Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States
Abstract
:1. Introduction
2. Materials and Methods
- Adjusted for age, gender, race/ethnicity, (i.e., Mexican American, Other Hispanic, Black, Other, and White), PIR as three groups (<1.35, 1.35 to ≤1.85, and >1.85) and total caloric intake;
- Adjusted for model 1 and BMI, systolic BP, smoking status, (i.e., former, current, never), physical activity level (moderate, vigorous, sedentary), LDL cholesterol, log (albumin creatinine ratio), GFR (CKD-EPI), and serum vitamin D (<16.2 ng/mL, ≥16.2 ng/mL);
- Adjusted for model 2 and Healthy Eating Index 2015 (HEI-2015) score and serum phosphorus.
3. Results
3.1. Association of Individual Usual Intake of Phosphorus with Physiological Parameters
3.1.1. Added Phosphorus
3.1.2. Natural Phosphorus
3.1.3. Total Phosphorus
3.2. Association of Individual Usual Intake of Phosphorus with Risk Factors of Physiological Parameters
3.3. Hazard Ratios Analyses of Individual Usual Intake of Phosphorus with All-Cause Mortality
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Phosphorus. In Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997. Available online: https://www.ncbi.nlm.nih.gov/books/NBK109813/ (accessed on 23 February 2021).
- Chang, A.R.; Lazo, M.; Appel, L.J.; Gutiérrez, O.M.; Grams, M.E. High dietary phosphorus intake is associated with all-cause mortality: Results from NHANES III. Am. J. Clin. Nutr. 2014, 99, 320–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, S.T.; Chang, A.R.; Selvin, E.; Rebholz, C.M.; Appel, L.J. Dietary Sources of Phosphorus among Adults in the United States: Results from NHANES 2001–2014. Nutrients 2017, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the Health Impact of Phosphorus in the Food Supply: Issues and Considerations. Adv. Nutr. Int. Rev. J. 2014, 5, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA; Agricultural Research Service. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2015–2018. 2021. Available online: http://www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 30 March 2021).
- EFSA FAF Panel (EFSA Panel on Food Additives and Flavourings); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.; Fernandez, M.J.F.; Fürst, P.; Gürtler, R.; Husøy, T.; et al. Re-evaluation of phosphoric acid–phosphates–di-, tri- and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA J. 2019, 17, e05674. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.N.; Lameire, N.; Goldsmith, D.J.; Winearls, C.G.; Himmelfarb, J.; Remuzzi, G. Oxford Textbook of Clinical Nephrology; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42 (Suppl. S3), S1–S201. [Google Scholar] [CrossRef]
- Sawin, D.-A.; Ma, L.; Stennett, A.; Ofsthun, N.; Himmele, R.; Kossmann, R.J.; Maddux, F.W. Phosphates in medications: Impact on dialysis patients. Clin. Nephrol. 2020, 93, 163–171. [Google Scholar] [CrossRef]
- Phosphate Binder Use, Last 3 Months. DOPPS Practice Monitor. Available online: https://www.dopps.org/DPM-HD/Files/maxPBINDER_use_c_overallTAB.htm (accessed on 2 November 2021).
- Goyal, R.; Jialal, I. Hyperphosphatemia. StatPearls. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551586/ (accessed on 31 January 2021).
