Association between Iron Intake and Progression of Knee Osteoarthritis
Abstract
:1. Introduction
2. Method
2.1. Study Design and Population
2.2. Assessment of Dietary Nutrient Intake
2.3. Measurement of Nondietary Covariates for Knee OA
2.4. Outcome Identification
2.5. Statistical Analysis
3. Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KL grade | Kellgren–Lawrence grade |
JSN score | Joint-space-narrowing score |
OA | Osteoarthritis |
BMI | Body mass index |
PASE | Physical Activity Scale for the Elderly |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
FFQ | Block Brief 2000 Food Frequency Questionnaire |
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, B.R.; Katz, J.N.; Solomon, D.H.; Yelin, E.H.; Hunter, D.J.; Messier, S.P.; Suter, L.G.; Losina, E. Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res. 2016, 68, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Xu, C.; Liu, T.; Driban, J.B.; McAlindon, T.; Eaton, C.B.; Lu, B. Dietary patterns and risk of developing knee osteoarthritis: Data from the osteoarthritis initiative. Osteoarthr. Cartil. 2021, 29, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Driban, J.B.; Xu, C.; Lapane, K.L.; McAlindon, T.E.; Eaton, C.B. Dietary Fat Intake and Radiographic Progression of Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2017, 69, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Niu, J.; Zhang, Y.; Jacques, P.; Felson, D.T. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts. Ann. Rheum. Dis. 2017, 76, 1411–1419. [Google Scholar] [CrossRef]
- Thomas, S.; Browne, H.; Mobasheri, A.; Rayman, M.P. What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology 2018, 57 (Suppl. 4), iv61–iv74. [Google Scholar] [CrossRef] [Green Version]
- Kocpinar, E.F.; Gonul Baltaci, N.; Ceylan, H.; Kalin, S.N.; Erdogan, O.; Budak, H. Effect of a Prolonged Dietary Iron Intake on the Gene Expression and Activity of the Testicular Antioxidant Defense System in Rats. Biol. Trace Elem. Res. 2020, 195, 135–141. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Ciosek, Ż.; Łanocha-Arendarczyk, N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. Int. J. Environ. Res. Public Health 2020, 17, 813. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Hu, W.; Chu, T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front. Cell Dev. Biol. 2022, 9, 817104. [Google Scholar] [CrossRef]
- Carroll, G.J.; Sharma, G.; Upadhyay, A.; Jazayeri, J.A. Ferritin concentrations in synovial fluid are higher in osteoarthritis patients with HFE gene mutations (C282Y or H63D). Scand. J. Rheumatol. 2010, 39, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Yazar, M.; Sarban, S.; Kocyigit, A.; Isikan, U.E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol. Trace Elem. Res. 2005, 106, 123–132. [Google Scholar] [CrossRef]
- Kennish, L.; Attur, M.; Oh, C.; Krasnokutsky, S.; Samuels, J.; Greenberg, J.D.; Huang, X.; Abramson, S.B. Age-dependent ferritin elevations and HFE C282Y mutation as risk factors for symptomatic knee osteoarthritis in males: A longitudinal cohort study. BMC Musculoskelet. Disord. 2014, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, L.H.; Radakovich, L.B.; Marolf, A.J.; Santangelo, K.S. Systemic iron overload exacerbates osteoarthritis in the strain 13 guinea pig. Osteoarthr. Cartil. 2020, 28, 1265–1275. [Google Scholar] [CrossRef]
- Sun, K.; Guo, Z.; Hou, L.; Xu, J.; Du, T.; Xu, T.; Guo, F. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res. Rev. 2021, 72, 101481. [Google Scholar] [CrossRef]
- Filler, J.; von Krüchten, R.; Wawro, N.; Maier, L.; Lorbeer, R.; Nattenmüller, J.; Thorand, B.; Bamberg, F.; Peters, A.; Schlett, C.L.; et al. Association of Habitual Dietary Intake with Liver Iron-A Population-Based Imaging Study. Nutrients 2021, 14, 132. [Google Scholar] [CrossRef]
- Ems, T.; St Lucia, K.; Huecker, M.R. Biochemistry, Iron Absorption. 2021. StatPearls. Available online: http://www.ncbi.nlm.nih.gov/books/NBK448204/ (accessed on 13 March 2022).
