Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. Data Collection and Measurements
2.3. Dietary Assessment
2.4. Assessment of BMI
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Micronutrient Intake in Non-Pregnant and Non-Lactating Women Aged 18–49
3.3. Dietary Univariate Analysis of Overweight and Obesity in Non-Pregnant and Non-Lactating Women Aged 18–49 Years
3.4. Multifactorial Analysis of Overweight and Obesity in Non-Pregnant and Non-Lactating Women Aged 18–49 Years
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Program
Appendix A
References
- Yaya, S.; Ghose, B. Change in nutritional status among women of childbearing age in India (1998–2016). Obes. Sci. Pract. 2020, 6, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Fall, C.H. Fetal malnutrition and long-term outcomes. Nestle Nutr. Inst. Workshop Ser. 2013, 74, 11–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Wang, J. China National Nutrition and Health Surveillance Report: 2010–2013 Population Overweight and Obesity and Decade Change; People’s Medical Publishing House: Beijing, China, 2020; pp. 27–45. [Google Scholar]
- Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: Umbrella review of the literature. BMJ 2017, 356, j477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyrakopoulou, G.; Dalamaga, M.; Spyrou, N.; Kokkinos, A. Gender Differences in Obesity-Related Cancers. Curr. Obes. Rep. 2021, 10, 100–115. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottiere, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Zemel, M.B. Nutritional and endocrine modulation of intracellular calcium: Implications in obesity, insulin resistance and hypertension. Mol. Cell Biochem. 1998, 188, 129–136. [Google Scholar] [CrossRef]
- Albarracin, C.; Fuqua, B.; Geohas, J.; Juturu, V.; Finch, M.R.; Komorowski, J.R. Combination of chromium and biotin improves coronary risk factors in hypercholesterolemic type 2 diabetes mellitus: A placebocontrolled, double-blind randomized clinical trial. J. Cardiometabolic Syndr. 2007, 2, 91–97. [Google Scholar] [CrossRef]
- Maccubbin, D.; Bays, H.E.; Olsson, A.G.; Elinoff, V.; Elis, A.; Mitchel, Y.; Sirah, W.; Betteridge, A.; Reyes, R.; Yu, Q.; et al. Lipid-modifying efficacy and tolerability of extended-release niacin/laropiprant in patients with primary hypercholesterolaemia or mixed dyslipidaemia. Int. J. Clin. Pract. 2008, 62, 1959–1970. [Google Scholar] [CrossRef]
- Lim, H.J.; Choi, Y.M.; Choue, R. Dietary intervention with emphasis on folate intake reduces serum- lipids but not plasma homocysteine levels in hyperlipidemic patients. Nutr. Res. 2008, 28, 767–774. [Google Scholar] [CrossRef]
- Olga, P.G.; Kurt, Z.L.; Jorge, L.R. Impact of micronutrient deficiencies on obesity. Nutr. Rev. 2009, 10, 559–572. [Google Scholar] [CrossRef]
- Sun, C.H.; Sun, W.G.; Fu, R.X.; Yu, X.F. The effect of iron on the expression of uncoupling protein gene in skeletal muscle of obese rats. Acta Nutr. Sin. 2003, 25, 344–348. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, C.H.; Zhou, X.R.; Song, S.L.; Jiang, L.Y. Mechanism of dietary calcium on reducing body weight of obese rats induced by diets. Chin. J. Public Health 2004, 20, 1046–1047. [Google Scholar] [CrossRef]
- Ames, B.N.; Atamna, H.; Killilea, D.W. Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol. Asp. Med. 2005, 26, 363–378. [Google Scholar] [CrossRef]
