PN Administration in Critically Ill Children in Different Phases of the Stress Response
Abstract
:1. Introduction
2. Acute Stress Response
3. Parental Nutrition in Critically Ill Children
4. Practical Approach to Nutritional Support with PN during the Course of Critical Illness
4.1. First Week of Admission: Parenteral Glucose and Micronutrient Administration
4.2. Micronutrients
5. Parenteral Glucose and Micronutrient Administration after the First Week
Energy
6. Amino Acids
7. Lipids
8. Discussion
9. Conclusions
- PN is generally indicated in infants and children who are unable to tolerate adequate oral or enteral feedings to sustain their nutritional requirements;
- In critically ill children, dosage of carbohydrates, amino acids and lipids is dependent on the phase of disease;
- The current international guidelines recommend considering withholding parenteral macronutrients during the first week of pediatric critical illness, while providing micronutrients;
- PN can induce adverse effects both in the short term and in the long term. The risk is reduced by a clear approach, the establishment of a multidisciplinary nutrition support team and the avoidance of unbalanced or excessive substrate supplies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Saint Andre-von Arnim, A.; Farris, R.; Roberts, J.S.; Yanay, O.; Brogan, T.V.; Zimmerman, J.J. Common endocrine issues in the pediatric intensive care unit. Crit. Care Clin. 2013, 29, 335–358. [Google Scholar] [CrossRef]
- Irving, S.Y.; Daly, B.; Verger, J.; Typpo, K.V.; Brown, A.M.; Hanlon, A.; Weiss, S.L.; Fitzgerald, J.C.; Nadkarni, V.M.; Thomas, N.J.; et al. The Association of Nutrition Status Expressed as Body Mass Index z Score with Outcomes in Children with Severe Sepsis: A Secondary Analysis from the Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study. Crit. Care Med. 2018, 46, e1029–e1039. [Google Scholar] [CrossRef]
- Mehta, N.M.; Bechard, L.J.; Cahill, N.; Wang, M.; Day, A.; Duggan, C.P.; Heyland, D.K. Nutritional practices and their relationship to clinical outcomes in critically ill children—An international multicenter cohort study. Crit. Care Med. 2012, 40, 2204–2211. [Google Scholar] [CrossRef]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Valla, F.V.; Berthiller, J.; Gaillard-Le-Roux, B.; Ford-Chessel, C.; Ginhoux, T.; Rooze, S.; Cour-Andlauer, F.; Meyer, R.; Javouhey, E. Faltering growth in the critically ill child: Prevalence, risk factors, and impaired outcome. Eur. J. Pediatr. 2018, 177, 345–353. [Google Scholar] [CrossRef]
- Prince, N.J.; Brown, K.L.; Mebrahtu, T.F.; Parslow, R.C.; Peters, M.J. Weight-for-age distribution and case-mix adjusted outcomes of 14,307 paediatric intensive care admissions. Intensive Care Med. 2014, 40, 1132–1139. [Google Scholar] [CrossRef]
- Joosten, K.F.; Kerklaan, D.; Verbruggen, S.C. Nutritional support and the role of the stress response in critically ill children. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 226–233. [Google Scholar] [CrossRef]
- Joosten, K.; van Puffelen, E.; Verbruggen, S. Optimal nutrition in the paediatric ICU. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 131–137. [Google Scholar] [CrossRef]
- Koletzko, B.; Goulet, O.; Hunt, J.; Krohn, K.; Shamir, R. for the Parenteral Nutrition Guidelines Working Group. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J. Pediatr. Gastroenterol. Nutr. 2005, 41 (Suppl. 2), S1–S87. [Google Scholar]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Wouters, P.; Vanhorebeek, I.; Debaveye, Y.; Vlasselaers, D.; Desmet, L.; Casaer, M.P.; et al. Early versus Late Parenteral Nutrition in Critically Ill Children. N. Engl. J. Med. 2016, 374, 1111–1122. [Google Scholar] [CrossRef] [Green Version]