- Nevitt, M.; Felson, D.; Lester, G. The osteoarthritis initiative. Protoc. Cohort Study 2006, 1. Available online: https://www.oarsijournal.com/cms/10.1016/j.joca.2016.09.013/attachment/17129285-04bf-4f1c-a2f4-6c3f498da638/mmc2.pdf (accessed on 13 March 2022).
- Xu, C.; Marchand, N.E.; Driban, J.B.; McAlindon, T.; Eaton, C.B.; Lu, B. Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Am. J. Clin. Nutr. 2020, 111, 667–676. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.M.; Naughton, D. A reduced dietary questionnaire: Development and validation. Epidemiology 1990, 1, 58–64. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef]
- Zeng, C.; Lane, N.E.; Hunter, D.J.; Wei, J.; Choi, H.K.; McAlindon, T.E.; Li, H.; Lu, N.; Lei, G.; Zhang, Y. Intra-articular corticosteroids and the risk of knee osteoarthritis progression: Results from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2019, 27, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Bucci, J.; Chen, X.; LaValley, M.; Nevitt, M.; Torner, J.; Lewis, C.E.; Felson, D.T. Progression of Knee Osteoarthritis With Use of Intraarticular Glucocorticoids Versus Hyaluronic Acid. Arthritis Rheumatol. 2022, 74, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhen, S.; Zhou, Y.; Taylor, A.W. Hb level, iron intake and mortality in Chinese adults: A 10-year follow-up study. Br. J. Nutr. 2017, 117, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Zhao, D.; Qi, Y.; Wang, M.; Zhao, F.; Sun, J.; Liu, J. The association between serum ferritin levels and the risk of new-onset type 2 diabetes mellitus: A 10-year follow-up of the Chinese Multi-Provincial Cohort Study. Diabetes Res. Clin. Pract. 2017, 130, 154–162. [Google Scholar] [CrossRef]
- Sun, L.; Zong, G.; Pan, A.; Ye, X.; Li, H.; Yu, Z.; Zhao, Y.; Zou, S.; Yu, D.; Jin, Q.; et al. Elevated plasma ferritin is associated with increased incidence of type 2 diabetes in middle-aged and elderly Chinese adults. J. Nutr. 2013, 143, 1459–1465. [Google Scholar] [CrossRef]
- Sun, H.; Weaver, C.M. Decreased Iron Intake Parallels Rising Iron Deficiency Anemia and Related Mortality Rates in the US Population. J. Nutr. 2021, 151, 1947–1955. [Google Scholar] [CrossRef]
- Zhai, F.; Wang, H.; Du, S.; He, Y.; Wang, Z.; Ge, K.; Popkin, B.M. Prospective study on nutrition transition in China. Nutr. Rev. 2009, 67 (Suppl. 1), S56–S61. [Google Scholar] [CrossRef]