- Schwarz, S.; Trivedi, B.K.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of Disorders in Mineral Metabolism with Progression of Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2006, 1, 825–831. [Google Scholar] [CrossRef]
- Adeney, K.L.; Siscovick, D.S.; Ix, J.H.; Seliger, S.L.; Shlipak, M.G.; Jenny, N.S.; Kestenbaum, B.R. Association of Serum Phosphate with Vascular and Valvular Calcification in Moderate CKD. J. Am. Soc. Nephrol. 2008, 20, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum Phosphate Levels and Mortality Risk among People with Chronic Kidney Disease. J. Am. Soc. Nephrol. 2004, 16, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Voormolen, N.; Noordzij, M.; Grootendorst, D.C.; Beetz, I.; Sijpkens, Y.W.; Van Manen, J.G.; Boeschoten, E.W.; Huisman, R.M.; Krediet, R.T.; Dekker, F.; et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol. Dial. Transplant. 2007, 22, 2909–2916. [Google Scholar] [CrossRef]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesh, S.K.; Stack, A.G.; Levin, N.W.; Hulbert-Shearon, T.; Port, F.K. Association of Elevated Serum PO4, Ca × PO4 Product, and Parathyroid Hormone with Cardiac Mortality Risk in Chronic Hemodialysis Patients. J. Am. Soc. Nephrol. 2001, 12, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N.; Collins, A.J.; Herzog, C.A.; Ishani, A.; Kalra, P.A. Serum Phosphorus Levels Associate with Coronary Atherosclerosis in Young Adults. J. Am. Soc. Nephrol. 2009, 20, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, R.; Sullivan, L.; Fox, C.S.; Wang, T.J.; D’Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Relations of Serum Phosphorus and Calcium Levels to the Incidence of Cardiovascular Disease in the Community. Arch. Intern. Med. 2007, 167, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, R.A.; Mehta, O. Phosphorus and Potassium Content of Enhanced Meat and Poultry Products: Implications for Patients Who Receive Dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Lampila, L.E. Applications and functions of food-grade phosphates. Ann. N. Y. Acad. Sci. 2013, 1301, 37–44. [Google Scholar] [CrossRef]
- Moore, L.W.; Nolte, J.V.; Gaber, A.O.; Suki, W.N. Association of dietary phosphate and serum phosphorus concentration by levels of kidney function. Am. J. Clin. Nutr. 2015, 102, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Parpia, A.S.; L’Abbé, M.; Goldstein, M.; Arcand, J.; Magnuson, B.; Darling, P.B. The Impact of Additives on the Phosphorus, Potassium, and Sodium Content of Commonly Consumed Meat, Poultry, and Fish Products Among Patients with Chronic Kidney Disease. J. Ren. Nutr. 2018, 28, 83–90. [Google Scholar] [CrossRef]
- León, J.B.; Sullivan, C.M.; Sehgal, A.R. The Prevalence of Phosphorus-Containing Food Additives in Top-Selling Foods in Grocery Stores. J. Ren. Nutr. 2013, 23, 265–270.e2. [Google Scholar] [CrossRef] [Green Version]
- Carrigan, A.; Klinger, A.; Choquette, S.S.; Luzuriaga-McPherson, A.; Bell, E.K.; Darnell, B.; Gutiérrez, O.M. Contribution of Food Additives to Sodium and Phosphorus Content of Diets Rich in Processed Foods. J. Ren. Nutr. 2014, 24, 13–19.e1. [Google Scholar] [CrossRef] [Green Version]
- Fulgoni, K.; Fulgoni, V. Trends in Total, Added, and Natural Phosphorus Intake in Adult Americans, NHANES 1988–1994 to NHANES 2015–2016. Nutrients 2021, 13, 2249. [Google Scholar] [CrossRef] [PubMed]
- NHANES Questionnaires, Datasets, and Related Documentation. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 24 January 2021).
- Dwyer, J.; Picciano, M.F.; Raiten, D.J. Members of the Steering Committee Collection of Food and Dietary Supplement Intake Data: What We Eat in America–NHANES. J. Nutr. 2003, 133, 590S–600S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHANES–NCHS Research Ethics Review Board Approval. Published 8 May 2019. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 5 October 2021).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A New Statistical Method for Estimating the Usual Intake of Episodically Consumed Foods with Application to Their Distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- NCHS Data Linkage–Mortality Data–Public-Use Files. Published 1 September 2021. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-public.htm (accessed on 5 October 2021).