- Van Puffelen, E.; Hulst, J.M.; Vanhorebeek, I.; Dulfer, K.; Van den Berghe, G.; Verbruggen, S.C.A.T.; Joosten, K.F.M. Outcomes of Delaying Parenteral Nutrition for 1 Week vs. Initiation within 24 Hours among Undernourished Children in Pediatric Intensive Care: A Subanalysis of the PEPaNIC Randomized Clinical Trial. JAMA Netw. Open 2018, 1, e182668. [Google Scholar] [CrossRef] [PubMed]
- Van Puffelen, E.; Vanhorebeek, I.; Joosten, K.F.M.; Wouters, P.J.; Van den Berghe, G.; Verbruggen, S. Early versus late parenteral nutrition in critically ill, term neonates: A preplanned secondary subgroup analysis of the PEPaNIC multicentre, influence controlled trial. Lancet Child Adolesc. Health 2018, 2, 505–515. [Google Scholar] [CrossRef]
- Verstraete, S.; Verbruggen, S.C.; Hordijk, J.A.; Vanhorebeek, I.; Dulfer, K.; Güiza, F.; van Puffelen, E.; Jacobs, A.; Leys, S.; Durt, A.; et al. Long-term developmental effects of withholding parenteral nutrition for 1 week in the paediatric intensive care unit: A 2-year follow-up of the PEPaNIC international, randomised, controlled trial. Lancet Respir. Med. 2019, 7, 141–153. [Google Scholar] [CrossRef]
- Jacobs, A.; Dulfer, K.; Eveleens, R.D.; Hordijk, J.; Van Cleemput, H.; Verlinden, I.; Wouters, P.J.; Mebis, L.; Garcia Guerra, G.; Joosten, K.; et al. Long-term developmental effect of withholding parenteral nutrition in paediatric intensive care units: A 4-year follow-up of the PEPaNIC randomised controlled trial. Lancet Child Adolesc. Health 2020, 4, 503–514. [Google Scholar] [CrossRef]
- Hordijk, J.; Verbruggen, S.; Vanhorebeek, I.; Güiza, F.; Wouters, P.; Van den Berghe, G.; Joosten, K.; Dulfer, K. Health-related quality of life of children and their parents 2 years after critical illness: Pre-planned follow-up of the PEPaNIC international, randomized, controlled trial. Crit. Care 2020, 24, 347. [Google Scholar] [CrossRef]
- Langouche, L.; Vander Perre, S.; Marques, M.; Boelen, A.; Wouters, P.J.; Casaer, M.P.; Van den Berghe, G. Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome: A randomized, controlled clinical study. J. Clin. Endocrinol. Metab. 2013, 98, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Derese, I.; Vander Perre, S.; Wouters, P.J.; Verbruggen, S.; Billen, J.; Vermeersch, P.; Guerra, G.G.; Joosten, K.; Vanhorebeek, I.; et al. Dynamics and prognostic value of the hypothalamus-pituitary-adrenal axis responses to pediatric critical illness and association with corticosteroid treatment: A prospective observational study. Intensive Care Med. 2020, 46, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Gielen, M.; Mesotten, D.; Wouters, P.J.; Wouters, P.J.; Verbruggen, S.; Billen, J.; Vermeersch, P.; Garcia Guerra, G.; Joosten, K.; Vanhorebeek, I.; et al. Effect of tight glucose control with insulin on the thyroid axis of critically ill children and its relation with outcome. J. Clin. Endocrinol. Metab. 2012, 97, 3569–3576. [Google Scholar] [CrossRef] [Green Version]
- Bechard, L.J.; Staffa, S.J.; Zurakowski, D.; Mehta, N.M. Time to achieve delivery of nutrition targets is associated with clinical outcomes in critically ill children. Am. J. Clin. Nutr. 2021, 114, 1859–1867. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef]
- Tume, L.N.; Valla, F.V.; Joosten, K.; Chaparro, C.J.; Latten, L.; Marino, L.V.; Macleod, I.; Moullet, C.; Pathan, N.; Rooze, S.; et al. Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med. 2020, 46, 411–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihatsch, W.A.; Braegger, C.; Bronsky, J.; Fewtrell, M.; Lapillonne, A.; Lohner, S.; Mihályi, K.; Decsi, T. ESPEN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin. Nutr. 2018, 37, 2303–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, V.; Spinella, P.C.; Drott, H.R.; Roth, C.L.; Helfaer, M.A.; Nadkarni, V. Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr. Crit. Care Med. 2004, 5, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ognibene, K.L.; Vawdrey, D.K.; Biagas, K.V. The association of age, illness severity, and glycemic status in a pediatric intensive care unit. Pediatr. Crit Care Med. 2011, 12, e386–e390. [Google Scholar] [CrossRef] [PubMed]
