Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Data Sources and Study Cohort
2.2. Participant Selection
2.3. PSM and Covariates
2.4. Incidence Rate and Incidence Rate Ratios
2.5. Statistical Analysis
3. Results
3.1. PSM and Study Cohort
3.2. Cancer Risk Predictors after Multivariate Cox Regression Analysis
3.3. Incidence Rates and IRRs of Different Cancer Types
3.4. Cumulative Cancer Risks and Kaplan–Meier Curve for Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janssen, I. The Epidemiology of Sarcopenia. Clin. Geriatr. Med. 2011, 27, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I. Influence of Sarcopenia on the Development of Physical Disability: The Cardiovascular Health Study. J. Am. Geriatr. Soc. 2006, 54, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Buentzel, J.; Heinz, J.; Bleckmann, A.; Bauer, C.; Röver, C.; Bohnenberger, H.; Saha, S.; Hinterthaner, M.; Baraki, H.; Kutschka, I.; et al. Sarcopenia as Prognostic Factor in Lung Cancer Patients: A Systematic Review and Meta-analysis. Anticancer. Res. 2019, 39, 4603–4612. [Google Scholar] [CrossRef] [Green Version]
- Hua, X.; Liu, S.; Liao, J.-F.; Wen, W.; Long, Z.-Q.; Lu, Z.-J.; Guo, L.; Lin, H.-X. When the Loss Costs Too Much: A Systematic Review and Meta-Analysis of Sarcopenia in Head and Neck Cancer. Front. Oncol. 2019, 9, 1561. [Google Scholar] [CrossRef]
- Shachar, S.S.; Williams, G.; Muss, H.B.; Nishijima, T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef]
- Au, P.C.-M.; Li, H.-L.; Lee, G.K.-Y.; Li, G.H.-Y.; Chan, M.; Cheung, B.M.-Y.; Wong, I.C.-K.; Lee, V.H.-F.; Mok, J.; Yip, B.H.-K.; et al. Sarcopenia and mortality in cancer: A meta-analysis. Osteoporos. Sarcopenia 2021, 7, S28–S33. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Zhou, X.-L.; Yu, C.-H.; Wang, W.-W.; Ji, F.-Z.; He, D.-C.; Zhu, W.-G.; Tong, Y.-S. Association of Sarcopenia With Toxicity and Survival in Postoperative Recurrent Esophageal Squamous Cell Carcinoma Patients Receiving Chemoradiotherapy. Front. Oncol. 2021, 11, 655071. [Google Scholar] [CrossRef]
- Giovannini, S.; Brau, F.; Forino, R.; Berti, A.; D’Ignazio, F.; Loreti, C.; Bellieni, A.; D’Angelo, E.; Di Caro, F.; Biscotti, L.; et al. Sarcopenia: Diagnosis and Management, State of the Art and Contribution of Ultrasound. J. Clin. Med. 2021, 10, 5552. [Google Scholar] [CrossRef]
- Zhang, J.; Sum, S.-Y.; Hsu, J.-G.; Chiang, M.-F.; Lee, T.-S.; Wu, S.-Y. Adjuvant Whole Breast Radiotherapy Improve Survival in Women with Heart Failure with Reduced Ejection Fraction Receiving Breast-Conserving Surgery. J. Pers. Med. 2021, 11, 1358. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.-J.; Chang, S.-C.; Hsu, C.-H.; Lin, Y.-C.; Hung, C.-H.; Wu, S.-Y. Comparison of Clinical Outcomes of Radical Prostatectomy versus IMRT with Long-Term Hormone Therapy for Relatively Young Patients with High- to Very High-Risk Localized Prostate Cancer. Cancers 2021, 13, 5986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Q.; Cheng, T.-M.; Lin, W.-C.; Chiu, K.-C.; Wu, S.-Y. Impact of Smoking-Related Chronic Obstruction Pulmonary Disease on Mortality of Invasive Ductal Carcinoma Patients Receiving Standard Treatments: Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers 2021, 13, 3654. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, A.Y.; Meskers, C.; Ling, C.H.Y.; Narici, M.; Kurrle, S.E.; Cameron, I.D.; Westendorp, R.G.J.; Maier, A.B. Defining sarcopenia: The impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. AGE 2013, 35, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Morley, J.E.; Von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachex. Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Lin, M.-H.; Chiu, S.-Y.; Chang, P.-H.; Lai, Y.-L.; Chen, P.-C.; Ho, W.-C. Hyperlipidemia and Statins Use for the Risk of New Diagnosed Sarcopenia in Patients with Chronic Kidney: A Population-Based Study. Int. J. Environ. Res. Public Health 2020, 17, 1494. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 2013, 32, 2837–2849. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yung, Y.-F.; Stokes, M. Propensity Score Methods for Causal Inference with the PSMATCH Procedure. In Proceedings of the SAS Global Forum 2017 Conference, Orlando, FL, USA, 2–5 April 2017. [Google Scholar]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2014, 33, 1242–1258. [Google Scholar] [CrossRef] [Green Version]
- Dalton, J.T.; Barnette, K.G.; Bohl, C.E.; Hancock, M.L.; Rodriguez, D.; Dodson, S.T.; Morton, R.A.; Steiner, M.S. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: Results of a double-blind, placebo-controlled phase II trial. J. Cachex. Sarcopenia Muscle 2011, 2, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, C.S.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Arch. Surg. 2006, 391, 499–510. [Google Scholar] [CrossRef]
- Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 2014, 20, 9872–9881. [Google Scholar] [CrossRef] [PubMed]
- White, M.C.; Holman, D.M.; Boehm, J.E.; Peipins, L.A.; Grossman, M.; Henley, S.J. Age and Cancer Risk: A Potentially Modifiable Relationship. Am. J. Prev. Med. 2014, 46, S7–S15. [Google Scholar] [CrossRef] [Green Version]
- Giovannucci, E.L.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalbandian, A.; Yan, B.-S.; Pichugin, A.; Bronson, R.T.; Kramnik, I. Lung carcinogenesis induced by chronic tuberculosis infection: The experimental model and genetic control. Oncogene 2009, 28, 1928–1938. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-L.; Guo, L.; Yang, S.; Ji, D.-M. Cancer risk in tuberculosis patients in a high endemic area. BMC Cancer 2021, 21, 679. [Google Scholar] [CrossRef]
- Ringelhan, M.; McKeating, J.; Protzer, U. Viral hepatitis and liver cancer. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160274. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Lv, J.; Liu, Y.; Chen, J.-G.; Ge, Z.; Zhu, J.; Dai, J.; Du, L.-B.; Yu, C.; Guo, Y.; et al. Associations Between Hepatitis B Virus Infection and Risk of All Cancer Types. JAMA Netw. Open 2019, 2, e195718. [Google Scholar] [CrossRef]
- Pelucchi, C.; Tramacere, I.; Boffetta, P.; Negri, E.; La Vecchia, C. Alcohol Consumption and Cancer Risk. Nutr. Cancer 2011, 63, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, I.; Khan, W.A.; Naz, S.; Iqbal, M.W.; Awuchi, C.G.; Egbuna, C.; Hassan, S.; Patrick-Iwuanyanwu, K.C.; Uche, C.Z. Etiology of Obesity, Cancer, and Diabetes. In Dietary Phytochemicals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–27. [Google Scholar]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidorchuk, A.; Agardh, E.E.; Aremu, O.; Hallqvist, J.; Allebeck, P.; Moradi, T. Socioeconomic differences in lung cancer incidence: A systematic review and meta-analysis. Cancer Causes Control. 2009, 20, 459–471. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1495–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.M.; Kim, J.-H.; Baik, S.J.; Chun, J.; Youn, Y.H.; Park, H. Sarcopenia and Sarcopenic Obesity as Novel Risk Factors for Gastric Carcinogenesis: A Health Checkup Cohort Study. Front. Oncol. 2019, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Won, D.D.; Oh, S.N.; Lee, Y.S.; Lee, I.K.; Kim, I.-H.; Choi, M.H.; Oh, S.T. Prognostic role of pre-sarcopenia and body composition with long-term outcomes in obstructive colorectal cancer: A retrospective cohort study. World J. Surg. Oncol. 2020, 18, 230. [Google Scholar] [CrossRef]
