in elite female sprinters. Int. J. Sport Nutr. Exerc. Metabol. 2018, 28, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.; Castela, I.; Silva, A.M.; Branco, P.A.; Sousa, M. Risk of low energy availability among female and male elite runners competing at the 26th European cross-country championships. Nutrients 2021, 13, 873. [Google Scholar] [CrossRef]
- Condo, D.; Lohman, R.; Kelly, M.; Carr, A. Nutritional intake, sports nutrition knowledge and energy availability in female Australian rules football players. Nutrients 2019, 11, 971. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.; Carvalho, P.; Moreira, P.; Teixeira, V.H. Nutrition and nutritional issues for dancers. Med. Probl. Perform. Art. 2013, 28, 119–123. [Google Scholar] [CrossRef]
- Petkus, D.L.; Murray-Kolb, L.E.; De Souza, M.J. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med. 2017, 47, 1721–1737. [Google Scholar] [CrossRef]
- Zimmermann, M.B.D.; Hurrell, R.F.P. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Dawson, B.; Goodman, C.; Blee, T.; Claydon, G.; Peeling, P.; Beilby, J.; Prins, A. Iron supplementation: Oral tablets versus intramuscular injection. Int. J. Sport Nutr. Exerc. Metabol. 2006, 16, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Blee, T.; Goodman, C.; Dawson, B.; Claydon, G.; Beilby, J.; Prins, A. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int. J. Sport Nutr. Exerc. Metabol. 2007, 17, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Burden, R.J.; Morton, K.; Richards, T.; Whyte, G.P.; Pedlar, C.R. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1389–1397. [Google Scholar] [CrossRef]
- Beard, J.; Tobin, B. Iron status and exercise. Am. J. Clin. Nutr. 2000, 72, 594S–597S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubeor, A.; Goojha, C.; Manning, J.; White, J. Does Iron Supplementation Improve Performance in Iron-Deficient Nonanemic Athletes? Sports Health 2018, 10, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Houston, B.L.; Hurrie, D.; Graham, J.; Perija, B.; Rimmer, E.; Rabbani, R.; Bernstein, C.N.; Turgeon, A.F.; Fergusson, D.; Houston, D.S.; et al. Efficacy of iron supplementation on fatigue and physical capacity in non-anaemic iron-deficient adults: A systematic review of randomised controlled trials. BMJ Open 2018, 8, e019240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownlie, T.; Utermohlen, V.; Hinton, P.S.; Haas, J.D. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am. J. Clin. Nutr. 2004, 79, 437–443. [Google Scholar] [CrossRef] [Green Version]
- DellaValle, D.M.; Haas, J.D. Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: A study of female collegiate rowers. Int. J. Sport Nutr. Exerc. Metabol. 2011, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Dellavalle, D.M.; Haas, J.D. Iron Supplementation Improves Energetic Efficiency in Iron-Depleted Female Rowers. Med. Sci. Sports Exerc. 2014, 46, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.M.D.; Cacoub, P.P.; Macdougall, I.C.P.; Peyrin-Biroulet, L.P. Iron deficiency anaemia. Lancet 2015, 387, 907–916. [Google Scholar] [CrossRef]
- Weiss, G. Iron and anaemia of chronic disease. Kidney Intern. 1999, 55, S12–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malczewska-Lenczowska, J.; Stupnicki, R.; Szczepańska, B. Prevalence of iron deficiency in male elite athletes. Biomed. Hum. Kinet. 2009, 1, 36–41. [Google Scholar] [CrossRef]
- Constantini, N.W.; Eliakim, A.; Zigel, L.; Yaaron, M.; Falk, B. Iron status of highly active adolescents: Evidence of depleted iron stores in gymnasts. Int. J. Sport Nutr. Exerc. Metabol. 2000, 10, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.D.; Donovan, A.; Ward, D.M.V.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Hepcidin and iron regulation, 10 years later. Blood 2011, 117, 4425–4433. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Investig. 2002, 110, 1037–1044. [Google Scholar] [CrossRef]