- Major, G.C.; Doucet, E.; Jacqmain, M.; St-Onge, M.; Bouchard, C.; Tremblay, A. Multivitamin and dietary supplements, body weight and appetite: Results from a cross-sectional and a randomised double-blind placebo-controlled study. Br. J. Nutr. 2008, 99, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- De Burgos, M.A.; Wartanowicz, M.; Ziemlański, S. Blood vitamin and lipid levels in overweight and obese women. Eur. J. Clin. Nutr. 1992, 46, 803–808. [Google Scholar]
- Ohrvall, M.; Tengblad, S.; Vessby, B. Lower tocopherol serum levels in subjects with abdominal adiposity. J. Intern. Med. 1993, 234, 53–60. [Google Scholar] [CrossRef]
- Viroonudomphol, D.; Pongpaew, P.; Tungtrongchitr, R.; Changbumrung, S.; Tungtrongchitr, A.; Phonrat, B.; Vudhivai, N.; Schelp, F.P. The relationships between anthropometric measurements, serum vitamin A and E concentrations and lipid profiles in overweight and obese subjects. Asia Pac. J. Clin. Nutr. 2003, 12, 73–79. [Google Scholar]
- Via, M. The malnutrition of obesity: Micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012, 2012, 103472. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Santos, M.; Costa, P.R.; Assis, A.M.; Santos, C.A.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef]
- Bento, C.; Matos, A.C.; Cordeiro, A.; Ramalho, A. Vitamin A deficiency is associated with body mass index and body adiposity in women with recommended intake of vitamin A. Nutr. Hosp. 2018, 35, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhu, X.; Fulda, K.G.; Chen, S.; Tao, M.H. Comparison of Dietary Micronutrient Intakes by Body Weight Status among Mexican-American and Non-Hispanic Black Women Aged 19–39 Years: An Analysis of NHANES 2003–2014. Nutrients 2019, 11, 2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, J.; Ho, S.; Jane, M.; Pal, S. Overweight & obese Australian adults and micronutrient deficiency. BMC Nutr. 2020, 6, 12. [Google Scholar] [CrossRef]
- Ji, C.; Shen, Y.; Su, D.; Wang, M.; Huang, L.; Hu, C. Association of dietary niacin intake with metabolic syndrome among adults in Zhejiang Province. Prev. Med. 2021, 33, 973–976. [Google Scholar] [CrossRef]
- Feng, Q.; Li, Z. Causes of obesity, related diseases and weight loss. Med. Philos. 2006, 5, 65–69. [Google Scholar]
- Li, Y.; Wang, C.; Zhu, K.; Feng, R.N.; Sun, C.H. Effects of multivitamin and mineral supplementation on adiposity, energy expenditure and lipid profiles in obese Chinese women. Int. J. Obes. 2010, 34, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Central People’s Government of the People’s Republic of China. National Nutrition Programme (2017–2030). Available online: http://www.gov.cn/zhengce/content/2017-07/13/content_5210134.htm (accessed on 13 April 2021).
- Gomez, G.; Nogueira Previdelli, A.; Fisberg, R.M.; Kovalskys, I.; Fisberg, M.; Herrera-Cuenca, M.; Cortes Sanabria, L.Y.; Yepez Garcia, M.C.; Rigotti, A.; Liria-Dominguez, M.R.; et al. Dietary Diversity and Micronutrients Adequacy in Women of Childbearing Age: Results from ELANS Study. Nutrients 2020, 12, 1994. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982−2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- National Health and Family Planning Commission of the P.R.C. WS/T 426.1-2013; Dietary Survey Method—Part 1: 24-h Recall Method. China Standards Press: Beijing, China, 2013; pp. 1–6.
- National Health and Family Planning Commission of the P.R.C. WS/T 426.2-2013; Dietary Survey Method—Part 2: Weighting Method. China Standards Press: Beijing, China, 2013; pp. 1–7.
- Ministry of Health of the People’s Republic of China. WS/T GB/T 5703-2010; Anthropometric Measurements Method in Health Surveillance. China Standards Press: Beijing, China, 2013; pp. 1–8.