- Verdijk, L.B.; Snijders, T.; Drost, M.; Delhaas, T.; Kadi, F.; van Loon, L.J.C. Satellite cells in human skeletal muscle; from birth to old age. AGE 2014, 36, 545–557. [Google Scholar] [CrossRef] [Green Version]
Nonsarcopenia | Sarcopenia | SMD | |||
---|---|---|---|---|---|
N = 62,081 | N = 15,527 | ||||
n | % | n | % | ||
Age (mean ± SD) | 55.21 ± 21.35 | 57.55 ± 17.95 | 0.119 | ||
Age (y) | |||||
≤65 | 37,348 | 60.16% | 9449 | 60.86% | 0.030 |
65–75 | 14,460 | 23.29% | 3616 | 23.29% | |
75–85 | 8499 | 13.69% | 2042 | 13.15% | |
>85 | 1774 | 2.86% | 420 | 2.70% | |
Sex | 0.037 | ||||
female | 30,022 | 48.36% | 7793 | 50.19% | |
male | 32,059 | 51.64% | 7734 | 49.81% | |
CCI Score (mean ± SD) | 0.71 ± 1.11 | 0.75 ± 1.14 | 0.033 | ||
CCI Score | 0.023 | ||||
0 | 38,817 | 62.53% | 9533 | 61.40% | |
≥1 | 23,264 | 37.47% | 5994 | 38.60% | |
CCI | |||||
Congestive heart failure | 4304 | 6.93% | 1023 | 6.59% | 0.007 |
Dementia | 1857 | 2.99% | 505 | 3.25% | 0.012 |
Chronic pulmonary disease | 9642 | 15.53% | 2438 | 15.70% | 0.005 |
Rheumatic disease | 660 | 1.06% | 198 | 1.28% | 0.026 |
Liver disease | 8192 | 13.20% | 2341 | 15.08% | 0.021 |
Diabetes with complications | 2491 | 4.01% | 632 | 4.07% | 0.015 |
Hemiplegia and paraplegia | 0 | 0 | 0 | 0 | 0 |
Renal disease | 2282 | 3.68% | 550 | 3.54% | 0.002 |
AIDS | 27 | 0.04% | 5 | 0.03% | 0.001 |
Diabetes | 10,906 | 17.57% | 2748 | 17.70% | 0.003 |
Hypertension | 26,312 | 42.38% | 6553 | 42.20% | 0.004 |
Hyperlipidemia | 13,090 | 21.09% | 3453 | 22.24% | 0.028 |
TB | 1689 | 2.72% | 445 | 2.87% | 0.009 |
Pneumoconiosis | 320 | 0.52% | 79 | 0.51% | 0.001 |
Upper respiratory tract infection | 48,521 | 78.16% | 12,321 | 79.35% | 0.029 |
Hepatitis B | 1767 | 2.85% | 472 | 3.04% | 0.011 |
Hepatitis C | 58 | 0.09% | 22 | 0.14% | 0.014 |
Liver Cirrhosis | 11,706 | 18.86% | 3437 | 22.14% | 0.081 |
Inflammatory bowel disease | 1180 | 1.90% | 321 | 2.07% | 0.012 |
Familial adenomatous polyposis | 751 | 1.21% | 219 | 1.41% | 0.018 |
Urinary tract infection | 13,989 | 22.53% | 3939 | 25.37% | 0.066 |
Parkinson’s disease | 1542 | 2.48% | 424 | 2.73% | 0.015 |
Child delivery | 1116 | 1.80% | 272 | 1.75% | 0.003 |
Gum and periodontal disease | 25,203 | 40.60% | 6829 | 43.98% | 0.069 |
Gastric or duodenal ulcer | 21,648 | 34.87% | 5567 | 35.85% | 0.021 |
Sleep disorder | 26,945 | 43.40% | 7582 | 48.83% | 0.109 |
Alcohol habits | 22,439 | 36.14% | 6274 | 40.41% | 0.088 |
Cigarette smoking | 10,366 | 16.70% | 2714 | 17.48% | 0.021 |
Income levels (NTD/month) | 0.016 | ||||
Low income | 1018 | 1.64% | 265 | 1.71% | |
≤20,000 | 37,995 | 61.20% | 9534 | 61.40% | |
20,000–30,000 | 13,642 | 21.97% | 3429 | 22.08% | |
>30,000 | 9426 | 15.18% | 2299 | 14.81% | |
Urbanization | 0.041 | ||||
Rural | 19,748 | 31.81% | 5712 | 36.79% | |
Urban | 42,333 | 68.19% | 9815 | 63.21% | |
p | |||||
Follow up time, y (mean ± SD) | 7.65 ± 4.60 | 7.99 ± 4.66 | 0.481 | ||
Cancer | <0.001 | ||||
No | 57,619 | 92.81% | 13,455 | 86.66% | |
Yes | 4462 | 7.19% | 2072 | 13.34% |