- Moretti, D.; Goede, J.S.; Zeder, C.; Jiskra, M.; Chatzinakou, V.; Tjalsma, H.; Melse-Boonstra, A.; Brittenham, G.; Swinkels, D.W.; Zimmermann, M.B. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015, 126, 1981–1989. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.J. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. J. Biol. Chem. 2015, 290, 18975–18983. [Google Scholar] [CrossRef] [Green Version]
- Mccormick, R.; Moretti, D.; Mckay, A.K.A.; Laarakkers, C.M.; Vanswelm, R.; Trinder, D.; Cox, G.R.; Zimmerman, M.B.; Sim, M.; Goodman, C.; et al. The Impact of Morning versus Afternoon Exercise on Iron Absorption in Athletes. Med. Sci. Sports Exerc. 2019, 51, 2147–2155. [Google Scholar] [CrossRef]
- Barba-Moreno, L.; Alfaro-Magallanes, V.M.; de Jonge, X.A.J.; Díaz, A.E.; Cupeiro, R.; Peinado, A.B. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur. J. Sport Sci. 2020, 22, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Hennigar, S.R.; McClung, J.P.; Hatch-McChesney, A.; Allen, J.T.; Wilson, M.A.; Carrigan, C.T.; Murphy, N.E.; Teien, H.K.; Martini, S.; Gwin, J.; et al. Energy deficit increases hepcidin and exacerbates declines in dietary iron absorption following strenuous physical activity: A randomized-controlled cross-over trial. Am. J. Clin. Nutr. 2021, 113, 359–369. [Google Scholar] [CrossRef]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P.; Sim, M.; Badenhorst, C.E.; Dawson, B.; Govus, A.D.; Abbiss, C.R.; Swinkels, D.W.; Trinder, D. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE 2014, 9, e93002. [Google Scholar] [CrossRef] [PubMed]
- Galetti, V.; Stoffel, N.U.; Sieber, C.; Zeder, C.; Moretti, D.; Zimmermann, M.B. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. eClinicalMedicine 2021, 39, 101052. [Google Scholar] [CrossRef]
- Badenhorst, C.E.; Dawson, B.; Cox, G.R.; Laarakkers, C.M.; Swinkels, D.W.; Peeling, P. Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. Eur. J. Appl. Physiol. 2015, 115, 2521–2530. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Peeling, P.; Pyne, D.B.; Tee, N.; Whitfield, J.; Sharma, A.P.; Heikura, I.A.; Burke, L.M. Six Days of Low Carbohydrate, Not Energy Availability, Alters the Iron and Immune Response to Exercise in Elite Athletes. Med. Sci. Sports Exerc, 2021; published ahead of print. [Google Scholar] [CrossRef]
- Fensham, N.C.; McKay, A.K.A.; Tee, N.; Lundy, B.; Anderson, B.; Morabito, A.; Ross, M.L.; Burke, L.M. Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin. Int. J. Sport Nutr. Exerc. Metabol. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Sim, M.; Dawson, B.; Landers, G.; Swinkels, D.W.; Tjalsma, H.; Trinder, D.; Peeling, P. Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin levels. Int. J. Sport Nutr. Exerc. Metabol. 2013, 23, 178–186. [Google Scholar] [CrossRef]
- McPherson, A.M.; Schrader, J.W.; Docherty, C.L. Ground Reaction Forces in Ballet Differences Resulting from Footwear and Jump Conditions. J. Danc. Med. Sci. 2019, 23, 34–39. [Google Scholar] [CrossRef]
- Shaskey, D.J.; Green, G.A. Sports Haematology. Sports Med. 2000, 29, 27–38. [Google Scholar] [CrossRef]
- Ganz, T.; Olbina, G.; Girelli, D.; Nemeth, E.; Westerman, M. Immunoassay for human serum hepcidin. Blood 2008, 112, 4292–4297. [Google Scholar] [CrossRef] [Green Version]
