Calcifediol (25OHD) Deficiency and Its Treatment in Women’s Health and Fertility
Abstract
:1. Introduction
2. The Vitamin D Endocrine System and Infertility
2.1. VDES/VDR and Embryo Development/Implantations/Clinical Pregnancy/Live Birth Rate after In Vitro Fertilization/Intracytoplasmic Sperm Injection (ICSI)
2.2. Anti-Müllerian Hormone (AMH) and Calcifediol Status
2.3. Polycystic Ovary Syndrome and Calcifediol
2.4. The VDES and Uterine Fibroids
2.5. Vitamin D Supplementation and IVF
3. VDES and Pregnancy Outcomes
3.1. VDES and Birth Weight
3.2. The VDES and Preeclampsia
3.3. The VDES and Gestational Diabetes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [Green Version]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Halhali, A.; Acker, G.M.; Garabédian, M. 1,25-Dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J. Reprod. Fertil. 1991, 91, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Merhi, Z. Role of vitamin D in ovarian physiology and its implication in reproduction: A systematic review. Fertil. Steril. 2014, 102, 460–468.e3. [Google Scholar] [CrossRef]
- Chu, J.; Gallos, I.; Tobias, A.; Tan, B.; Eapen, A.; Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Hum. Reprod. 2018, 33, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Gomez, J.M.; Bouillon, R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018, 29, 1697–1711. [Google Scholar] [CrossRef]
- Wagner, C.L.; McNeil, R.; Hamilton, S.A.; Winkler, J.; Rodriguez Cook, C.; Warner, G.; Bivens, B.; Davis, D.J.; Smith, P.G.; Murphy, M.; et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina. Am. J. Obstet. Gynecol. 2013, 208, e1–e13. [Google Scholar] [CrossRef] [Green Version]
- Dirks, N.F.; Ackermans, M.T.; Lips, P.; de Jongh, R.T.; Vervloet, M.G.; de Jonge, R.; Heijboer, A.C. The When, What & How of Measuring Vitamin D Metabolism in Clinical Medicine. Nutrients 2018, 10, 482. [Google Scholar]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Iliuta, F.; Pijoan, J.I.; Lainz, L.; Exposito, A.; Matorras, R. Women’s vitamin D levels and IVF results: A systematic review of the literature and meta-analysis, considering three categories of vitamin status (replete, insufficient and deficient). Hum. Fertil. 2020, 1–19. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Handa, Y.; Uematsu, Y.; Takeda, S.; Sekine, K.; Yoshihara, Y.; Kawakami, T.; Arioka, K.; Sato, H.; Uchiyama, Y.; et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet. 1997, 16, 391–396. [Google Scholar] [CrossRef]
- Ozkan, S.; Jindal, S.; Greenseid, K.; Shu, J.; Zeitlian, G.; Hickmon, C.; Pal, L. Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil. Steril. 2010, 94, 1314–1319. [Google Scholar] [CrossRef] [Green Version]
- Revelli, A.; Delle Piane, L.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular fluid content and oocyte quality: From single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Muyayalo, K.P.; Song, S.; Zhai, H.; Liu, H.; Huang, D.H.; Zhou, H.; Chen, Y.J.; Liao, A.H. Low vitamin D levels in follicular fluid, but not in serum, are associated with adverse outcomes in assisted reproduction. Arch. Gynecol. Obstet. 2022, 305, 505–517. [Google Scholar] [CrossRef]
