Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Physical Performance Test
2.4. Sample Collection and Selenium Determination
2.5. Statistical Evaluations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolinsky, I.; Driskell, J.A. Sports Nutrition: Vitamins and Trace Elements; CRC Press: Boca Raton, FL, USA, 2005; ISBN 1420037919. [Google Scholar]
- Rederstorff, M.; Krol, A.; Lescure, A. Understanding the importance of selenium and selenoproteins in muscle function. Cell. Mol. Life Sci. 2006, 63, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltaci, A.K.; Mogulkoc, R.; Akil, M.; Bicer, M. Selenium—Its metabolism and relation to exercise. Pak. J. Pharm. Sci. 2016, 29, 1719–1725. [Google Scholar] [PubMed]
- Mistry, H.D.; Pipkin, F.B.; Redman, C.W.G.; Poston, L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012, 206, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Mostert, V. Selenoprotein P: Properties, functions, and regulation. Arch. Biochem. Biophys. 2000, 376, 433–438. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Córdova Martínez, A.; Seco-Calvo, J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Brenneisen, P.; Steinbrenner, H.; Sies, H. Selenium, oxidative stress, and health aspects. Mol. Aspects Med. 2005, 26, 256–267. [Google Scholar] [CrossRef]
- Maynar-Mariño, M.; Grijota, F.J.; Bartolomé, I.; Siquier-Coll, J.; Román, V.T.; Muñoz, D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J. Int. Soc. Sports Nutr. 2020, 17, 1–7. [Google Scholar]
- Akil, M.; Gurbuz, U.; Bicer, M.; Sivrikaya, A.; Mogulkoc, R.; Baltaci, A.K. Effect of selenium supplementation on lipid peroxidation, antioxidant enzymes, and lactate levels in rats immediately after acute swimming exercise. Biol. Trace Elem. Res. 2011, 142, 651–659. [Google Scholar] [CrossRef]
- Behne, D.; Alber, D.; Kyriakopoulos, A. Long-term selenium supplementation of humans: Selenium status and relationships between selenium concentrations in skeletal muscle and indicator materials. J. Trace Elem. Med. Biol. 2010, 24, 99–105. [Google Scholar] [CrossRef]
- Shafiei Neek, L.; Gaeini, A.A.; Choobineh, S. Effect of zinc and selenium supplementation on serum testosterone and plasma lactate in cyclist after an exhaustive exercise bout. Biol. Trace Elem. Res. 2011, 144, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, I.; Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J. Am. Coll. Nutr. 2003, 22, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Savory, L.A.; Kerr, C.J.; Whiting, P.; Finer, N.; McEneny, J.; Ashton, T. Selenium Supplementation and Exercise: Effect on Oxidant Stress in Overweight Adults. Obesity 2012, 20, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Grijota, F.J.; Siquier-Coll, J.; Bartolome, I.; Robles, M.C.; Muñoz, D. Erythrocyte concentrations of chromium, copper, manganese, molybdenum, selenium and zinc in subjects with different physical training levels. J. Int. Soc. Sports Nutr. 2020, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Bartolomé, I.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Munõz, D. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J. Int. Soc. Sports Nutr. 2019, 16, 53. [Google Scholar] [CrossRef] [Green Version]
- Maynar, M.; Llerena, F.; Bartolomé, I.; Alves, J.; Robles, M.-C.; Grijota, F.-J.; Muñoz, D. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Siquier-Coll, J.; Bartolomé, I.; Perez-Quintero, M.; Grijota, F.J.; Arroyo, J.; Muñoz, D.; Maynar-Mariño, M. Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J. Therm. Biol. 2019, 86, 102425. [Google Scholar] [CrossRef]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Copper concentration in erythrocytes, platelets, plasma, serum and urine: Influence of physical training. J. Int. Soc. Sports Nutr. 2021, 18, 1–8. [Google Scholar] [CrossRef]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Combs, F., Jr. Biomarkers of selenium status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [Green Version]
- Levander, O.A.; Alfthan, G.; Arvilommi, H.; Gref, C.G.; Huttunen, J.K.; Kataja, M.; Koivistoinen, P.; Pikkarainen, J. Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters. Am. J. Clin. Nutr. 1983, 37, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neve, J. Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity. J. Trace Elem. Med. Biol. 1995, 9, 65–73. [Google Scholar] [CrossRef]