- Busbridge, M.; Griffiths, C.; Ashby, D.; Gale, D.; Jayantha, A.; Sanwaiya, A.; Chapman, R.S. Development of a novel immunoassay for the iron regulatory peptide hepcidin. Br. J. Biomed. Sci. 2009, 66, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Kroot, J.J.C.; Hendriks, J.C.M.; Laarakkers, C.M.M.; Klaver, S.M.; Kemna, E.H.J.M.; Tjalsma, H.; Swinkels, D.W. (Pre)analytical imprecision, between-subject variability, and daily variations in serum and urine hepcidin: Implications for clinical studies. Anal. Biochem. 2009, 389, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Schaap, C.C.; Heniks, J.C.M.; Kortman, G.A.M.; Klaver, S.M.; Kroot, J.J.C.; Laarakkers, J.M.M.; Wiegerinck, E.T.; Tjalsma, H.; Janssen, M.C.; Swinkels, D.W. Diurnal Rhythm rather than Dietary Iron Mediates Daily Hepcidin Variations. Clin. Chem. 2013, 59, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.J.; Armah, C.N.; Dainty, J.R.; Foxall, R.J.; Lewis, D.J.; Langford, N.J.; Fairweather-Tait, S.J. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br. J. Nutr. 2005, 94, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, C.; Barker, M.K.; Dirk, P.; Moore, K.M.; McCrudden, E.; Karakochuk, C.D. Menstrual blood losses and body mass index are associated with serum ferritin concentrations among female varsity athletes. Appl. Physiol. Nutr. Metabol. 2020, 45, 723–730. [Google Scholar] [CrossRef]
- Wang, W.; Bourgeois, T.; Klima, J.; Berlan, E.D.; Fischer, A.N.; O’Brien, S.H. Iron deficiency and fatigue in adolescent females with heavy menstrual bleeding. Haemoph. Off. J. World Fed. Hemoph. 2013, 19, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Bruinvels, G.; Burden, R.; Brown, N.; Richards, T.; Pedlar, C. The prevalence and impact of heavy menstrual bleeding (Menorrhagia) in elite and non-elite athletes. PLoS ONE 2016, 11, e0149881. [Google Scholar] [CrossRef]
- Dugan, C.; Scott, C.; Abeysiri, S.; Baikady, R.R.; Richards, T. The need to screen for anemia in exercising women. Medicine 2021, 100, e27271. [Google Scholar] [CrossRef]
- Rowland, T. Iron Deficiency in Athletes: An Update. Am. J. Lifestyle Med. 2012, 6, 319–327. [Google Scholar] [CrossRef]
- De Souza, M.J.; Toombs, R.J.; Scheid, J.L.; O’Donnell, E.; West, S.L.; Williams, N.I. High prevalence of subtle and severe menstrual disturbances in exercising women: Confirmation using daily hormone measures. Hum. Reprod. 2010, 25, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkus, D.L.; Murray-Kolb, L.E.; Scott, S.P.; Southmayd, E.A.; De Souza, M.J. Iron status at opposite ends of the menstrual function spectrum. J. Trace Elem. Med. Biol. 2019, 51, 169–175. [Google Scholar] [CrossRef]
- Torstveit, M.K.; Sundgot-Borgen, J. Participation in leanness sports but not training volume is associated with menstrual dysfunction: A national survey of 1276 elite athletes and controls. Br. J. Sports Med. 2005, 39, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hincapié, C.A.; Cassidy, J.D. Disordered Eating, Menstrual Disturbances, and Low Bone Mineral Density in Dancers: A Systematic Review. Arch. Phys. Med. Rehab. 2010, 91, 1777–1789.e1. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; McClung, J.P.; Philip Karl, J.; Brothers, M.D. Iron status of military personnel deployed to Afghanistan. Mil. Med. 2011, 176, 1421–1425. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.; Rosado, J.L.; Allen, L.H.; Abrams, S.; García, O.P. The efficacy of a local ascorbic acid–rich food in improving iron absorption from Mexican diets: A field study using stable isotopes. Am. J. Clin. Nutr. 2003, 78, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Haider, L.M.; Schwingshackl, L.; Hoffmann, G.; Ekmekcioglu, C. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 1359–1374. [Google Scholar] [CrossRef]
- Brown, D.D. Nutritional considerations for the vegetarian and vegan dancer. J. Danc. Med. Sci. 2018, 22, 44–53. [Google Scholar] [CrossRef]
- Cialdella-Kam, L.; Kulpins, D.; Manore, M.M. Vegetarian, Gluten-Free, and Energy Restricted Diets in Female Athletes. Sports 2016, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, E.T.; Bowman, S.A.; Spence, J.T.; Freedman, M.; King, J. Popular Diets: Correlation to Health, Nutrition, and Obesity. J. Am. Diet. Assoc. 2001, 101, 411–420. [Google Scholar] [CrossRef]