- Li, M.; Hu, Y.; Mao, D.; Wang, R.; Chen, J.; Li, W.; Yang, X.; Piao, J.; Yang, L. Prevalence of Anemia among Chinese Rural Residents. Nutrients 2017, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Pouchieu, C.; Deschasaux, M.; Hercberg, S.; Druesne-Pecollo, N.; Latino-Martel, P.; Touvier, M. Prospective association between red and processed meat intakes and breast cancer risk: Modulation by an antioxidant supplementation in the SU.VI.MAX randomized controlled trial. Int. J. Epidemiol. 2014, 43, 1583–1592. [Google Scholar] [CrossRef] [Green Version]
- Diallo, A.; Deschasaux, M.; Partula, V.; Latino-Martel, P.; Srour, B.; Hercberg, S.; Galan, P.; Fassier, P.; Guéraud, F.; Pierre, F.H.; et al. Dietary iron intake and breast cancer risk: Modulation by an antioxidant supplementation. Oncotarget 2016, 7, 79008–79016. [Google Scholar] [CrossRef]
- Van Campenhout, A.; Van Campenhout, C.; Lagrou, A.R.; Moorkens, G.; De Block, C.; Manuel-y-Keenoy, B. Iron-binding antioxidant capacity is impaired in diabetes mellitus. Free Radic. Biol. Med. 2006, 40, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Timmer, T.C.; de Groot, R.; Rijnhart, J.J.M.; Lakerveld, J.; Brug, J.; Perenboom, C.W.M.; Baart, M.A.; Prinsze, F.J.; Zalpuri, S.; van der Schoot, E.C.; et al. Dietary intake of heme iron is associated with ferritin and hemoglobin levels in Dutch blood donors: Results from Donor InSight. Haematologica 2020, 105, 2400–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
Characteristics | Total | Iron Intake (mg/day) | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Decile 1 | Decile 2 | Decile 3 | Decile 4 | Decile 5 | Decile 6 | Decile 7 | Decile 8 | Decile 9 | Decile 10 | |||
(≤7.7) | (7.7–10.9) | (10.9–14.0) | (14.0–18.2) | (18.2–23.3) | (23.3–25.7) | (25.7–27.8) | (27.8–30.7) | (30.7–35.6) | (>35.6) | |||
N | 195 | 189 | 190 | 195 | 192 | 198 | 181 | 190 | 191 | 191 | ||
Age (year) | 62.1 ± 9.0 | 61.9 ± 9.4 | 61.6 ± 9.0 | 61.0 ± 8.9 | 59.3 ± 8.8 | 61.2 ± 8.4 | 63.3 ± 8.9 | 64.3 ± 8.6 | 64.1 ± 9.0 | 62.1 ± 9.0 | 62.0 ± 8.9 | <0.001 |
Sex (female, %) | 59 | 62.1 | 57.1 | 56.3 | 45.6 | 63.0 | 72.2 | 65.7 | 60.0 | 53.9 | 54.5 | <0.001 |
Race (%) | <0.001 | |||||||||||
White | 77.2 | 66.7 | 74.6 | 70.5 | 74.9 | 72.9 | 81.8 | 86.2 | 83.7 | 83.2 | 78.5 | |
African American | 20.4 | 29.7 | 22.8 | 26.8 | 23.6 | 24.5 | 17.2 | 10.5 | 12.6 | 15.2 | 20.4 | |
Other | 2.4 | 3.6 | 2.6 | 2.7 | 1.5 | 2.6 | 1.0 | 3.3 | 3.7 | 1.5 | 1.0 | |
Education (%) | 0.017 | |||||||||||
≤High School | 17.7 | 24.6 | 22.8 | 20.5 | 21.0 | 16.1 | 13.1 | 8.8 | 14.7 | 14.1 | 20.4 | |