- Ciepiela, P.; Dulęba, A.J.; Kowaleczko, E.; Chełstowski, K.; Kurzawa, R. Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome. J. Assist. Reprod. Genet. 2018, 35, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Anifandis, G.M.; Dafopoulos, K.; Messini, C.I.; Chalvatzas, N.; Liakos, N.; Pournaras, S.; Messinis, I.E. Prognostic value of follicular fluid 25-OH vitamin D and glucose levels in the IVF outcome. Reprod. Biol. Endocrinol. 2010, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Arnanz, A.; De Munck, N.; El Khatib, I.; Bayram, A.; Abdala, A.; Melado, L.; Lawrenz, B.; Coughlan, C.; Pacheco, A.; Garcia-Velasco, J.A.; et al. Vitamin D in Follicular Fluid Correlates With the Euploid Status of Blastocysts in a Vitamin D Deficient Population. Front. Endocrinol. 2021, 11, 609524. [Google Scholar] [CrossRef]
- Rudick, B.; Ingles, S.; Chung, K.; Stanczyk, F.; Paulson, R.; Bendikson, K. Characterizing the influence of vitamin D levels on IVF outcomes. Hum. Reprod. 2012, 27, 3321–3327. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, L.; Song, J.; Qian, K. The effect of serum vitamin D levels in couples on embryo development and clinical outcomes. Reprod. Biomed. Online 2019, 38, 699–710. [Google Scholar] [CrossRef]
- Monastra, G.; De Grazia, S.; De Luca, L.; Vittorio, S.; Unfer, V. Vitamin D: A steroid hormone with progesterone-like activity. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2502–2512. [Google Scholar]
- Lin, K.W. Vitamin D Screening and Supplementation in Primary Care: Time to Curb Our Enthusiasm. Am. Fam. Physician 2018, 97, 226–227. [Google Scholar]
- Du, H.; Daftary, G.S.; Lalwani, S.I.; Taylor, H.S. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol. Endocrinol. 2005, 19, 2222–2233. [Google Scholar] [CrossRef] [Green Version]
- Aleyasin, A.; Hosseini, M.A.; Mahdavi, A.; Safdarian, L.; Fallahi, P.; Mohajeri, M.R.; Abbasi, M.; Esfahani, F. Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 159, 132–137. [Google Scholar] [CrossRef]
- Firouzabadi, R.D.; Rahmani, E.; Rahsepar, M.; Firouzabadi, M.M. Value of follicular fluid vitamin D in predicting the pregnancy rate in an IVF program. Arch. Gynecol. Obstet. 2014, 289, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Franasiak, J.M.; Molinaro, T.A.; Dubell, E.K.; Scott, K.L.; Ruiz, A.R.; Forman, E.J.; Werner, M.D.; Hong, K.H.; Scott, R.T., Jr. Vitamin D levels do not affect IVF outcomes following the transfer of euploid blastocysts. Am. J. Obstet. Gynecol. 2015, 212, e1–e6. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, X.; Xu, B.; Yan, Y.; Zhang, Q.; Li, Y. Whether vitamin D was associated with clinical outcome after IVF/ICSI: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2018, 16, 13. [Google Scholar] [CrossRef] [Green Version]
- Farrell, C.J.; Martin, S.; McWhinney, B.; Straub, I.; Williams, P.; Herrmann, M. State-of-the-art vitamin D assays: A comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin. Chem. 2012, 58, 531–542. [Google Scholar] [CrossRef]
- Klimczak, A.M.; Franasiak, J.M. Vitamin D in human reproduction: Some answers and many more questions. Fertil. Steril. 2021, 115, 590–591. [Google Scholar] [CrossRef]
- Jukic, A.M.Z.; Baird, D.D.; Weinberg, C.R.; Wilcox, A.J.; McConnaughey, D.R.; Steiner, A.Z. Pre-conception 25-hydroxyvitamin D (25(OH)D) and fecundability. Hum. Reprod. 2019, 34, 2163–2172. [Google Scholar] [CrossRef]
- Fabris, A.; Pacheco, A.; Cruz, M.; Puente, J.M.; Fatemi, H.; Garcia-Velasco, J.A. Impact of circulating levels of total and bioavailable serum vitamin D on pregnancy rate in egg donation recipients. Fertil. Steril. 2014, 102, 1608–1612. [Google Scholar] [CrossRef]
- Rudick, B.J.; Ingles, S.A.; Chung, K.; Stanczyk, F.Z.; Paulson, R.J.; Bendikson, K.A. Influence of vitamin D levels on in vitro fertilization outcomes in donor-recipient cycles. Fertil. Steril. 2014, 101, 447–452. [Google Scholar] [CrossRef]