- Kenneth, V.; Shawn, H. Update on vegetarian and vegan athletes: A review. J. Phys. Fit. Sports Med. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Lagowska, K.; Kapczuk, K.; Jeszka, J. Nine-month nutritional intervention improves restoration of menses in young female athletes and ballet dancers. J. Int. Soc. Sports Nutr. 2014, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaki, S.; Koshimizu, T.; Yanagisawa, K.; Akiyama, Y.; Mekada, Y.; Shiozawa, N.; Takahaski, N.; Yamakawa, J.; Kawano, Y. Effects of a fixed dietary intake on changes in red blood cell delta-aminolevulinate dehydratase activity and hemolysis. Int. J. Sport Nutr. Exerc. Metabol. 2006, 16, 597–610. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Stoffel, N.U.; Zeder, C.; Brittenham, G.M.; Moretti, D.; Zimmermann, M.B. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica 2020, 105, 1232–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, R.; Dreyer, A.; Dawson, B.; Sim, M.; Lester, L.; Goodman, C.; Peeling, P. The effectiveness of daily and alternate day oral iron supplementation in athletes with suboptimal iron status (part 2). Int. J. Sport Nutr. Exerc. Metabol. 2020, 30, 191–196. [Google Scholar] [CrossRef]
- Cancelo-Hidalgo, M.J.; Castelo-Branco, C.; Palacios, S.; Haya-Palazuelos, J.; Ciria-Recasens, M.; Manasanch, J.; Pérez-Edo, L. Tolerability of different oral iron supplements: A systematic review. Curr. Med. Res. Opin. 2013, 29, 291–303. [Google Scholar] [CrossRef]
- Zhu, Y.I.; Haas, J.D. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J. Appl. Physiol. 1998, 84, 1768–1775. [Google Scholar] [CrossRef]
- Friedmann, B.; Weller, E.; Mairbaurl, H.; Bartsch, P. Effects of iron repletion on blood volume and performance capacity in young athletes. Med. Sci. Sports Exerc. 2001, 33, 741–746. [Google Scholar] [CrossRef]
- Hinton, P.S.; Giordano, C.; Brownlie, T.; Haas, J.D. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J. Appl. Physiol. 2000, 88, 1103–1111. [Google Scholar] [CrossRef]
- Fogelholm, M.; Jaakkola, L.; Lampisjärvi, T. Effects of iron supplementation in female athletes with low serum ferritin concentration. Int. J. Sports Med. 1992, 13, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Klingshirn, L.A.; Pate, R.R.; Bourque, S.P.; Davis, J.M.; Sargent, R.G. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med. Sci. Sports Exerc. 1992, 24, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.A.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, N.U.; Cercamondi, C.I.; Brittenham, G.; Zeder, C.; Geurts-Moespot, A.J.; Swinkels, D.W.; Moretti, D.; Zimmermann, M.B. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: Two open-label, randomised controlled trials. Lancet Haematol. 2017, 4, e524–e533. [Google Scholar] [CrossRef]
- Hall, R.; Peeling, P.; Nemeth, E.; Bergland, D.; McCluskey, W.T.P.; Stellingwerff, T. Single versus Split Dose of Iron Optimizes Hemoglobin Mass Gains at 2106 m Altitude. Med. Sci. Sports Exerc. 2019, 51, 751–759. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwell, C.; Dugan, C.; McKay, A.K.A.; Nicholas, J.; Hopper, L.; Peeling, P. Dietary Iron and the Elite Dancer. Nutrients 2022, 14, 1936. https://doi.org/10.3390/nu14091936
Attwell C, Dugan C, McKay AKA, Nicholas J, Hopper L, Peeling P. Dietary Iron and the Elite Dancer. Nutrients. 2022; 14(9):1936. https://doi.org/10.3390/nu14091936
Chicago/Turabian StyleAttwell, Caitlin, Cory Dugan, Alannah K. A. McKay, Joanna Nicholas, Luke Hopper, and Peter Peeling. 2022. "Dietary Iron and the Elite Dancer" Nutrients 14, no. 9: 1936. https://doi.org/10.3390/nu14091936
APA StyleAttwell, C., Dugan, C., McKay, A. K. A., Nicholas, J., Hopper, L., & Peeling, P. (2022). Dietary Iron and the Elite Dancer. Nutrients, 14(9), 1936. https://doi.org/10.3390/nu14091936