- Onufrak, S.J.; Bellasi, A.; Cardarelli, F.; Vaccarino, V.; Muntner, P.; Shaw, L.J.; Raggi, P. Investigation of Gender Heterogeneity in the Associations of Serum Phosphorus with Incident Coronary Artery Disease and All-Cause Mortality. Am. J. Epidemiol. 2008, 169, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Itkonen, S.T.; Karp, H.J.; Kemi, V.E.; Kokkonen, E.M.; Saarnio, E.M.; Pekkinen, M.H.; Kärkkäinen, M.U.; Laitinen, E.K.A.; Turanlahti, M.I.; Lamberg-Allardt, C.J. Associations among total and food additive phosphorus intake and carotid intima-media thickness—A cross-sectional study in a middle-aged population in Southern Finland. Nutr. J. 2013, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Burton-Pimentel, K.; Fleuti, C.; Blaser, C.; Scherz, V.; Badertscher, R.; Marmonier, C.; Lyon-Belgy, N.; Caille, A.; Pidou, V.; et al. Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men. Nutrients 2021, 13, 1905. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.W.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia—a randomized controlled feeding trial. Am. J. Clin. Nutr. 2021, 115, 154–162. [Google Scholar] [CrossRef]
- Alonso, A.; Nettleton, J.A.; Ix, J.H.; De Boer, I.H.; Folsom, A.R.; Bidulescu, A.; Kestenbaum, B.R.; Chambless, L.E.; Jacobs, D.R. Dietary phosphorus, blood pressure and incidence of hypertension in the Atherosclerosis Risk in Communities (ARIC) Study and the Multi-Ethnic Study of Atherosclerosis (MESA). Hypertension 2010, 55, 776–784. [Google Scholar] [CrossRef]
- Olivo, R.E.; Hale, S.L.; Diamantidis, C.J.; Bhavsar, N.A.; Tyson, C.C.; Tucker, K.L.; Carithers, T.; Kestenbaum, B.; Muntner, P.; Tanner, R.M.; et al. Dietary Phosphorus and Ambulatory Blood Pressure in African Americans: The Jackson Heart Study. Am. J. Hypertens. 2018, 32, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, S.T.; Rebholz, C.M.; Medabalimi, S.; A Hu, E.; Xu, Z.; Selvin, E.; Appel, L.J. Dietary phosphorus intake and blood pressure in adults: A systematic review of randomized trials and prospective observational studies. Am. J. Clin. Nutr. 2019, 109, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.T.; Rebholz, C.M.; Mitchell, D.C.; Selvin, E.; Appel, L.J. The association of dietary phosphorus with blood pressure: Results from a secondary analysis of the PREMIER trial. J. Hum. Hypertens. 2019, 34, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Centeno, P.P.; Herberger, A.; Mun, H.-C.; Tu, C.-L.; Nemeth, E.F.; Chang, W.; Conigrave, A.D.; Ward, D.T. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Jacob, J.J.; Chopra, S.; Cherian, D. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension. Indian J. Endocrinol. Metab. 2011, 15, 354–360. [Google Scholar] [CrossRef]