- Kiem, J. Selenium in platelets. In Selenium; Springer: Cham, Switzerland, 1988; pp. 83–88. [Google Scholar]
- Dalir-Naghadeh, B.; Bahrami, Y.; Rezaei, S.A.; Anassori, E.; Janalipour, A.; Khosravi, V. Platelet indices of selenium status in healthy and selenium-deficient sheep: A comparison with selenium indices in plasma, whole blood, and red blood cells. Biol. Trace Elem. Res. 2015, 168, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Influence of physical training on intracellular and extracellular zinc concentrations. J. Int. Soc. Sports Nutr. 2022, 19, 110–125. [Google Scholar] [CrossRef]
- Aibar, A.; García González, L.; Abarca Sos, A.; Murillo, B.; Zaragoza, J. Testing the validity of the International Physical Activity Questionnaire in early spanish adolescent: A modified protocol for data collection. Sport TK Rev. Euroam. Ciencias Deport. 2016, 5, 2. [Google Scholar]
- Porta, J.; Galiano, D.; Tejedo, A.; González, J.M. Valoración de la composición corporal. Utopías y realidades. In Manual de Cineantropometría; Esparza Ros, F., Ed.; Grupo Español de Cineantropometría: Madrid, Spain, 1993; pp. 113–170. [Google Scholar]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Heffernan, S.; Horner, K.; De Vito, G.; Conway, G.; Heffernan, S.M.; Horner, K.; De Vito, G.; Conway, G.E. The Role of Mineral and Trace Element Supplementation in Exercise and Athletic Performance: A Systematic Review. Nutrients 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Wardenaar, F.; Brinkmans, N.; Ceelen, I.; Van Rooij, B.; Mensink, M.; Witkamp, R.; De Vries, J. Micronutrient intakes in 553 Dutch elite and sub-elite athletes: Prevalence of low and high intakes in users and non-users of nutritional supplements. Nutrients 2017, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Margaritis, I.; Rousseau, A.-S.; Hininger, I.; Palazzetti, S.; Arnaud, J.; Roussel, A.-M. Increase in selenium requirements with physical activity loads in well-trained athletes is not linear. BioFactors 2005, 23, 45–55. [Google Scholar] [CrossRef]
- Calleja, C.A.; Hurtado, M.M.C.; Daschner, Á.; Escámez, P.F.; Abuín, C.M.F.; Pons, R.M.G.; Fandos, M.E.G.; Muñoz, M.J.G.; López-García, E.; Vinuesa, J.M. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la Población Española. Rev. Com. Científico AESAN 2019, 43–68. [Google Scholar]
- Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of assessment of selenium status in humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2025s–2039s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Piao, J.; Li, M.; Zhang, Y.; Yun, C.; Yang, C.; Yang, X. Assessment of selenium nutritional status of school-age children from rural areas of China in 2002 and 2012. Eur. J. Clin. Nutr. 2016, 70, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.M.; Dawczynski, C.; Wiest, J.; Lorkowski, S.; Kipp, A.P.; Schwerdtle, T. Functional biomarkers for the selenium status in a human nutritional intervention study. Nutrients 2020, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O’Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Longnecker, M.P.; Stram, D.O.; Taylor, P.R.; Levander, O.A.; Howe, M.; Veillon, C.; McAdam, P.A.; Patterson, K.Y.; Holden, J.M.; Morris, J.S. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology 1996, 7, 384–390. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Human Biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef]
- Lu, Y.; Ahmed, S.; Harari, F.; Vahter, M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J. Trace Elem. Med. Biol. 2015, 29, 249–254. [Google Scholar] [CrossRef]
- Catalani, S.; Marini, M.; Consolandi, O.; Gilberti, M.E.; Apostoli, P. Potenzialità ed utilità del dosaggio di elementi metallici nelle piastrine. G Ital. Med. Lav. Erg. 2008, 30, 115–118. [Google Scholar]
- Sanz Alaejos, M.; Diaz Romero, C. Urinary selenium concentrations. Clin. Chem. 1993, 39, 2040–2052. [Google Scholar] [CrossRef]