- Preissig, C.M.; Rigby, M.R. Hyperglycaemia results from beta-cell dysfunction in critically ill children with respiratory and cardiovascular failure: A prospective observational study. Crit. Care 2009, 13, R27. [Google Scholar] [CrossRef] [Green Version]
- De Betue, C.T.; Verbruggen, S.C.; Schierbeek, H.; Chacko, S.K.; Bogers, A.J.; van Goudoever, J.B.; Joosten, K.F.M. Does a reduced glucose intake prevent hyperglycemia in children early after cardiac surgery? A randomized controlled crossover study. Crit. Care 2012, 16, R176. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, S.C.; de Betue, C.T.; Schierbeek, H.; Chacko, S.; van Adrichem, L.N.; Verhoeven, J.; van Goudoever, J.B.; Joosten, K.F.M. Reducing glucose infusion safely prevents hyperglycemia in post-surgical children. Clin. Nutr. 2011, 30, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Eveleens, R.D.; Witjes, B.C.M.; Casaer, M.P.; Vanhorebeek, I.; Garcia Guerra, G.; Hanff, L.M.; Cosaert, K.; Desmet, L.; Maebe, S.; Vlasselaers, D.; et al. Micronutrient supplementation in the PEPaNIC Randomised Controlled Trial: Composition and preparation of the prescription. Clin. Nutr. Espen. 2021, 42, 244–251. [Google Scholar] [CrossRef]
- Marino, L.V.; Valla, F.V.; Beattie, R.M.; Verbruggen, S.C.A.T. Micronutrient status during paediatric critical illness: A scoping review. Clin. Nutr. 2020, 39, 3571–3593. [Google Scholar] [CrossRef]
- Mirtallo, J.; Canada, T.; Johnson, D.; Kumpf, V.; Petersen, C.; Sacks, G.; Seres, D.; Guenter, P. Task Force for the Revision of Safe Practices for Parenteral Nutrition. Safe practices for parenteral nutrition. JPEN J. Parenter Enter. Nutr. 2004, 28, S39–S70. [Google Scholar] [CrossRef]
- Riskin, A.; Picaud, J.C.; Shamir, R. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Standard versus individualized parenteral nutrition. Clin. Nutr. 2018, 37, 2409–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puntis, J.; Hojsak, I.; Ksiazyk, J. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Organisational aspects. Clin. Nutr. 2018, 37, 2392–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Fify, M.; Nichols, B.; Arailoudi Alexiadou, L.; Stefanowicz, F.; Armstrong, J.; Russell, R.K.; Raudaschl, A.; Pinto, N.; Duncan, A.; Catchpole, A.; et al. Development of age-dependent micronutrient centile charts and their utility in children with chronic gastrointestinal conditions at risk of deficiencies: A proof-of-concept study. Clin. Nutr. 2022, 41, 931–936. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C.; Maguire, D.; Talwar, D. Relationship between nutritional status and the systemic inflammatory response: Micronutrients. Proc. Nutr. Soc. 2019, 78, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosten, K.F.M.; Eveleens, R.D.; Verbruggen, S.C.A.T. Nutritional support in the recovery phase of critically ill children. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Holliday, M.A.; Segar, W.E. The maintenance need for water in parenteral fluid therapy. Pediatrics 1957, 19, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Bechard, L.J.; Parrott, J.S.; Mehta, N.M. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. J. Pediatr. 2012, 161, e1. [Google Scholar] [CrossRef] [PubMed]