- Creatinine Tests–Mayo Clinic. Available online: https://www.mayoclinic.org/tests-procedures/creatinine-test/about/pac-20384646 (accessed on 22 December 2021).
- Murakami, K.; Livingstone, M.B.E. Prevalence and characteristics of misreporting of energy intake in US adults: NHANES 2003–2012. Br. J. Nutr. 2015, 114, 1294–1303. [Google Scholar] [CrossRef] [Green Version]
Added Phosphorus | Natural Phosphorus | Total Phosphorus | |||||
---|---|---|---|---|---|---|---|
Physiological Variable | n | β ± SE | p | β ± SE | p | β ± SE | p |
All | |||||||
Apolipoprotein B (mg/dL) | 12,169 | −0.60 (0.59) | 0.3138 | −0.36 (0.17) | 0.0354 | −0.42 (0.16) | 0.0109 |
BP diastolic (mean rdg mm hg) | 35,481 | −0.35 (0.19) | 0.0684 | −0.25 (0.05) | <0.0001 | −0.28 (0.05) | <0.0001 |
BP systolic (mean rdg mm hg) | 35,643 | −0.59 (0.31) | 0.0607 | −0.32 (0.07) | <0.0001 | −0.37 (0.07) | <0.0001 |
CVD risk score | 33,979 | 0.004 (0.001) | 0.0004 | −0.001 (0.0003) | <0.0001 | −0.001 (0.0003) | 0.0008 |
Creatinine (mg/dL) | 34,856 | 0.01 (0.004) | 0.0067 | −0.002 (0.001) | 0.1156 | −0.001 (0.001) | 0.4097 |
GFR (mL/min/1.73 m2) (ckd-epi) | 34,856 | −0.50 (0.26) | 0.0588 | 0.02 (0.08) | 0.7831 | −0.02 (0.08) | 0.8364 |
Glucose, plasma (mg/dL) * | 15,816 | 0.49 (0.53) | 0.3615 | 0.01 (0.10) | 0.9431 | 0.02 (0.09) | 0.8031 |
Glycohemoglobin (%) | 35,302 | 0.07 (0.01) | <0.0001 | 0.02 (0.003) | <0.0001 | 0.03 (0.003) | <0.0001 |
HDL-cholesterol (mg/dL) | 34,952 | −2.12 (0.28) | <0.0001 | 0.26 (0.07) | 0.0004 | 0.11 (0.07) | 0.1336 |
HOMA-IR | 15,724 | 0.22 (0.11) | 0.0408 | 0.04 (0.03) | 0.1254 | 0.06 (0.03) | 0.0250 |
Insulin (uU/mL) * | 15,510 | 0.03 (0.22) | 0.8907 | 0.01 (0.04) | 0.8491 | 0.01 (0.04) | 0.8408 |
LDL-cholesterol (mg/dL) | 15,563 | 0.15 (0.74) | 0.8373 | −0.45 (0.24) | 0.0632 | −0.45 (0.24) | 0.0573 |
Phosphorus (mg/dL) | 34,851 | 0.01 (0.01) | 0.3620 | 0.01 (0.003) | <0.0001 | 0.02 (0.003) | <0.0001 |
Total cholesterol (mg/dL) | 34,953 | −0.09 (0.71) | 0.8953 | −0.79 (0.19) | 0.0001 | −0.82 (0.19) | <0.0001 |
Total femur BMC | 14,995 | 0.28 (0.19) | 0.1341 | 0.26 (0.05) | <0.0001 | 0.28 (0.05) | <0.0001 |
Total femur BMD | 14,995 | 0.002 (0.003) | 0.5814 | 0.005 (0.001) | <0.0001 | 0.01 (0.001) | <0.0001 |
Triglyceride (mg/dL) * | 15,668 | −1.47 (2.22) | 0.5084 | −0.26 (0.51) | 0.6134 | −0.28 (0.47) | 0.5525 |
Males | |||||||
Apolipoprotein B (mg/dL) | 6075 | −1.35 (0.72) | 0.0635 | −0.45 (0.23) | 0.0536 | −0.57 (0.22) | 0.0104 |
BP diastolic (mean rdg mm hg) | 17,956 | −0.47 (0.24) | 0.0475 | −0.29 (0.07) | <0.0001 | −0.34 (0.07) | <0.0001 |
BP systolic (mean rdg mm hg) | 18,030 | −0.93 (0.39) | 0.0183 | −0.33 (0.08) | 0.0001 | −0.41 (0.08) | <0.0001 |