- Yang, Y.Y. China Food Composition Tables, 6th ed.; Peking University Medical Press: Beijing, China, 2019. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Tables; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Tables, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Chen, C.; Kong, L. Guidelines for Prevention and Control of Overweight and Obesity in Chinese Adults; People’s Medical Publishing House: Beijing, China, 2006. [Google Scholar]
- Society, C.N. Chinese Dietary Reference Intakes (2013); Science Press: Beijing, China, 2014. [Google Scholar]
- U.S. Department of Agriculture Agricultural Research Service. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/Table_1_NIN_GEN_17.pdf (accessed on 3 November 2021).
- JAPAN Ministry of Health Labor and Welfare. National Health and Nutrition Survey. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&cycle=7&toukei=00450171&tstat=000001041744&tclass1=000001139646&layout=datalist&cycle_facet=cycle (accessed on 5 May 2021).
- Zulet, M.A.; Puchau, B.; Hermsdorff, H.H.; Navarro, C.; Martinez, J.A. Vitamin A intake is inversely related with adiposity in healthy young adults. J. Nutr. Sci. Vitaminol. 2008, 54, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ma, X.; Li, M.; Yan, S.; Zhao, H.; Pan, Y.; Wang, C.; Yao, Y.; Jin, L.; Li, B. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. adults using quantile regression analysis NHANES 2007–2014. PeerJ 2020, 8, e9127. [Google Scholar] [CrossRef]
- Bonet, M.L.; Ribot, J.; Galmes, S.; Serra, F.; Palou, A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158676. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.Y.; Wang, S.; Jurczak, M.J.; Shulman, G.I.; Moise, A.R. Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch. Biochem. Biophys. 2017, 633, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Desvarieux, M.; Nieto, F.J.; Boland, L.L.; Ballantyne, C.M.; Chambless, L.E. B vitamin status and inflammatory markers. Atherosclerosis 2003, 169, 169–174. [Google Scholar] [CrossRef]
- Zhou, S.S.; Zhou, Y. Excess vitamin intake: An unrecognized risk factor for obesity. World J. Diabetes 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Ott, E.S.; Shay, N.F. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Exp. Biol. Med. 2001, 226, 841–846. [Google Scholar] [CrossRef]
- Mantzoros, C.S.; Prasad, A.S.; Beck, F.W.; Grabowski, S.; Kaplan, J.; Adair, C.; Brewer, G.J. Zinc may regulate serum leptin concentrations in humans. J. Am. Coll. Nutr. 1998, 17, 270–275. [Google Scholar] [CrossRef]
- Yang, Y.Y. Chinese Encyclopedia of Nutrition Science; People’s Medical Publishing House: Beijing, China, 2019; pp. 1156–1159. [Google Scholar]