- Jotterand Chaparro, C.; Laure Depeyre, J.; Longchamp, D.; Perez, M.H.; Tafe, P.; Cotting, J. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin. Nutr. 2016, 35, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Pertzov, B.; Bar-Yoseph, H.; Menndel, Y.; Bendavid, I.; Kagan, I.; Daniel Glass, Y.; Singer, P. The effect of indirect calorimetry guided isocaloric nutrition on mortality in critically ill patients-a systematic review and meta-analysis. Eur. J. Clin. Nutr. 2022, 76, 5–15. [Google Scholar] [CrossRef]
- Larsen, B.M.K.; Beggs, M.R.; Leong, A.Y.; Kang, S.H.; Persad, R.; Garcia Guerra, G. Can energy intake alter clinical and hospital outcomes in PICU? Clin. Nutr. ESPEN 2018, 24, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Schofield, W. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- Hermans, G.; Casaer, M.P.; Clerckx, B.; Güiza, F.; Vanhullebusch, T.; Derde, S.; Meersseman, P.; Derese, I.; Mesotten, D.; Wouters, P.J.; et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: A subanalysis of the EPaNIC trial. Lancet Respir. Med. 2013, 1, 621–629. [Google Scholar] [CrossRef]
- Verbruggen, S.C.; Schierbeek, H.; Coss-Bu, J.; Joosten, K.F.; Castillo, L.; van Goudoever, J.B. Albumin synthesis rates in post-surgical infants and septic adolescents; influence of amino acids, energy, and insulin. Clin. Nutr. 2011, 30, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhorebeek, I.; Verbruggen, S.; Casaer, M.P.; Gunst, J.; Wouters, P.J.; Hanot, J.; Guerra, G.G.; Vlasselaers, D.; Joosten, K.; Van den Berghe, G. Effect of early supplemental parenteral nutrition in the paediatric ICU: A preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir. Med. 2017, 5, 475–483. [Google Scholar] [CrossRef]
- Van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37 Pt 6, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Joosten, K.; Van den Berghe, G. Evidence for the use of parenteral nutrition in the pediatric intensive care unit. Clin. Nutr. 2017, 36, 218–223. [Google Scholar] [CrossRef]
- Verlinden, I.; Dulfer, K.; Vanhorebeek, I.; Güiza, F.; Hordijk, J.A.; Wouters, P.J.; Guerra, G.C.; Joosten, K.J.; Verbruggen, S.C.; Van den Berghe, G. Role of age of critically ill children at time of exposure to early or late parenteral nutrition in determining the impact hereof on long-term neurocognitive development: A secondary analysis of the PEPaNIC-RCT. Clin. Nutr. 2021, 40, 1005–1012. [Google Scholar] [CrossRef]
- Güiza, F.; Vanhorebeek, I.; Verstraete, S.; Verlinden, I.; Derese, I.; Ingels, C.; Dulfer, K.; Verbruggen, S.C.; Garcia Guerra, G.; Joosten, K.F.; et al. Effect of early parenteral nutrition during paediatric critical illness on DNA methylation as a potential mediator of impaired neurocognitive development: A pre-planned secondary analysis of the PEPaNIC international randomised controlled trial. Lancet Respir. Med. 2020, 8, 288–303. [Google Scholar] [CrossRef]
- Johnson, M.J.; Lapillonne, A.; Bronsky, J.; Domellof, M.; Embleton, N.; Iacobelli, S.; Jochum, F.; Joosten, K.; Kolacek, S.; Mihatsch, W.A.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition Research priorities in pediatric parenteral nutrition: A consensus and perspective from ESPGHAN/ESPEN/ESPR/CSPEN. Pediatr. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.F.M.; Hulst, J.M. 3.26 Pediatric Intensive Care. World Rev. Nutr. Diet. 2022, 124, 403–409. [Google Scholar] [PubMed]
Definition | |
---|---|
Acute phase | The first phase after the event, characterized by the requirement of (escalating) vital organ support. The phase when the patient requires vital organ support (sedation, mechanical ventilation, vasopressors and fluid resuscitation) |
Stable phase | The stabilization or weaning of vital organ support, while the different aspects of the stress response are not (completely) resolved. The patient is stable on, or can be weaned off, this vital support |