CVD risk score | 17,232 | 0.001 (0.001) | 0.2862 | −0.0004 (0.0003) | 0.2060 | −0.0003 (0.0003) | 0.3359 |
Creatinine (mg/dL) | 17,603 | 0.01 (0.005) | 0.0582 | −0.001 (0.001) | 0.6472 | 0.0001 (0.001) | 0.9076 |
GFR (ml/min/1.73 m2) (ckd-epi) | 17,603 | −0.37 (0.30) | 0.2162 | −0.07 (0.09) | 0.4885 | −0.10 (0.10) | 0.3207 |
Glucose, plasma (mg/dL) * | 7945 | 0.91 (0.72) | 0.2049 | −0.06 (0.12) | 0.6259 | −0.02 (0.12) | 0.8736 |
Glycohemoglobin:(%) | 17,756 | 0.08 (0.02) | <0.0001 | 0.02 (0.004) | <0.0001 | 0.03 (0.004) | <0.0001 |
HDL-cholesterol (mg/dL) | 17,639 | −1.65 (0.26) | <0.0001 | 0.09 (0.08) | 0.2764 | −0.04 (0.09) | 0.6642 |
HOMA-IR | 7936 | 0.35 (0.14) | 0.0160 | 0.06 (0.04) | 0.1014 | 0.09 (0.04) | 0.0125 |
Insulin (uU/mL) * | 7837 | 0.03 (0.30) | 0.9180 | −0.02 (0.06) | 0.7523 | −0.01 (0.05) | 0.7852 |
LDL-cholesterol (mg/dL) | 7761 | −0.48 (0.90) | 0.5973 | −0.51 (0.33) | 0.1233 | −0.56 (0.31) | 0.0734 |
Phosphorus (mg/dL) | 17,599 | 0.01 (0.01) | 0.5575 | 0.01 (0.003) | 0.0017 | 0.01 (0.003) | 0.0007 |
Total cholesterol (mg/dL) | 17,639 | 0.12 (0.94) | 0.9015 | −1.07 (0.24) | <0.0001 | −1.09 (0.25) | <0.0001 |
Total femur BMC | 7752 | 0.29 (0.25) | 0.2569 | 0.25 (0.06) | 0.0001 | 0.28 (0.06) | <0.0001 |
Total femur BMD | 7752 | 0.002 (0.004) | 0.6888 | 0.004 (0.001) | 0.0013 | 0.004 (0.001) | 0.0017 |
Triglyceride (mg/dL) * | 7893 | −3.78 (2.97) | 0.2046 | −0.35 (0.64) | 0.5821 | −0.44 (0.60) | 0.4637 |
Females | |||||||
Apolipoprotein B (mg/dL) | 6094 | 0.50 (0.90) | 0.5820 | −0.28 (0.33) | 0.3864 | −0.26 (0.33) | 0.4468 |
BP diastolic (mean rdg mm hg) | 17,525 | −0.12 (0.28) | 0.6751 | −0.15 (0.09) | 0.0823 | −0.16 (0.08) | 0.0541 |
BP systolic (mean rdg mm hg) | 17,613 | 0.09 (0.41) | 0.8282 | −0.39 (0.12) | 0.0017 | −0.39 (0.12) | 0.0021 |
CVD risk score | 16,747 | 0.01 (0.002) | <0.0001 | −0.001 (0.0004) | 0.0005 | −0.001 (0.0004) | 0.0227 |
Creatinine (mg/dL) | 17,253 | 0.01 (0.01) | 0.0220 | −0.003 (0.002) | 0.0441 | −0.002 (0.002) | 0.1551 |
GFR (ml/min/1.73 m2) (ckd-epi) | 17,253 | −0.77 (0.49) | 0.1234 | 0.21 (0.12) | 0.0807 | 0.16 (0.12) | 0.1841 |
Glucose, plasma (mg/dL) * | 7871 | −0.34 (0.76) | 0.6543 | 0.16 (0.19) | 0.3964 | 0.13 (0.18) | 0.4673 |
Glycohemoglobin:(%) | 17,546 | 0.05 (0.02) | 0.0126 | 0.02 (0.005) | <0.0001 | 0.03 (0.005) | <0.0001 |
HDL-cholesterol (mg/dL) | 17,313 | −3.12 (0.60) | <0.0001 | 0.55 (0.13) | <0.0001 | 0.34 (0.12) | 0.0079 |
HOMA-IR | 7788 | 0.003 (0.13) | 0.9834 | 0.02 (0.04) | 0.5548 | 0.024 (0.04) | 0.5399 |
Insulin (uU/mL) * | 7673 | 0.02 (0.26) | 0.9527 | 0.09 (0.05) | 0.0957 | 0.08 (0.05) | 0.1247 |
LDL-cholesterol (mg/dL) | 7802 | 0.87 (1.20) | 0.4689 | −0.45 (0.38) | 0.2395 | −0.41 (0.41) | 0.3201 |