- Abedi, S.; Taebi, M. Effect of Vitamin D Supplementation on Intracytoplasmic Sperm Injection Outcomes: A Randomized Double-Blind Placebo-Controlled Trial. Int. J. Fertil. Steril. 2019, 13, 18–23. [Google Scholar]
- Polyzos, N.P.; Anckaert, E.; Guzman, L.; Schiettecatte, J.; Van Landuyt, L.; Camus, M.; Smitz, J.; Tournaye, H. Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Hum. Reprod. 2014, 29, 2032–2040. [Google Scholar] [CrossRef] [Green Version]
- Farzadi, L.; Khayatzadeh Bidgoli, H.; Ghojazadeh, M.; Bahrami, Z.; Fattahi, A.; Latifi, Z.; Shahnazi, V.; Nouri, M. Correlation between follicular fluid 25-OH vitamin D and assisted reproductive outcomes. Iran. J. Reprod. Med. 2015, 13, 361–366. [Google Scholar]
- Paffoni, A.; Ferrari, S.; Viganò, P.; Pagliardini, L.; Papaleo, E.; Candiani, M.; Tirelli, A.; Fedele, L.; Somigliana, E. Vitamin D deficiency and infertility: Insights from in vitro fertilization cycles. J. Clin. Endocrinol. Metab. 2014, 99, E2372–E2376. [Google Scholar] [CrossRef]
- Abadia, L.; Gaskins, A.J.; Chiu, Y.H.; Williams, P.L.; Keller, M.; Wright, D.L.; Souter, I.; Hauser, R.; Chavarro, J.E. Environment and Reproductive Health Study Team. Serum 25-hydroxyvitamin D concentrations and treatment outcomes of women undergoing assisted reproduction. Am. J. Clin. Nutr. 2016, 104, 729–735. [Google Scholar]
- Merhi, Z.; Doswell, A.; Krebs, K.; Cipolla, M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab. 2014, 99, E1137–E1145. [Google Scholar] [CrossRef] [Green Version]
- Merhi, Z.O.; Seifer, D.B.; Weedon, J.; Adeyemi, O.; Holman, S.; Anastos, K.; Golub, E.T.; Young, M.; Karim, R.; Greenblatt, R.; et al. Circulating vitamin D correlates with serum antimüllerian hormone levels in late-reproductive-aged women: Women’s Interagency HIV Study. Fertil. Steril. 2012, 98, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Jukic, A.M.Z.; Baird, D.D.; Wilcox, A.J.; Weinberg, C.R.; Steiner, A.Z. 25-Hydroxyvitamin D (25(OH)D) and biomarkers of ovarian reserve. Menopause 2018, 25, 811–816. [Google Scholar] [CrossRef]
- Drakopoulos, P.; van de Vijver, A.; Schutyser, V.; Milatovic, S.; Anckaert, E.; Schiettecatte, J.; Blockeel, C.; Camus, M.; Tournaye, H.; Polyzos, N.P. The effect of serum vitamin D levels on ovarian reserve markers: A prospective cross-sectional study. Hum. Reprod. 2017, 32, 208–214. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Darmon, S.K.; Barad, D.H.; Gleicher, N.; Kushnir, V.A. Vitamin D levels are not associated with ovarian reserve in a group of infertile women with a high prevalance of diminished ovarian reserve. Fertil. Steril. 2018, 110, 761–766.e1. [Google Scholar] [CrossRef] [Green Version]
- Bednarska-Czerwińska, A.; Olszak-Wąsik, K.; Olejek, A.; Czerwiński, M.; Tukiendorf, A.A. Vitamin D and Anti-Müllerian Hormone Levels in Infertility Treatment: The Change-Point Problem. Nutrients 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Thomson, R.L.; Spedding, S.; Buckley, J.D. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin. Endocrinol. 2012, 77, 343–350. [Google Scholar] [CrossRef]
- Moridi, I.; Chen, A.; Tal, O.; Tal, R. The Association between Vitamin D and Anti-Müllerian Hormone: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1567. [Google Scholar] [CrossRef]
- Cramer, S.F.; Patel, A. The frequency of uterine leiomyomas. Am. J. Clin. Pathol. 1990, 94, 435–438. [Google Scholar] [CrossRef]
- Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. Obstet. 2020, 149, 3–9. [Google Scholar] [CrossRef]
- Pritts, E.A.; Parker, W.H.; Olive, D.L. Fibroids and infertility: An updated systematic review of the evidence. Fertil. Steril. 2009, 91, 1215–1223. [Google Scholar] [CrossRef]
- Brakta, S.; Diamond, J.S.; Al-Hendy, A.; Diamond, M.P.; Halder, S.K. Role of vitamin D in uterine fibroid biology. Fertil. Steril. 2015, 104, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.K.; Goodwin, J.S.; Al-Hendy, A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J. Clin. Endocrinol. Metab. 2011, 96, E754–E762. [Google Scholar] [CrossRef]
- Baird, D.D.; Hill, M.C.; Schectman, J.M.; Hollis, B.W. Vitamin d and the risk of uterine fibroids. Epidemiology 2013, 24, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciavattini, A.; Delli Carpini, G.; Serri, M.; Vignini, A.; Sabbatinelli, J.; Tozzi, A.; Aggiusti, A.; Clemente, N. Hypovitaminosis D and “small burden” uterine fibroids: Opportunity for a vitamin D supplementation. Medicine 2016, 95, e5698. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Gupta, H.P.; Singhi, S.; Khanduri, S.; Rathore, B. Evaluation of 25-hydroxy vitamin D3 levels in patients with a fibroid uterus. J. Obstet. Gynaecol. 2020, 40, 710–714. [Google Scholar] [CrossRef]
- Mitro, S.D.; Zota, A.R. Vitamin D and uterine leiomyoma among a sample of US women: Findings from NHANES, 2001–2006. Reprod. Toxicol. 2015, 57, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Hajhashemi, M.; Ansari, M.; Haghollahi, F.; Eslami, B. The effect of vitamin D supplementation on the size of uterine leiomyoma in women with vitamin D deficiency. Casp. J. Intern. Med. 2019, 10, 125–131. [Google Scholar]
- Arjeh, S.; Darsareh, F.; Asl, Z.A.; Azizi Kutenaei, M. Effect of oral consumption of vitamin D on uterine fibroids: A randomized clinical trial. Complement. Ther. Clin. Pract. 2020, 39, 101159. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Song, Y.; Liu, Y.; Jiang, C.; Zhu, X. Association between vitamin D and uterine fibroids: A study protocol of an open-label, randomised controlled trial. BMJ Open 2020, 10, e038709. [Google Scholar] [CrossRef] [PubMed]
- Pacis, M.M.; Fortin, C.N.; Zarek, S.M.; Mumford, S.L.; Segars, J.H. Vitamin D and assisted reproduction: Should vitamin D be routinely screened and repleted prior to ART? A systematic review. J. Assist. Reprod. Genet. 2015, 32, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Paffoni, A.; Somigliana, E.; Sarais, V.; Ferrari, S.; Reschini, M.; Makieva, S.; Papaleo, E.; Viganò, P. Effect of vitamin D supplementation on assisted reproduction technology (ART) outcomes and underlying biological mechanisms: Protocol of a randomized clinical controlled trial. The “supplementation of vitamin D and reproductive outcome” (SUNDRO) study. BMC Pregnancy Childbirth 2019, 19, 395. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Alhambra, M.R.; Cortés, M.; Jódar, E.; Huguet, I.; Rozas, P.; Varsavsky, M.; Ávila, V.; Muñoz, A.; Muñoz, M. Guide of management of alterations in mineral and bone metabolism during gestation and lactation. Endocrinol. Diabetes Nutr. 2022, in press. [Google Scholar] [CrossRef]
