Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Covariates
2.3. Urine Collection and Se Measurement
2.4. Cord Serum Collection and 25(OH)D Analyses
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Distributions and Variability of Maternal Urinary Se and Cord Serum 25(OH)D Concentrations
3.3. Individual Urinary Se and Cord Serum 25(OH)D
3.4. Association between Urinary Se Levels and Newborns’ Vitamin D Deficiency
3.5. Sensitive Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avissar, N.; Whitin, J.C.; Allen, P.Z.; Palmer, I.S.; Cohen, H.J. Antihuman plasma glutathione peroxidase antibodies: Immunologic investigations to determine plasma glutathione peroxidase protein and selenium content in plasma. Blood 1989, 73, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Combs, G.F., Jr. Biomarkers of selenium status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Lee, J.; Wu, C.; Guo, X.; Lee, B.J.; Chun, J.S.; Kim, J.H. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp. Mol. Med. 2020, 52, 1198–1208. [Google Scholar] [CrossRef]
- Habibi, N.; Grieger, J.A.; Bianco-Miotto, T. A Review of the Potential Interaction of Selenium and Iodine on Placental and Child Health. Nutrients 2020, 12, 2678. [Google Scholar] [CrossRef]
- Wesselink, E.; Koekkoek, W.A.C.; Grefte, S.; Witkamp, R.F.; van Zanten, A.R.H. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin. Nutr. 2019, 38, 982–995. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) National Academies Press (US). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; Institute of Medicine: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Symposium on ’Geographical and geological influences on nutrition’: Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P.; Wijnen, H.; Vader, H.; Kooistra, L.; Pop, V. Maternal selenium status during early gestation and risk for preterm birth. CMAJ 2011, 183, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W. Selenium status in U.K. pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longnecker, M.P.; Stram, D.O.; Taylor, P.R.; Levander, O.A.; Howe, M.; Veillon, C.; McAdam, P.A.; Patterson, K.Y.; Holden, J.M.; Morris, J.S.; et al. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology 1996, 7, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Phiri, F.P.; Ander, E.L.; Lark, R.M.; Bailey, E.H.; Chilima, B.; Gondwe, J.; Joy, E.J.M.; Kalimbira, A.A.; Phuka, J.C.; Suchdev, P.S.; et al. Urine selenium concentration is a useful biomarker for assessing population level selenium status. Environ. Int. 2020, 134, 105218. [Google Scholar] [CrossRef] [PubMed]
- Ambroziak, U.; Hybsier, S.; Shahnazaryan, U.; Krasnodebska-Kiljanska, M.; Rijntjes, E.; Bartoszewicz, Z.; Bednarczuk, T.; Schomburg, L. Severe selenium deficits in pregnant women irrespective of autoimmune thyroid disease in an area with marginal selenium intake. J. Trace Elem. Med. Biol. 2017, 44, 186–191. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Holick, M.F. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Xun, P.; Pike, K.; Wills, A.K.; Chawes, B.L.; Bisgaard, H.; Cai, W.; Wan, Y.; He, K. In utero exposure to 25-hydroxyvitamin D and risk of childhood asthma, wheeze, and respiratory tract infections: A meta-analysis of birth cohort studies. J. Allergy Clin. Immunol. 2017, 139, 1508–1517. [Google Scholar] [CrossRef] [Green Version]
- Tapia, G.; Marild, K.; Dahl, S.R.; Lund-Blix, N.A.; Viken, M.K.; Lie, B.A.; Njolstad, P.R.; Joner, G.; Skrivarhaug, T.; Cohen, A.S.; et al. Maternal and Newborn Vitamin D-Binding Protein, Vitamin D Levels, Vitamin D Receptor Genotype, and Childhood Type 1 Diabetes. Diabetes Care 2019, 42, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef]
- Fang, X.; Qu, J.; Huan, S.; Sun, X.; Li, J.; Liu, Q.; Jin, S.; Xia, W.; Xu, S.; Wu, Y.; et al. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: A prospective cohort study with repeated measurements of maternal urinary metal concentrations. Environ. Int. 2021, 155, 106660. [Google Scholar] [CrossRef]
- Yixin, H.; Xiaobing, S.; Runqi, X.; Yu, B.; Xiang, G. Relationship between serum selenium level and bone mineral density and bone metabolism indexes in postmenopausal women. Chin. J. Osteoporos. 2021, 27, 1329–1332. (In Chinese) [Google Scholar]
- Vardavas, C.I.; Hohmann, C.; Patelarou, E.; Martinez, D.; Henderson, A.J.; Granell, R.; Sunyer, J.; Torrent, M.; Fantini, M.P.; Gori, D.; et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children. Eur. Respir. J. 2016, 48, 115–124. [Google Scholar] [CrossRef]
- Weather, C. Introduction of Wuhan City. Available online: http://www.weather.com.cn/cityintro/101200101.shtml (accessed on 15 April 2022). (In Chinese).