Phosphorus (mg/dL) | 17,252 | 0.01 (0.02) | 0.4739 | 0.02 (0.004) | <0.0001 | 0.02 (0.004) | <0.0001 |
Total cholesterol (mg/dL) | 17,314 | −0.94 (0.98) | 0.3404 | −0.37 (0.33) | 0.2536 | −0.46 (0.34) | 0.1826 |
Total femur BMC | 7243 | 0.30 (0.22) | 0.1889 | 0.27 (0.06) | <0.0001 | 0.30 (0.06) | <0.0001 |
Total femur BMD | 7243 | 0.004 (0.01) | 0.4691 | 0.01 (0.001) | <0.0001 | 0.008 (0.001) | <0.0001 |
Triglyceride (mg/dL) * | 7775 | −0.42 (2.68) | 0.8755 | −0.98 (0.64) | 0.1281 | −0.89 (0.57) | 0.1208 |
Total Sample | Added Phosphorus | Natural Phosphorus | Total Phosphorus | |||||
---|---|---|---|---|---|---|---|---|
Physiological Variable | Sample (n) | Events (n) | OR, 99% CI | p | OR, 99% CI | p | OR, 99% CI | p |
All | ||||||||
BP, elevated | 35,481 | 18,723 | 0.96 (0.88, 1.05) | 0.2615 | 0.97 (0.94, 1.00) | 0.0053 | 0.97 (0.94, 0.99) | 0.0021 |
Glucose, elevated * | 15,816 | 7903 | 0.92 (0.83, 1.02) | 0.0365 | 1.00 (0.98, 1.02) | 0.7046 | 0.99 (0.97, 1.01) | 0.4435 |
HDL, reduced | 34,952 | 15,151 | 1.21 (1.09, 1.34) | <0.0001 | 0.98 (0.95, 1.00) | 0.0203 | 0.99 (0.97, 1.02) | 0.3295 |
Insulin, elevated * | 15,510 | 5142 | 1.11 (0.97, 1.28) | 0.0479 | 1.01 (0.99, 1.04) | 0.2020 | 1.01 (0.99, 1.04) | 0.1066 |
LDL, elevated | 15,563 | 11,599 | 1.01 (0.87, 1.18) | 0.8756 | 0.98 (0.93, 1.02) | 0.1606 | 0.98 (0.93, 1.02) | 0.1458 |
Total cholesterol, elevated | 34,953 | 19,193 | 1.01 (0.91, 1.12) | 0.8132 | 0.98 (0.95, 1.01) | 0.0480 | 0.98 (0.96, 1.01) | 0.0433 |
Triglycerides, elevated * | 15,668 | 6202 | 0.95 (0.85, 1.06) | 0.2242 | 0.98 (0.96, 1.01) | 0.0696 | 0.98 (0.96, 1.01) | 0.0578 |
Males | ||||||||
BP, elevated | 17,956 | 10,038 | 0.94 (0.85, 1.04) | 0.0901 | 0.95 (0.92, 0.99) | 0.0004 | 0.95 (0.92, 0.98) | 0.0001 |
Glucose, elevated * | 7945 | 4519 | 0.95 (0.82, 1.09) | 0.2897 | 1.00 (0.97, 1.02) | 0.7648 | 1.00 (0.97, 1.02) | 0.6211 |
HDL, reduced | 17,639 | 7317 | 1.14 (1.03, 1.27) | 0.0010 | 1.00 (0.97, 1.03) | 0.9729 | 1.01 (0.98, 1.04) | 0.3687 |
Insulin, elevated * | 7837 | 2639 | 1.15 (0.97, 1.36) | 0.0312 | 0.99 (0.96, 1.02) | 0.2805 | 0.99 (0.97, 1.02) | 0.5876 |
LDL, elevated | 7761 | 5942 | 0.99 (0.82, 1.20) | 0.9051 | 0.97 (0.92, 1.03) | 0.1673 | 0.97 (0.92, 1.02) | 0.1244 |
Total cholesterol, elevated | 17,639 | 9643 | 1.00 (0.88, 1.12) | 0.9403 | 0.97 (0.94, 1.01) | 0.0497 | 0.97 (0.94, 1.01) | 0.0393 |
Triglycerides, elevated * | 7893 | 3462 | 0.93 (0.81, 1.07) | 0.1957 | 0.98 (0.96, 1.01) | 0.1445 | 0.98 (0.96, 1.01) | 0.1107 |
Females | ||||||||
BP, elevated | 17,525 | 8685 | 1.03 (0.85, 1.25) | 0.6892 | 0.99 (0.94, 1.05) | 0.7374 | 0.99 (0.94, 1.05) | 0.8013 |
Glucose, elevated * | 7871 | 3384 | 0.83 (0.68, 1.03) | 0.0268 | 0.98 (0.94, 1.02) | 0.2492 | 0.98 (0.94, 1.02) | 0.1181 |