- Zhang, M.X.; Pan, G.T.; Guo, J.F.; Li, B.Y.; Qin, L.Q.; Zhang, Z.L. Vitamin D Deficiency Increases the Risk of Gestational Diabetes Mellitus: A Meta-Analysis of Observational Studies. Nutrients 2015, 7, 8366–8375. [Google Scholar] [CrossRef] [Green Version]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D supplementation during pregnancy: State of the evidence from a systematic review of randomised trials. BMJ 2017, 359, j5237. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Cordero, M.; Lasserrot-Cuadrado, A.; Mur-Villar, N.; León-Ríos, X.; Rivero-Blanco, T.; Pérez-Castillo, I. Vitamin D, preeclampsia and prematurity: A systematic review and meta-analysis of observational and interventional studies. Midwifery 2020, 87, 102707. [Google Scholar] [CrossRef] [PubMed]
- Bialy, L.; Fenton, T.; Shulhan-Kilroy, J.; Johnson, D.; McNeil, D.; Hartling, L. Vitamin D supplementation to improve pregnancy and perinatal outcomes: An overview of 42 systematic reviews. BMJ Open 2020, 10, e032626. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.; Shin, S.; Kim, M.; Joung, H.; Chung, J. Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvitamin D concentration on infant birth weight. Nutrition 2017, 35, 36–42. [Google Scholar] [CrossRef]
- Wei, S.Q. Vitamin D and pregnancy outcomes. Curr. Opin. Obstet. Gynecol. 2014, 26, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Fang, K.; He, Y.; Mu, M.; Liu, K. Maternal vitamin D deficiency during pregnancy and low birth weight: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2019, 34, 1167–1173. [Google Scholar] [CrossRef]
- Maugeri, A.; Barchitta, M.; Blanco, I.; Agodi, A. Effects of Vitamin D Supplementation During Pregnancy on Birth Size: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Fang, R.; Yu, R.; Chen, D.; Zhao, J.; Xiao, J. Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China. Nutrients 2017, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.D.; Wang, Y.; Guo, J.J.; Zhou, L.; Wang, N. Vitamin D Enhances Efficacy of Oral Nifedipine in Treating Preeclampsia with Severe Features: A Double Blinded, Placebo-Controlled and Randomized Clinical Trial. Front. Pharmacol. 2017, 8, 865. [Google Scholar] [CrossRef] [Green Version]
- Fogacci, S.; Fogacci, F.; Banach, M.; Michos, E.; Hernandez, A.; Lip, G.; Blaha, M.J.; Toth, P.P.; Borghi, C.; Cicero, A.F.G.; et al. Vitamin D supplementation and incident preeclampsia: A systematic review and meta-analysis of randomized clinical trials. Clin. Nutr. 2020, 39, 1742–1752. [Google Scholar] [CrossRef]
- Serrano-Díaz, N.; Gamboa-Delgado, E.; Domínguez-Urrego, C.; Vesga-Varela, A.; Serrano-Gómez, S.; Quintero-Lesmes, D. Vitamina D y riesgo de preeclampsia: Revisión sistemática y metaanálisis. Biomédica 2017, 38, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Guariguata, L.; Linnenkamp, U.; Beagley, J.; Whiting, D.R.; Cho, N.H. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res. Clin. Pract. 2014, 103, 176–185. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, C.; Song, Y.; Zhang, Z. Serum vitamin D deficiency and risk of gestational diabetes mellitus: A meta-analysis. Arch. Med. Sci. 2020, 16, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Jayanthy, R.; Mudiganti, N. Effect of vitamin D supplementation on Glucose Tolerance, HOMA indices and on the risk of GDM in pregnant women with vitamin D deficiency—A prospective interventional study. Endocr. Abstr. 2017, 49, EP475. [Google Scholar] [CrossRef]
- Ojo, O.; Weldon, S.; Thompson, T.; Vargo, E. The Effect of Vitamin D Supplementation on Glycaemic Control in Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int. J. Environ. Res. Public Health 2019, 16, 1716. [Google Scholar] [CrossRef] [Green Version]