Recovery phase | Clinical mobilization with the normalization of neuro-endocrine, immunologic and metabolic alterations, characterized by a patient who is mobilizing |
Acute Phase | Stable Phase | Recovery Phase | |
---|---|---|---|
Newborn | 2.5–5 | 5–10 | 5–10 |
28 d–10 kg | 2–4 | 4–6 | 6–10 |
11–30 kg | 1.5–2.5 | 2–4 | 3–6 |
31–45 kg | 1–1.5 | 1.5–3 | 3–4 |
>45 kg | 0.5–1 | 1–2 | 2–3 |
Weight Class | Electrolyte Infusion | Vitamin and Trace Element Infusion |
---|---|---|
<5 kg * | Glucose 5%—NaCl 0.45% 113 mL, KCl 15% (2 mmol/mL) 0.8 mL, Ca-gluconate 10% (0.23 mmol/mL) 4 mL, Mg-sulphate 10% (0.4 mmol/mL) 0.50 mL and Glycophos (1 mmol P/mL, 2 mmol Na/mL) 1.2 mL 120 mL/kg/d, as continuous infusion | Soluvit® (Fresenius Kabi, Rotterdam, The Netherlands) 1.5 mL/kg, Vitintra Infant® (Fresenius Kabi, Rotterdam, The Netherlands) 2.5 mL/kg (max 10 mL), Peditrace® (Fresenius Kabi, Rotterdam, The Netherlands) 1 mL/kg and NaCl 0.9% 37 mL |
5–12 kg | Glucose 2.5%—NaCl 0.45% 69 mL, KCl 15% (2 mmol/mL) 0.6 mL, Ca-gluconate 10% (0.23 mmol/mL) 1.5 mL, Mg-sulphate 10% (0.4 mmol/mL) 0.25 mL and Glycophos (1 mmol P/mL, 2 mmol Na/mL) 0.5 mL 72 mL/kg/d, as continuous infusion | Soluvit® (Fresenius Kabi, Rotterdam, The Netherlands) 1.5 mL/kg (max 8 mL), Vitintra Infant® (Fresenius Kabi, Rotterdam, The Netherlands) 10 mL, Peditrace® (Fresenius Kabi, Rotterdam, The Netherlands) 1 mL/kg (max 10 mL) and NaCl 0.9% 37 mL |
12–30 kg | Glucose 2.5%—NaCl 0.45% 69 mL, KCl 15% (2 mmol/mL) 0.6 mL, Ca-gluconate 10% (0.23 mmol/mL) 1.5 mL, Mg-sulphate 10% (0.4 mmol/mL) 0.25 mL and Glycophos (1 mmol P/mL, 2 mmol Na/mL) 0.5 mL 72 mL/kg/d, as continuous infusion | Soluvit® (Fresenius Kabi, Rotterdam, The Netherlands) 8 mL, Vitintra Infant® (Fresenius Kabi, Rotterdam, The Netherlands) 10 mL, Supliven® Fresenius Kabi, Rotterdam, The Netherlands0.25 mL/kg (max 10 mL) and NaCl 0.9% 50 mL |
>30 kg | Glucose 2.5%—NaCl 0.45% 69 mL, KCl 15% (2 mmol/mL) 0.6 mL, Ca-gluconate 10% (0.23 mmol/mL) 1,5 mL, Mg-sulphate 10% (0.4 mmol/mL) 0.25 mL and Glycophos (1 mmol P/mL, 2 mmol Na/mL) 0.5 mL 48 mL/kg/d, as continuous infusion (max 2 L/d) | Soluvit® (Fresenius Kabi, Rotterdam, The Netherlands) 8 mL, Vitintra Infant® (Fresenius Kabi, Rotterdam, The Netherlands) 10 mL, Supliven® (Fresenius Kabi, Rotterdam, The Netherlands) 0.25 mL/kg (max 10 mL) and NaCl 0.9% 50 mL |
Age (year) | Boys | Girls |
---|---|---|
0–3 year | 60.9 × weight − 54 | 61.0 × weight − 51 |
0.167 × weight + 1516.7 × height − 617.6 | 16.2 × weight + 1022.7 × height − 413.5 | |
3–10 year | 22.7 × weight+ 495 | 22.5 × weight + 499 |
19.6 × weight + 130.2 × height + 414.9 | 17.0 × weight + 161.7 × height + 371.2 | |
10–18 year | 17.5 × weight + 651 | 12.2 × weight (kg) + 746 |
16.2 × weight + 137.1 × height + 515.5 | 8.4 × weight + 465.4 × height + 200.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joosten, K.; Verbruggen, S. PN Administration in Critically Ill Children in Different Phases of the Stress Response. Nutrients 2022, 14, 1819. https://doi.org/10.3390/nu14091819
Joosten K, Verbruggen S. PN Administration in Critically Ill Children in Different Phases of the Stress Response. Nutrients. 2022; 14(9):1819. https://doi.org/10.3390/nu14091819
Chicago/Turabian StyleJoosten, Koen, and Sascha Verbruggen. 2022. "PN Administration in Critically Ill Children in Different Phases of the Stress Response" Nutrients 14, no. 9: 1819. https://doi.org/10.3390/nu14091819
APA StyleJoosten, K., & Verbruggen, S. (2022). PN Administration in Critically Ill Children in Different Phases of the Stress Response. Nutrients, 14(9), 1819. https://doi.org/10.3390/nu14091819