HDL, reduced | 17,313 | 7834 | 1.37 (1.16, 1.61) | <0.0001 | 0.94 (0.90, 0.98) | 0.0004 | 0.96 (0.92, 1.00) | 0.0130 |
Insulin, elevated * | 7673 | 2503 | 1.03 (0.81, 1.31) | 0.7564 | 1.07 (1.02, 1.12) | 0.0004 | 1.06 (1.01, 1.11) | 0.0007 |
LDL, elevated | 7802 | 5657 | 1.02 (0.80, 1.30) | 0.8568 | 0.98 (0.92, 1.05) | 0.5465 | 0.99 (0.92, 1.06) | 0.5676 |
Total cholesterol, elevated | 17,314 | 9550 | 1.02 (0.87, 1.20) | 0.7503 | 0.99 (0.94, 1.03) | 0.3967 | 0.99 (0.95, 1.03) | 0.4301 |
Triglycerides, elevated * | 7775 | 2740 | 0.94 (0.77, 1.14) | 0.3920 | 0.96 (0.92, 1.01) | 0.0291 | 0.96 (0.92, 1.01) | 0.0261 |
Intake Variable | Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 |
---|---|---|---|---|---|
Total Phosphorus (mg) | <1020 | 1020–1188 | 1188–1390 | 1390–1630 | >1630 |
Added Phosphorus (mg) | <140 | 140–163 | 163–187 | 187–230 | >230 |
Natural Phosphorus (mg) | <871 | 871–1010 | 1010–1186 | 1186–1406 | >1406 |
Total Phosphorus Density (mg/kcal) | <0.55 | 0.55–0.59 | 0.59–0.61 | 0.61–0.65 | >0.65 |
Added Phosphorus Density (mg/kcal) | <0.075 | 0.075–0.083 | 0.083–0.088 | 0.088–0.094 | >0.094 |
Natural Phosphorus Density (mg/kcal) | <0.46 | 0.46–0.50 | 0.50–0.53 | 0.53–0.57 | >0.57 |
Total Sample | Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | p-Trend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phosphorus Intake | Sample (n) | Events (n) | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | |
Covariate Set 1 3 | |||||||||||||
Total | 10,481 | 1425 | 391 | 1.00 (ref) | 312 | 0.90 (0.66, 1.22) | 324 | 0.86 (0.54, 1.37) | 257 | 0.64 (0.34, 1.22) | 141 | 0.93 (0.44, 1.96) | 0.3587 |
Added | 10,481 | 1425 | 593 | 1.00 (ref) | 277 | 0.88 (0.67, 1.16) | 216 | 0.88 (0.64, 1.20) | 215 | 0.92 (0.63, 1.35) | 124 | 0.74 (0.42, 1.27) | 0.2077 |
Natural | 10,481 | 1425 | 369 | 1.00 (ref) | 309 | 0.83 (0.60, 1.15) | 322 | 0.77 (0.51, 1.17) | 260 | 0.54 (0.30, 0.97) | 165 | 0.82 (0.44, 1.52) | 0.1134 |
Covariate Set 2 4 | |||||||||||||
Total | 4014 | 536 | 143 | 1.00 (ref) | 117 | 1.05 (0.68, 1.60) | 122 | 1.21 (0.62, 2.36) | 95 | 1.00 (0.48, 2.05) | 59 | 1.86 (0.79, 4.39) | 0.1677 |
Added | 4014 | 536 | 224 | 1.00 (ref) | 103 | 0.75 (0.47, 1.19) | 85 | 0.73 (0.44, 1.22) | 83 | 0.77 (0.45, 1.31) | 41 | 0.63 (0.22, 1.78) | 0.1806 |
Natural | 4014 | 536 | 128 | 1.00 (ref) | 130 | 1.02 (0.65, 1.59) | 114 | 1.03 (0.56, 1.88) | 96 | 0.82 (0.41, 1.62) | 68 | 1.58 (0.73, 3.43) | 0.3270 |
Covariate Set 3 5 | |||||||||||||
Total | 4014 | 536 | 143 | 1.00 (ref) | 117 | 1.06 (0.70, 1.62) | 122 | 1.17 (0.60, 2.31) | 95 | 0.98 (0.48, 2.02) | 59 | 1.85 (0.79, 4.37) | 0.1851 |
Added | 4014 | 536 | 224 | 1.00 (ref) | 103 | 0.74 (0.46, 1.19) | 85 | 0.74 (0.45, 1.24) | 83 | 0.76 (0.43, 1.35) | 41 | 0.59 (0.19, 1.77) | 0.1771 |