- Ledikwe, J.H.; Smiciklas-Wright, H.; Mitchell, D.C.; Jensen, G.L.; Friedmann, J.M.; Still, C.D. Nutritional risk assessment and obesity in rural older adults: A sex difference. Am. J. Clin. Nutr. 2003, 77, 551–558. [Google Scholar] [CrossRef]
- Zhao, L.Y.; He, Y.N. China National Nutrition and Health Surveillance Report: 2010–2013 Dietary and Nutrient Intake Status; People’s Medical Publishing House: Beijing, China, 2018; pp. 220–292. [Google Scholar]
- Bjorke-Monsen, A.L.; Ulvik, A.; Nilsen, R.M.; Midttun, O.; Roth, C.; Magnus, P.; Stoltenberg, C.; Vollset, S.E.; Reichborn-Kjennerud, T.; Ueland, P.M. Impact of Pre-Pregnancy BMI on B Vitamin and Inflammatory Status in Early Pregnancy: An Observational Cohort Study. Nutrients 2016, 8, 776. [Google Scholar] [CrossRef]
- Gunanti, I.R.; Marks, G.C.; Al-Mamun, A.; Long, K.Z. Low serum vitamin B-12 and folate concentrations and low thiamin and riboflavin intakes are inversely associated with greater adiposity in Mexican American children. J. Nutr. 2014, 144, 2027–2033. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Li, D.; Zhou, Y.; Sun, W.; Liu, Q. B-vitamin consumption and the prevalence of diabetes and obesity among the US adults: Population based ecological study. BMC Public Health 2010, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Waniek, S.; di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M.; Borggrefe, J.; Both, M.; Muller, H.P.; Kassubek, J.; et al. Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients 2017, 9, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, M.R.; Jamshidi, S.; Zarezadeh, M.; Khorshidi, M.; Olang, B.; Sajadi Hezaveh, Z.; Sohouli, M.; Aryaeian, N. Can vitamin E supplementation affect obesity indices? A systematic review and meta-analysis of twenty-four randomized controlled trials. Clin. Nutr. 2021, 40, 3201–3209. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Hu, Q.; Liu, X.; Da, M.; Yang, Z.; Qi, J.; Mo, X. Serum vitamin E concentration is negatively associated with body mass index change in girls not boys during adolescence. World J. Pediatr. 2021, 17, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Fang, X.; Marshall, M.R.; Chung, S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016, 21, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Taverne, F.; Richard, C.; Couture, P.; Lamarche, B. Abdominal obesity, insulin resistance, metabolic syndrome and cholesterol homeostasis. Pharma Nutr. 2013, 1, 130–136. [Google Scholar] [CrossRef]
- Bureau of Disease Control and Prevention, National Health and Family Planning Commission. Report on Chinese Residents’ Nutrition and Chronic Diseases 2020; People’s Medical Publishing House: Beijing, China, 2021; p. 47. (In Chinese)