Author(s), Year | Study Design | Participants (n) and Main Inclusion Criteria | Intervention | Source of Sample | Clinical Outcome Measures | 25(OH)D STATUS | 25(OH)D Measured | Conclusion |
---|---|---|---|---|---|---|---|---|
Muyayalo et al., 2021 [14] | Prospective cohort study | 132 IVF patients | 130 fresh ET on day 3 or FET at blastocyst stage | Pooled follicular fluid | Fertilization embryo quality, IR and CPR | Deficient < 20 ng/mL; Insufficient 20–29 ng/mL; Replete ≥ 30 ng/mL | 25(OH)D | 25(OH)D levels in FF but not in serum were associated with fertilization, embryo quality, IR and CPR |
Ciepiela et al., 2018 [15] | Prospective cohort study | 198 IVF patients | 88 fresh SET on day 3 and 18 ETs on day 5 | Pooled follicular fluid and serum | Embryo quality | Deficient < 20 ng/mL; Sufficient ≥ 20 ng/mL | 25(OH)D | 25(OH)D levels in FF correlates negatively with fertilization and embryo development. |
Anifandis et al., 2010 [16] | Prospective cohort study | 101 IVF patients | 86 fresh ET on day 3 | Pooled follicular fluid | Embryo quality and IVF outcomes | Deficient < 20ng/mL; Insufficient 20–29 ng/mL; Replete ≥ 30 ng/mL | 25(OH)D and Glucose levels | Increased 25(OH)D levels in combination with decreased glucose levels have a negative impact on embryo quality and therefore on IVF outcome |
Arnanz et al., 2021 [17] | Prospective observational study | 37 IVF patients | 114 biopsied blastocysts | Individual follicular fluid and serum | Blastocyst ploidy status | Deficient < 20 ng/mL; Non-deficient ≥ 20 ng/mL | 25(OH)D, bioavailable 25(OH)D, free 25(OH)D and % free 25(OH)D | 25(OH)D non-deficient patients have a significantly higher probability of obtaining a euploid blastocyst compared to VitD deficient patients |
Rudick et al., 2012 [18] | Retrospective cohort study | 188 infertile women undergoing IVF treatment | Fresh ET on day 3 and day 5 | Serum | Embryo quality mean number of cells, fragmentation on day 3 and CPR | Deficient < 20 ng/mL; Insufficient 20–29 ng/mL; Replete ≥ 30 ng/mL | 25(OH)D | VitD deficiency is associated with lower pregnancy rates in non-hispanic whites. VitD deficiency was not associated with IVF outcomes |
Jiang L. et al., 2019 [19] | Retrospective cohort study | 1883 women and 1720 men undergoing IVF treatment | Fresh ET on day 3 | Serum in women and men | Embryo development at cleavage and blastocyst stage. IR, CPR, miscarriage rate and LBR | Not specified | 25(OH)D | No correlation between serum 25(OH)D levels in women and men and embryo development (cleavage and blastocyst stage) and clinical outcomes |
Ozkan et al., 2010 [12] | Prospective cohort study | 84 IVF patients | Fresh ET on day 3 | Serum and follicular fluid | CPR | Deficient < 20 ng/mL; Insufficient 20–29 ng/mL; Replete ≥ 30 ng/mL | 25(OH)D | High 25(OH)D in FF and serum levels were related to higher CPR |
Fabris et al., 2014 [30] | Retrospective study | 267 recipients of donated oocytes | Fresh ET on day 3 | Serum | IR, CPR and OPR | Deficient < 20 ng/mL; Insufficient 20–29 ng/mL; Replete ≥ 30 ng/mL | 25(OH)D and bioavailable 25(OH)D | No significant correlation between 25(OH)D levels and CPR in recipients of donated oocytes |
Rudick et al., 2014 [31] | Retrospective cohort study | 99 recipients of donated oocytes | Fresh ET on day or 5 | Serum | CPR in donor-recipient IVF cycles | Deficient < 20 ng/mL; Insufficient 20–30 ng/mL; Replete > 30 ng/mL | 25(OH)D | 25(OH)D < 30 ng/mL levels in recipients of donated oocytes showed lower PR |