Crude HR (95% CI) | p | Adjusted HR * (95% CI) | p | |||
---|---|---|---|---|---|---|
Sarcopenia (ref.: nonsarcopenia) | ||||||
Yes | 1.912 | (1.78 to 2.05) | <0.0001 | 1.277 | (1.10 to 1.36) | <0.0001 |
Sex (ref.: female) | ||||||
Male | 1.217 | (1.18 to 1.26) | <0.0001 | 1.245 | (1.21 to 1.29) | <0.0001 |
Age (ref.: ≤65; y) | ||||||
65–75 | 3.861 | (3.40 to 6.36) | <0.0001 | 3.585 | (3.13 to 6.08) | <0.0001 |
75–85 | 7.402 | (6.58 to 12.29) | <0.0001 | 7.914 | (7.10 to 11.79) | <0.0001 |
>85 | 9.615 | (8.27 to 20.06) | <0.0001 | 9.292 | (8.00 to 18.69) | <0.0001 |
Diabetes (ref.: No) | ||||||
Yes | 3.746 | (3.59 to 3.91) | <0.0001 | 1.210 | (1.15 to 1.27) | <0.0001 |
TB (ref.: No) | ||||||
Yes | 2.994 | (2.64 to 3.4) | <0.0001 | 1.156 | (1.02 to 1.31) | 0.0265 |
Hepatitis B (ref.: No) | ||||||
Yes | 2.089 | (1.91 to 2.28) | <0.0001 | 1.501 | (1.37 to 1.64) | <0.0001 |
Hepatitis C (ref.: No) | ||||||
Yes | 5.617 | (2.35 to 13.43) | 0.0001 | 2.479 | (1.03 to 5.96) | 0.0424 |
Alcohol habits (ref.: No) | ||||||
Yes | 1.302 | (1.26 to 1.35) | <0.0001 | 1.956 | (1.22 to 2.19) | 0.0124 |
Cigarette smoking (ref.: No) | ||||||
Yes | 1.166 | (1.10 to 1.24) | <0.0001 | 1.909 | (1.25 to 2.97) | 0.0023 |
Income (ref.: low income) | ||||||
≤20,000 | 0.911 | (0.76 to 1.09) | 0.3028 | 0.871 | (0.73 to 1.04) | 0.1271 |
20,000–30,000 | 0.922 | (0.82 to 2.18) | 0.3871 | 0.954 | (0.8 to 1.14) | 0.6030 |
>30,000 | 0.945 | (0.90 to 1.37) | 0.1381 | 0.790 | (0.66 to 0.95) | 0.0105 |
Cancer Types | Nonsarcopenia | Sarcopenia | IRRs * (95% CI) | p | ||||
---|---|---|---|---|---|---|---|---|
N = 62,081 | N = 15,527 | |||||||
n | % | Incidence Rate (Per 1000 Person-y) | n | % | Incidence Rate (Per 1000 Person-y) | |||
Lung cancer | 800 | 1.29% | 7.27 | 504 | 3.25% | 19.31 | 2.66 (1.15 to 2.90) | <0.0001 |
HCC | 617 | 0.99% | 6.78 | 256 | 1.65% | 12.45 | 1.84 (1.30 to 2.36) | <0.0001 |
Colorectal cancer | 650 | 1.05% | 7.26 | 320 | 2.06% | 14.81 | 2.04 (1.77 to 2.30) | <0.0001 |
Breast cancer | 267 | 0.43% | 3.00 | 102 | 0.66% | 4.69 | 1.56 (1.12 to 1.95) | 0.0002 |
Prostate cancer | 355 | 0.57% | 4.20 | 106 | 0.68% | 4.73 | 1.13 (0.75 to 1.09) | 0.1079 |
Head and Neck Cancer | 169 | 0.27% | 1.59 | 79 | 0.51% | 3.42 | 2.15 (1.44 to 2.53) | <0.0001 |
Pancreatic cancer | 65 | 0.10% | 0.75 | 52 | 0.33% | 2.83 | 3.77 (1.79 to 4.01) | <0.0001 |
Gastric cancer | 212 | 0.34% | 2.20 | 105 | 0.68% | 4.96 | 2.25 (1.54 to 3.23) | <0.0001 |
Esophageal cancer | 67 | 0.11% | 0.58 | 43 | 0.28% | 1.96 | 3.38 (1.87 to 4.11) | <0.0001 |
Ovarian cancer | 47 | 0.08% | 0.68 | 26 | 0.17% | 0.97 | 1.43 (1.10 to 2.29) | 0.0009 |
Others | 1607 | 2.59% | 17.32 | 747 | 4.81% | 32.15 | 1.86 (1.30 to 2.03) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.-Y.; Chang, C.-L.; Lu, C.-Y.; Wu, S.-Y.; Zhang, J.-Q. Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients 2022, 14, 1910. https://doi.org/10.3390/nu14091910
Sun M-Y, Chang C-L, Lu C-Y, Wu S-Y, Zhang J-Q. Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients. 2022; 14(9):1910. https://doi.org/10.3390/nu14091910
Chicago/Turabian StyleSun, Ming-Yang, Chia-Lun Chang, Chang-Yun Lu, Szu-Yuan Wu, and Jia-Qiang Zhang. 2022. "Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study" Nutrients 14, no. 9: 1910. https://doi.org/10.3390/nu14091910
APA StyleSun, M. -Y., Chang, C. -L., Lu, C. -Y., Wu, S. -Y., & Zhang, J. -Q. (2022). Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients, 14(9), 1910. https://doi.org/10.3390/nu14091910