- Rousseau, A.-S.; Margaritis, I.; Arnaud, J.; Faure, H.; Roussel, A.-M. Physical activity alters antioxidant status in exercising elderly subjects. J. Nutr. Biochem. 2006, 17, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors. Sci. Total Environ. 2010, 408, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Tessier, F.; Margaritis, I.; Richard, M.-J.; Moynot, C.; Marconnet, P. Selenium and training effects on the glutathione system and aerobic performance. Med. Sci. Sports Exerc. 1995, 27, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Muñoz, D.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Llerena, F. Influence of an Acute Exercise Until Exhaustion on Serum and Urinary Concentrations of Molybdenum, Selenium, and Zinc in Athletes. Biol. Trace Elem. Res. 2018, 186, 361–369. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000, 130, 1653–1656. [Google Scholar] [CrossRef] [Green Version]
- Pograjc, L.; Stibilj, V.; Falnoga, I. Impact of Intensive Physical Activity on Selenium Status. Biol. Trace Elem. Res. 2012, 145, 291–299. [Google Scholar] [CrossRef]
- Kasperek, K.; Lombeck, I.; Kiem, J.; Iyengar, G.V.; Wang, Y.X.; Feinendegen, L.E.; Bremer, H.J. Platelet selenium in children with normal and low selenium intake. Biol. Trace Elem. Res. 1982, 4, 29–34. [Google Scholar] [CrossRef]
- Bibow, K.; Meltzer, H.M.; Mundal, H.H.; Paulsen, I.T.; Holm, H. Platelet selenium as indicator of wheat selenium intake. J. Trace Elem. Electrolytes Health Dis. 1993, 7, 171–176. [Google Scholar]
- Accattato, F.; Greco, M.; Pullano, S.A.; Carè, I.; Fiorillo, A.S.; Pujia, A.; Montalcini, T.; Foti, D.P.; Brunetti, A.; Gulletta, E. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS ONE 2017, 12, e0178900. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.D.; Tauler, P.; Sureda, A.; Tur, J.A.; Pons, A. Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise. J. Sports Sci. 2009, 27, 49–58. [Google Scholar] [CrossRef]
- Milias, G.A.; Nomikos, T.; Fragopoulou, E.; Athanasopoulos, S.; Antonopoulou, S. Effects of baseline serum levels of Se on markers of eccentric exercise-induced muscle injury. Biofactors 2006, 26, 161–170. [Google Scholar] [CrossRef] [PubMed]
Parameters | CG (n = 20) | TG (n = 20) |
---|---|---|
Muscle (%) | 44.22 ± 5.71 | 49.03 ± 2.56 * |
Fat (%) | 15.64 ± 5.78 | 9.32 ± 2.76 * |
VO2max (mL/kg/min) | 45.61 ± 4.95 | 61.02 ± 4.35 ** |
VEmax (L/min) | 88.34 ± 11.18 | 120.56 ± 18.79 ** |
Resting heart rate (bpm) | 67.31 ± 6.49 | 54.41 ± 5.29 * |
Maximum heart rate (bpm) | 189.3 ± 7.1 | 193.8 ± 6.5 |
Physical activity (MET-hours/weekly) | 27.36 ± 4.45 | 56.13 ± 6.21 ** |
Parameters | CG (n = 20) | TG (n = 20) |
---|---|---|
Energy (Kcal/day) | 2112.34 ± 345.78 | 2456.16 ± 504.11 |
Water (L/day) | 1.145 ± 0.241 | 1.421 ± 0.356 |
Carbohydrates (g/kg/day) | 3.11 ± 1.28 | 3.98 ± 1.78 |
Proteins (g/kg/day) | 1.25 ± 0.37 | 1.44 ± 0.41 |
Lipids (g/kg/day) | 1.51 ± 0.47 | 1.64 ± 0.31 |
Se (μg/day) | 97.33 ± 14.85 | 101.25 ± 16.41 |
Parameters | CG (n = 20) | TG (n = 20) | ES |
---|---|---|---|
Erythrocytes (cell 1012 /L) | 4.81 ± 0.72 | 4.76 ± 0.89 | 0.14 |
Platelets (cell 109 /L) | 190.23 ± 67.13 | 198.35 ± 60.51 | 0.17 |
Parameters | CG (n = 20) | TG (n = 20) | ES |
---|---|---|---|
Plasma (μg/L) | 91.16 ± 9.98 | 90.13 ± 8.56 | 0.07 |
Serum (μg/L) | 80.63 ± 8.14 | 76.42 ± 7.47 | 0.36 |
Urine (μg/L) | 31.44 ± 11.18 | 28.68 ± 5.78 | 0.13 |
Parameters | CG (n = 20) | TG (n = 20) | ES |
---|---|---|---|
Erythrocytes (μg/L) | 139.28 ± 23.64 | 102.25 ± 25.46 ** | 1.08 |
Erythrocytes (pg/cell10−6) | 28.73 ± 3.69 | 21.75 ± 5.67 ** | 0.86 |
Platelets (μg/L) | 9.86 ± 2.91 | 6.90 ± 2.11 ** | 0.67 |
Platelets (pg/cell 10−3) | 0.051 ± 0.011 | 0.034 ± 0.009 * | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Román, V.; Bartolomé, I.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level. Nutrients 2022, 14, 1857. https://doi.org/10.3390/nu14091857
Toro-Román V, Bartolomé I, Siquier-Coll J, Robles-Gil MC, Muñoz D, Maynar-Mariño M. Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level. Nutrients. 2022; 14(9):1857. https://doi.org/10.3390/nu14091857
Chicago/Turabian StyleToro-Román, Víctor, Ignacio Bartolomé, Jesús Siquier-Coll, María C. Robles-Gil, Diego Muñoz, and Marcos Maynar-Mariño. 2022. "Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level" Nutrients 14, no. 9: 1857. https://doi.org/10.3390/nu14091857