- Liu, W.; Zhang, B.; Huang, Z.; Pan, X.; Chen, X.; Hu, C.; Liu, H.; Jiang, Y.; Sun, X.; Peng, Y.; et al. Cadmium Body Burden and Gestational Diabetes Mellitus: A Prospective Study. Environ. Health Perspect. 2018, 126, 027006. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera-Gomez, J.; Basagana, X. Models with transformed variables: Interpretation and software. Epidemiology 2015, 26, e16–e17. [Google Scholar] [CrossRef] [PubMed]
- Baiz, N.; Dargent-Molina, P.; Wark, J.D.; Souberbielle, J.C.; Slama, R.; Annesi-Maesano, I.; Group, E.M.-C.C.S. Gestational exposure to urban air pollution related to a decrease in cord blood vitamin d levels. J. Clin. Endocrinol. Metab. 2012, 97, 4087–4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Guo, W.; Jia, Y.; Xu, J. Serum and Urinary Selenium Status in Patients with the Pre-diabetes and Diabetes in Northeast China. Biol. Trace Elem. Res. 2019, 191, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, C.G.; Margetaki, K.; Vafeiadi, M.; Roumeliotaki, T.; Karachaliou, M.; Kogevinas, M.; McConnell, R.; Eckel, S.P.; Conti, D.V.; Kippler, M.; et al. Prenatal metal mixtures and child blood pressure in the Rhea mother-child cohort in Greece. Environ. Health 2021, 20, 1. [Google Scholar] [CrossRef]
- Kippler, M.; Bottai, M.; Georgiou, V.; Koutra, K.; Chalkiadaki, G.; Kampouri, M.; Kyriklaki, A.; Vafeiadi, M.; Fthenou, E.; Vassilaki, M.; et al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur. J. Epidemiol. 2016, 31, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Skroder, H.; Engstrom, K.; Kuehnelt, D.; Kippler, M.; Francesconi, K.; Nermell, B.; Tofail, F.; Broberg, K.; Vahter, M. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved. Environ. Health Perspect. 2018, 126, 027001. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Wong, Y.S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 2012, 6, 6578–6591. [Google Scholar] [CrossRef]
- Shchedrina, V.A.; Zhang, Y.; Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid. Redox Signal. 2010, 12, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P.; Palmer, D.; Zhang, G.; Prescott, S.L. Cord blood 25-hydroxyvitamin D3 and allergic disease during infancy. Pediatrics 2012, 130, e1128–e1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Jiao, X.; Tian, Y.; Zhang, J.; Zhang, Y.; Li, J.; Yang, F.; Xu, M.; Yu, X.; Shanghai Birth Cohort, S. Associations between maternal vitamin D status during three trimesters and cord blood 25(OH)D concentrations in newborns: A prospective Shanghai birth cohort study. Eur. J. Nutr. 2021, 60, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n | Mean ± SD or Percent |
---|---|---|
Age (years) | 28.37 ± 3.29 | |
≤24 | 150 | 8.85 |
25–29 | 1036 | 61.12 |
30–34 | 420 | 24.78 |
≥35 | 89 | 5.25 |
Prepregnancy BMI (kg/m2) | 20.76 ± 2.75 | |
Underweight (<18.5) | 336 | 19.82 |
Normal (18.5–23.9) | 1151 | 67.91 |
Overweight (≥24) | 208 | 12.27 |
Gestational weight gain (kg) | 16.39 ± 4.78 | |
Parity | ||
Multiparous | 229 | 13.51 |
Nulliparous | 1466 | 86.49 |
Educational level | ||
High school and below | 877 | 51.74 |
More than high school | 818 | 48.26 |
Multivitamin supplement use during pregnancy | ||
No | 153 | 9.03 |