- Guo, C.L.; Zhang, B.; Wang, H.J.; Feng, G.S.; Li, J.M.; Su, C.; Zhang, J.G.; Wang, Z.H.; Du, W.W. A Scan of Obesogenic Environments and a Spatial Inference of Obesity Prevalence in Chinese Children and Adolescents: Based on the Chinese Health and Nutrition Survey 2011 Data. Biomed. Environ. Sci. 2018, 31, 729–739. [Google Scholar] [CrossRef]
Variable | Overweight and Obese | ||||
---|---|---|---|---|---|
n (%) | No | Yes | X2 | p | |
Total | 12,872 (100) | 7238 (56.2) | 5634 (43.8) | ||
Age group, years | 496.674 | <0.0001 | |||
18–29 | 2517 (19.6) | 1805 (71.7) | 712 (28.3) | ||
30–39 | 3580 (27.8) | 2211 (61.8) | 1369 (38.2) | ||
40–49 | 6775 (52.6) | 3222 (47.6) | 3553 (52.4) | ||
Area type | 11.281 | 0.0008 | |||
Urban | 5296 (41.1) | 3071 (58.0) | 2225 (42.0) | ||
Rural | 7576 (58.9) | 4167 (55.0) | 3409 (45.0) | ||
Education level | 184.120 | <0.0001 | |||
Low | 9504 (73.8) | 5026 (52.9) | 4478 (47.1) | ||
Moderate | 1654 (12.8) | 1024 (61.9) | 630 (38.1) | ||
High | 1714 (13.3) | 1188 (69.3) | 526 (30.7) | ||
Marital status | 51.234 | <0.0001 | |||
Married/cohabitation | 12098 (94.0) | 6707 (55.4) | 5391 (44.6) | ||
Other | 774 (6.0) | 531 (68.6) | 243 (31.4) | ||
Employment | 6.910 | 0.0086 | |||
Non-occupational | 3093 (24.0) | 1676 (54.2) | 1417 (45.8) | ||
Occupational | 9779 (76.0) | 5562 (56.9) | 4217 (43.1) |
Variable | Total | Non-Overweight/Obese | Overweight/Obese |
---|---|---|---|
M (P25, P75) | M (P25, P75) | M (P25, P75) | |
Vitamin A (μg RE/day) | 267.0 (141.8, 485.7) | 285.8 (150.0, 505.4) | 246.1 (132.1, 457.6) ^ |
Vitamin B1 (mg/day) | 0.7 (0.5, 0.9) | 0.7 (0.5, 0.9) | 0.7 (0.5, 0.9) |
Vitamin B2 (mg/day) | 0.6 (0.5, 0.8) | 0.6 (0.5, 0.8) | 0.6 (0.5, 0.8) ^ |
Niacin (mg NE/day) | 11.9 (8.7, 15.7) | 12.3 (9.1, 16.0) | 11.3 (8.3, 15.3) ^ |
Vitamin C (mg/day) | 63.5 (40.5, 94.3) | 64.0 (40.7, 95.0) | 62.9 (40.2, 93.6) |
Vitamin E (mg/day) | 25.1 (16.5, 38) | 24.4 (15.9, 36.9) | 26.0 (17.2, 39.3) ^ |
Folate (μg/day) | 121 (80.9, 174.1) | 121.8 (81.6, 175.2) | 119.8 (80.4, 172.1) |
Calcium (mg/day) | 275.6 (203.2, 378.3) | 278.0 (205.0, 382.8) | 272.3 (201.5, 371.9) * |
Iron (mg/day) | 16.8 (13.6, 21.3) | 16.8 (13.6, 21.5) | 16.8 (13.6, 21.2) |
Zinc (mg/day) | 8.5 (6.8, 10.6) | 8.6 (6.9, 10.7) | 8.3 (6.6, 10.3) ^ |
Potassium (mg/day) | 1298.7 (1025.4, 1649) | 1296.2 (1024.3, 1655.5) | 1300.2 (1026.9, 1641.2) |
Sodium (mg/day) | 5448.8 (3930.5, 7433.9) | 5371.3 (3886.1, 7323.0) | 5559.0 (3996.1, 7528.3) ^ |
Selenium (μg/day) | 32.6 (23.8, 44.5) | 32.6 (23.7, 44.6) | 32.6 (23.9, 44.4) |
Variable | Overweight and Obese | |||
---|---|---|---|---|
No | Yes | X2 | p-Value | |
VitaminA (μg RE/day) | 58.0032 | <0.0001 | ||
Q1 (<141.77) | 1682 (23.24) | 1536 (27.26) | ||
Q2 (141.77~) | 1726 (23.85) | 1492 (26.48) | ||
Q3 (267.00~) | 1900 (26.25) | 1318 (23.39) | ||
Q4 (485.67~) | 1930 (26.66) | 1288 (22.86) | ||