Natural | 4014 | 536 | 128 | 1.00 (ref) | 130 | 1.05 (0.66, 1.66) | 114 | 1.01 (0.55, 1.86) | 96 | 0.82 (0.42, 1.61) | 68 | 1.61 (0.74, 3.48) | 0.3292 |
Total Sample | Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | p-Trend 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phosphorus Intake | Sample (n) | Events (n) | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | Events (n) | OR, 99% CI | |
Covariate Set 1 3 | |||||||||||||
Total | 10,481 | 1425 | 203 | 1.00 (ref) | 215 | 0.78 (0.55, 1.11) | 241 | 0.93 (0.62, 1.41) | 318 | 0.87 (0.58, 1.30) | 448 | 0.87 (0.59, 1.26) | 0.6451 |
Added | 10,481 | 1425 | 503 | 1.00 (ref) | 413 | 0.87 (0.67, 1.13) | 222 | 0.85 (0.60, 1.21) | 139 | 0.89 (0.58, 1.36) | 148 | 0.90 (0.56, 1.44) | 0.4612 |
Natural | 10,481 | 1425 | 197 | 1.00 (ref) | 198 | 1.02 (0.69, 1.50) | 215 | 0.97 (0.65, 1.45) | 335 | 0.98 (0.65, 1.50) | 480 | 1.02 (0.67, 1.54) | 0.9353 |
Covariate Set 2 4 | |||||||||||||
Total | 4014 | 536 | 69 | 1.00 (ref) | 83 | 1.09 (0.57, 2.07) | 98 | 1.61 (0.85, 3.03) | 126 | 1.14 (0.66, 1.99) | 160 | 1.36 (0.76, 2.44) | 0.2711 |
Added | 4014 | 536 | 195 | 1.00 (ref) | 153 | 0.74 (0.52, 1.06) | 90 | 0.86 (0.51, 1.47) | 52 | 0.68 (0.33, 1.38) | 46 | 0.88 (0.38, 2.04) | 0.4412 |
Natural | 4014 | 536 | 67 | 1.00 (ref) | 67 | 1.04 (0.53, 2.02) | 93 | 1.57 (0.90, 2.75) | 137 | 1.39 (0.76, 2.55) | 172 | 1.54 (0.91, 2.62) | 0.0386 |
Covariate Set 3 5 | |||||||||||||
Total | 4014 | 536 | 69 | 1.00 (ref) | 83 | 1.13 (0.58, 2.19) | 98 | 1.59 (0.85, 2.98) | 126 | 1.17 (0.67, 2.04) | 160 | 1.40 (0.77, 2.56) | 0.2348 |
Added | 4014 | 536 | 195 | 1.00 (ref) | 153 | 0.74 (0.52, 1.06) | 90 | 0.85 (0.49, 1.48) | 52 | 0.68 (0.32, 1.43) | 46 | 0.86 (0.36, 2.07) | 0.4550 |
Natural | 4014 | 536 | 67 | 1.00 (ref) | 67 | 1.09 (0.56, 2.10) | 93 | 1.59 (0.90, 2.82) | 137 | 1.43 (0.78, 2.60) | 172 | 1.62 (0.91, 2.86) | 0.0394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulgoni, K.; Fulgoni, V.L., III; Wallace, T.C. Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States. Nutrients 2022, 14, 1738. https://doi.org/10.3390/nu14091738
Fulgoni K, Fulgoni VL III, Wallace TC. Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States. Nutrients. 2022; 14(9):1738. https://doi.org/10.3390/nu14091738
Chicago/Turabian StyleFulgoni, Kristin, Victor L. Fulgoni, III, and Taylor C. Wallace. 2022. "Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States" Nutrients 14, no. 9: 1738. https://doi.org/10.3390/nu14091738
APA StyleFulgoni, K., Fulgoni, V. L., III, & Wallace, T. C. (2022). Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States. Nutrients, 14(9), 1738. https://doi.org/10.3390/nu14091738