Yes | 1542 | 90.97 |
Passive smoking before/during pregnancy | ||
No | 1152 | 67.96 |
Yes | 543 | 32.04 |
Drinking before pregnancy | ||
No | 1682 | 99.23 |
Yes | 13 | 0.77 |
Gestational age (week) | 39.30 ± 1.20 | |
Mode of delivery | ||
Vaginal delivery | 793 | 46.78 |
Cesarean delivery | 902 | 53.22 |
Season of birth | ||
Cold (December–May) | 751 | 44.31 |
Warm (June–November) | 944 | 55.69 |
Infant sex | ||
Male | 912 | 53.81 |
Female | 783 | 46.19 |
PIH | ||
No | 1660 | 97.94 |
Yes | 35 | 2.06 |
GDM | ||
No | 1593 | 93.98 |
Yes | 102 | 6.02 |
Anemia | ||
No | 1627 | 95.99 |
Yes | 68 | 4.01 |
Concentrations | n | Percentiles | ||||
---|---|---|---|---|---|---|
5th | 25th | 50th | 75th | 95th | ||
Urinary Se (μg/L) | ||||||
Unadjusted | ||||||
first trimester | 1539 | 3.16 | 8.99 | 15.96 | 29.17 | 64.07 |
second trimester | 979 | 2.72 | 6.13 | 10.36 | 17.54 | 36.47 |
third trimester | 924 | 3.00 | 6.37 | 10.63 | 18.66 | 42.65 |
Whole pregnancy * | 570 | 4.79 | 8.30 | 12.30 | 17.81 | 27.36 |
SG-adjusted | ||||||
first trimester | 1528 | 8.48 | 13.27 | 17.82 | 26.52 | 51.58 |
second trimester | 969 | 5.08 | 7.79 | 10.39 | 14.14 | 26.18 |
third trimester | 918 | 5.33 | 8.50 | 11.51 | 16.01 | 35.18 |
Whole pregnancy * | 570 | 7.44 | 10.09 | 12.63 | 15.38 | 22.54 |
Cord serum 25(OH)D (ng/mL) | ||||||
25(OH)D2 | 1695 | 0.25 | 0.96 | 1.15 | 1.47 | 2.51 |
25(OH)D3 | 1695 | 4.29 | 11.27 | 19.79 | 31.09 | 48.53 |
Total 25(OH)D | 1695 | 5.53 | 12.39 | 21.10 | 32.47 | 49.98 |
Variable | Model 1 | p-Value | Model 2 | p-Value |
---|---|---|---|---|
%Δ (95%CI) | %Δ (95%CI) | |||
Selenium | ||||
1st trimester a | 0.79 (−2.94, 4.67) | 0.683 | 8.76 (4.30, 13.41) | <0.0001 |
2nd trimester a | 8.95 (3.20, 15.04) | 0.002 | 15.44 (9.18, 22.06) | <0.0001 |
3rd trimester a | 3.18 (−1.82, 8.42) | 0.217 | 11.84 (6.09, 17.89) | <0.0001 |
Whole pregnancy b | 16.86 (5.33, 29.67) | 0.003 | 21.14 (8.69, 35.02) | 0.0005 |
Se Concentrations (μg/L SG) | All a | p-Value | Cold Season b | p-Value | Warm Season c | p-Value |
---|---|---|---|---|---|---|
β (95%CI) | β (95%CI) | β (95%CI) | ||||
Low (<10.92) | 0.59 (0.12, 1.06) | 0.014 | 0.91 (0.19, 1.64) | 0.013 | 0.52 (−0.12, 1.17) | 0.111 |
Medium (10.92–14.34) | 0.52 (0.06, 0.97) | 0.026 | 1.02 (0.28, 1.77) | 0.007 | 0.30 (−0.31, 0.91) | 0.334 |
High (>14.34) | Reference | Reference | Reference | |||
p for trend | 0.015 | 0.018 | 0.109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gang, H.; Zhang, H.; Zheng, T.; Xia, W.; Xu, S.; Li, Y. Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China. Nutrients 2022, 14, 1715. https://doi.org/10.3390/nu14091715
Gang H, Zhang H, Zheng T, Xia W, Xu S, Li Y. Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China. Nutrients. 2022; 14(9):1715. https://doi.org/10.3390/nu14091715
Chicago/Turabian StyleGang, Huiqing, Hongling Zhang, Tongzhang Zheng, Wei Xia, Shunqing Xu, and Yuanyuan Li. 2022. "Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China" Nutrients 14, no. 9: 1715. https://doi.org/10.3390/nu14091715
APA StyleGang, H., Zhang, H., Zheng, T., Xia, W., Xu, S., & Li, Y. (2022). Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China. Nutrients, 14(9), 1715. https://doi.org/10.3390/nu14091715