Vitamin B1 (mg/day) | 2.3649 | 0.5002 | ||
Q1 (<0.52) | 1840 (25.42) | 1378 (24.46) | ||
Q2 (0.52~) | 1807 (24.97) | 1411 (25.04) | ||
Q3 (0.67~) | 1812 (25.03) | 1406 (24.96) | ||
Q4 (0.89~) | 1779 (24.58) | 1439 (25.54) | ||
Vitamin B2 (mg/day) | 18.3597 | 0.0004 | ||
Q1 (<0.46) | 1750 (24.18) | 1468 (26.06) | ||
Q2 (0.46~) | 1765 (24.39) | 1453 (25.79) | ||
Q3 (0.60~) | 1819 (25.13) | 1399 (24.83) | ||
Q4 (0.77~) | 1904 (26.31) | 1314 (23.32) | ||
Niacin (mg NE/day) | 91.0130 | <0.0001 | ||
Q1 (<8.72) | 1610 (22.24) | 1608 (28.54) | ||
Q2 (8.72~) | 1764 (24.37) | 1454 (25.81) | ||
Q3 (11.88~) | 1942 (26.83) | 1276 (22.65) | ||
Q4 (15.73~) | 1922 (26.55) | 1296 (23.00) | ||
Vitamin C (mg/day) | 2.2135 | 0.5293 | ||
Q1 (<40.49) | 1788 (24.70) | 1430 (25.38) | ||
Q2 (40.49~) | 1791 (24.74) | 1426 (25.31) | ||
Q3 (63.50~) | 1820 (25.15) | 1399 (24.83) | ||
Q4 (94.29~) | 1839 (25.41) | 1379 (24.48) | ||
Vitamin E (mg/day) | 31.8191 | <0.0001 | ||
Q1 (<16.48) | 1924 (26.58) | 1294 (22.97) | ||
Q2 (16.48~) | 1831 (25.30) | 1387 (24.62) | ||
Q3 (25.12~) | 1776 (24.54) | 1442 (25.59) | ||
Q4 (37.99~) | 1707 (23.58) | 1511 (26.82) | ||
Folate (ug/day) | 1.8800 | 0.5977 | ||
Q1 (<80.90) | 1785 (24.66) | 1433 (25.43) | ||
Q2 (80.90~) | 1800 (24.87) | 1418 (25.17) | ||
Q3 (121.01~) | 1816 (25.09) | 1402 (24.88) | ||
Q4 (174.09~) | 1837 (25.38) | 1381 (24.51) |
Variable | Overweight and Obese | |||
---|---|---|---|---|
No | Yes | X2 | p-Value | |
Calcium (mg/day) | 5.7714 | 0.1233 | ||
Q1 (<203.17) | 1775 (24.52) | 1443 (25.61) | ||
Q2 (203.17~) | 1787 (24.69) | 1431 (25.40) | ||
Q3 (275.62~) | 1813 (25.05) | 1405 (24.94) | ||
Q4 (378.34~) | 1863 (25.74) | 1355 (24.05) | ||
Iron (mg/day) | 4.8421 | 0.1837 | ||
Q1 (<13.60) | 1816 (25.09) | 1402 (24.88) | ||
Q2 (13.60~) | 1800 (24.87) | 1418 (25.17) | ||
Q3 (16.84~) | 1768 (24.43) | 1450 (25.74) | ||
Q4 (21.35~) | 1854 (25.61) | 1364 (24.21) | ||
Zinc (mg/day) | 36.6272 | <0.0001 | ||
Q1 (<6.77) | 1685 (23.28) | 1533 (27.21) | ||
Q2 (6.77~) | 1806 (24.95) | 1412 (25.06) | ||
Q3 (8.49~) | 1822 (25.17) | 1396 (24.78) | ||
Q4 (10.56~) | 1925 (26.60) | 1293 (22.95) | ||
Potassium (mg/day) | 2.3851 | 0.4964 | ||
Q1 (<1025.41) | 1816 (25.09) | 1402 (24.88) | ||
Q2 (1025.41~) | 1812 (25.03) | 1406 (24.96) | ||
Q3 (1298.68~) | 1775 (24.52) | 1443 (25.61) | ||
Q4 (1649.00~) | 1835 (25.35) | 1383 (24.55) | ||
Sodium (mg/day) | 11.4001 | 0.0097 | ||
Q1 (<3930.46) | 1874 (25.89) | 1344 (23.86) | ||
Q2 (3935.97~) | 1827 (25.24) | 1391 (24.69) | ||
Q3 (5448.84~) | 1793 (24.77) | 1425 (25.29) | ||
Q4 (7433.89~) | 1744 (24.10) | 1474 (26.16) | ||
Selenium (μg/day) | 0.5114 | 0.9164 | ||
Q1 (<23.80) | 1819 (25.13) | 1399 (24.83) | ||
Q2 (23.80~) | 1798 (24.84) | 1420 (25.20) | ||
Q3 (32.62~) | 1801 (24.88) | 1417 (25.15) | ||