Abedi et al., 2019 [32] | Double-blind clinical trial | 108 IVF patients randomly allocated: VitD supplements 6 weeks before oocyte retrieval (n = 54) or placebo as a control group (n = 54) | VitD supplementation (42 participants) and placebo (43 participants) | Serum | Number of oocytes retrieved, oocyte maturity, fertilization rate, rate of embryo quality, endometrial quality and CPR | Deficient < 30 ng/mL | 25(OH)D | 25(OH)D supplementation is effective in improving the clinical outcome of ICSI |
Polyzos et al., 2014 [33] | Retrospective cohort study | 508 IVF patients undergoing SET on day 5 | 368 IVF patients undergoing SET on day 5 | Serum | Ovarian response to stimulation and CPR | Deficient < 20 ng/mL; Insufficient 20–30 ng/mL; Replete > 30 ng/mL | 25(OH)D | Low 25(OH)D levels were related to lower CPR and LBR |
Farzadi et al., 2015 [34] | Prospective observational study | 80 IVF patients | 80 fresh ET on day 3 | Serum and pooled follicular fluid | Number and quality of oocytes and IR | Not specified | 25(OH)D | 25(OH)D levels don’t affect the number and quality of oocytes but higher 25(OH)D levels improve IR and IVF outcome |
Aleyasin et al., 2010 [23] | Prospective cohort study | 82 IVF patients | 77 fresh ET on day 3 | Serum and pooled follicular fluid | CPR | Deficient < 20 ng/mL; Insufficient 20–30 ng/mL; Replete > 30 ng/mL | 25(OH)D | No significant CPR among different 25(OH)D levels |
Firouzabadi et al., 2013 [24] | Prospective observational study | 180 IVF patients | 495 ETs | Serum and pooled follicular fluid | PR | Deficient VitD < 10 ng/mL; Insufficient VitD 10–29 ng/mL; Sufficient VitD 30–100 ng/mL | 25(OH)D | No correlation between 25(OH)D levels in serum and FF and PR |
Franasiak et al., 2015 [25] | Retrospective cohort study | 529 IVF patients that went through a PGT-A cycle | 517 IVF patients that went through single euploid frozen embryo transfer on day 6 | Serum | PR | Deficient VitD < 20 ng/mL; Insufficient VitD 20–30 ng/mL; Replete > 30 ng/mL | 25(OH)D | No correlation between 25(OH)D levels and CPR in women undergoing euploid embryo transfer |
Abadia et al., 2016 [36] | Prospective cohort study | 100 IVF patients | 168 initiated IVF cycles, 141 IVF cycles with oocyte retrieval | Serum | CPR or LBR | Deficient VitD 13.5–30 ng/mL; Sufficient VitD 30.5–62.3 ng/mL | 25(OH)D | 25(OH)D levels were unrelated to CPR or LBR after IVF |
Paffoni et al., 2014 [35] | Prospective cross-sectional study | 480 IVF patients | 335 fresh ETs. 154 patients were VitD deficient vs. 181 VitD insufficient | Serum | CPR, IR | Deficient VitD < 20 ng/mL; Insufficient VitD 20–29 ng/mL | 25(OH)D | Higher 25(OH)D levels were associated with higher CPR and IR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnanz, A.; Garcia-Velasco, J.A.; Neyro, J.L. Calcifediol (25OHD) Deficiency and Its Treatment in Women’s Health and Fertility. Nutrients 2022, 14, 1820. https://doi.org/10.3390/nu14091820
Arnanz A, Garcia-Velasco JA, Neyro JL. Calcifediol (25OHD) Deficiency and Its Treatment in Women’s Health and Fertility. Nutrients. 2022; 14(9):1820. https://doi.org/10.3390/nu14091820
Chicago/Turabian StyleArnanz, Ana, Juan A. Garcia-Velasco, and José Luis Neyro. 2022. "Calcifediol (25OHD) Deficiency and Its Treatment in Women’s Health and Fertility" Nutrients 14, no. 9: 1820. https://doi.org/10.3390/nu14091820
APA StyleArnanz, A., Garcia-Velasco, J. A., & Neyro, J. L. (2022). Calcifediol (25OHD) Deficiency and Its Treatment in Women’s Health and Fertility. Nutrients, 14(9), 1820. https://doi.org/10.3390/nu14091820