Q4 (44.50~) | 1820 (25.15) | 1398 (24.81) |
Variable | β | S.E | Wald | p-Value | * OR (95% CI) |
---|---|---|---|---|---|
VitaminA (μg RE/day) | |||||
Q1 (<141.77) | 1.00 | ||||
Q2 (141.77~) | −0.0501 | 0.0535 | 0.8763 | 0.3492 | 0.951 (0.857, 1.056) |
Q3 (267.00~) | −0.2419 | 0.0568 | 18.1268 | <0.0001 | 0.785 (0.702, 0.878) |
Q4 (485.67~) | −0.2659 | 0.0619 | 18.4853 | <0.0001 | 0.766 (0.679,0.865) |
Vitamin B2 (mg/day) | |||||
Q1 (<0.46) | 1.00 | ||||
Q2 (0.46~) | 0.2279 | 0.0584 | 15.2018 | <0.0001 | 1.256 (1.120, 1.408) |
Q3 (0.60~) | 0.3480 | 0.0677 | 26.4514 | <0.0001 | 1.416 (1.240, 1.617) |
Q4 (0.77~) | 0.4156 | 0.0810 | 26.3063 | <0.0001 | 1.515 (1.293, 1.776) |
Niacin (mg NE/day) | |||||
Q1 (<8.72) | 1.00 | ||||
Q2 (8.72~) | −0.2218 | 0.0580 | 14.6098 | 0.0001 | 0.801 (0.715, 0.898) |
Q3 (11.88~) | −0.4592 | 0.0673 | 46.5061 | <0.0001 | 0.632 (0.554, 0.721) |
Q4 (15.73~) | −0.4121 | 0.0782 | 27.7384 | <0.0001 | 0.662 (0.568, 0.772) |
VitaminE (mg/day) | |||||
Q1 (<16.48) | 1.00 | ||||
Q2 (16.48~) | 0.1083 | 0.0524 | 4.2715 | 0.0388 | 1.114 (1.006, 1.235) |
Q3 (25.12~) | 0.1501 | 0.0527 | 8.1064 | 0.0044 | 1.162 (1.048, 1.288) |
Q4 (37.99~) | 0.2106 | 0.0535 | 15.483 | <0.0001 | 1.234 (1.112, 1.371) |
Zinc (mg/day) | |||||
Q1 (<6.77) | 1.00 | ||||
Q2 (6.77~) | −0.1048 | 0.0611 | 2.9449 | 0.0861 | 0.900 (0.799, 1.015) |
Q3 (8.49~) | −0.0823 | 0.0736 | 1.2484 | 0.2639 | 0.921 (0.797, 1.064) |
Q4 (10.56~) | −0.2413 | 0.0873 | 7.6448 | 0.0057 | 0.786 (0.662, 0.932) |
Sodium (mg/day) | |||||
Q1 (<3930.46) | 1.00 | ||||
Q2 (3930.46~) | 0.0350 | 0.0523 | 0.4484 | 0.5031 | 1.036 (0.935, 1.147) |
Q3 (5448.84~) | 0.0486 | 0.0525 | 0.8562 | 0.3548 | 1.050 (0.947, 1.164) |
Q4 (7433.89~) | 0.0674 | 0.0529 | 1.6268 | 0.2022 | 1.070 (0.964, 1.187) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, L.; Wei, X.; Yu, D.; Fang, H.; Cheng, X.; Piao, W.; Guo, Q.; Xu, X.; Li, S.; Cai, S.; et al. Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China. Nutrients 2022, 14, 1895. https://doi.org/10.3390/nu14091895
Ju L, Wei X, Yu D, Fang H, Cheng X, Piao W, Guo Q, Xu X, Li S, Cai S, et al. Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China. Nutrients. 2022; 14(9):1895. https://doi.org/10.3390/nu14091895
Chicago/Turabian StyleJu, Lahong, Xiaoqi Wei, Dongmei Yu, Hongyun Fang, Xue Cheng, Wei Piao, Qiya Guo, Xiaoli Xu, Shujuan Li, Shuya Cai, and et al. 2022. "Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China" Nutrients 14, no. 9: 1895. https://doi.org/10.3390/nu14091895
APA StyleJu, L., Wei, X., Yu, D., Fang, H., Cheng, X., Piao, W., Guo, Q., Xu, X., Li, S., Cai, S., & Zhao, L. (2022). Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China. Nutrients, 14(9), 1895. https://doi.org/10.3390/nu14091895