College | 45.5 | 44.1 | 46.0 | 45.8 | 44.1 | 44.3 | 47.0 | 49.2 | 47.4 | 45.0 | 42.4 | |
>College | 36.8 | 31.3 | 31.2 | 33.2 | 34.9 | 39.6 | 39.9 | 42.0 | 37.9 | 40.8 | 37.2 | |
Missing | 0.1 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Family income (%) | 0.235 | |||||||||||
<25 k | 14.2 | 14.4 | 16.9 | 17.4 | 13.8 | 12.0 | 11.6 | 9.4 | 12.1 | 17.3 | 17.3 | |
25–50 k | 25.4 | 25.6 | 25.9 | 27.9 | 23.1 | 25.5 | 28.8 | 23.2 | 27.4 | 19.4 | 26.7 | |
50–100 k | 34.3 | 34.9 | 33.3 | 34.2 | 37.9 | 38.5 | 28.3 | 40.3 | 31.6 | 35.1 | 28.8 | |
≥100 k | 19.5 | 16.4 | 16.4 | 15.8 | 22.1 | 17.2 | 21.2 | 19.9 | 20.5 | 23.0 | 22.0 | |
Missing | 6.7 | 8.7 | 7.4 | 4.7 | 3.1 | 6.8 | 10.1 | 7.2 | 8.4 | 5.2 | 5.2 | |
PASE score | 157.9 ± 8.1 | 149.2 ± 80.8 | 159.2 ± 78.2 | 159.9 ± 80.0 | 162.0 ± 83.2 | 166.3 ± 78.5 | 146.1 ± 78.9 | 155.7 ± 73.5 | 146.8 ± 78.2 | 163.2 ± 83.3 | 170.1 ± 94.5 | 0.038 |
BMI (kg/m2) | 29.6 ± 4.8 | 30.2 ± 4.8 | 30.3 ± 5.0 | 30.2 ± 5.3 | 30.6 ± 5.0 | 29.5 ± 4.7 | 29.1 ± 4.8 | 28.6 ± 4.4 | 28.5 ± 4.6 | 29.4 ± 4.4 | 29.3 ± 5.0 | <0.001 |
KL grade (%) | 0.890 | |||||||||||
2 | 62.0 | 60.5 | 57.1 | 64.2 | 63.1 | 65.1 | 63.6 | 63.0 | 62.1 | 62.3 | 59.2 | |
3 | 38.0 | 39.5 | 42.9 | 35.8 | 36.9 | 34.9 | 36.4 | 37.0 | 37.9 | 37.7 | 40.8 | |
JSN score (%) | 0.820 | |||||||||||
0 | 23.5 | 19.0 | 21.7 | 21.6 | 24.1 | 30.2 | 25.3 | 25.4 | 24.2 | 21.5 | 22.5 | |
1 | 38.6 | 41.5 | 36.0 | 43.2 | 39.0 | 34.9 | 38.4 | 37.6 | 37.9 | 40.8 | 36.6 | |
2 | 37.9 | 39.5 | 42.3 | 35.3 | 36.9 | 34.9 | 36.4 | 37.0 | 37.9 | 37.7 | 40.8 | |
NSAID use (%) | 27.0 | 29.2 | 28.6 | 23.7 | 30.9 | 26.6 | 21.7 | 24.9 | 27.9 | 26.8 | 29.8 | 0.595 |
Dietary intake | ||||||||||||
Calories (1000 kcal/day) | 1.5 ± 0.7 | 1.0 ± 0.3 | 1.3 ± 0.3 | 1.5 ± 0.5 | 1.8 ± 0.6 | 1.3 ± 0.7 | 1.2 ± 0.3 | 1.3 ± 0.3 | 1.6 ± 0.4 | 1.8 ± 0.5 | 1.8 ± 0.7 | <0.001 |
Fat (g/day) | 56.3 ± 26.5 | 40.0 ± 15.6 | 51.3 ± 18.8 | 60.7 ± 24.4 | 70.0 ± 28.8 | 50.8 ± 32.6 | 44.9 ± 17.9 | 49.4 ± 19.2 | 60.5 ± 23.9 | 70.0 ± 24.9 | 66.3 ± 32.8 | <0.001 |
Carbohydrate (g/day) | 170.6 ± 70.2 | 112.3 ± 41.0 | 147.6 ± 43.0 | 182.8 ± 62.7 | 203.5 ± 72.6 | 152.8 ± 84.7 | 135.0 ± 43.0 | 153.0 ± 45.9 | 187.3 ± 57.2 | 218.0 ± 57.4 | 214.7 ± 86.1 | <0.001 |
Protein (g/day) | 62.0 ± 25.6 | 38.0 ± 11.9 | 53.1 ± 14.9 | 62.8 ± 18.4 | 73.7 ± 24.0 | 55.4 ± 30.0 | 49.8 ± 16.0 | 59.34 ± 18.2 | 68.9 ± 19.7 | 78.5 ± 20.4 | 81.4 ± 35.8 | <0.001 |
Sodium (g/day) | 1.9 ± 0.8 | 1.2 ± 0.4 | 1.6 ± 0.5 | 2.0 ± 0.6 | 2.3 ± 0.7 | 1.7 ± 0.9 | 1.5 ± 0.5 | 1.7 ± 0.5 | 2.1 ± 0.6 | 2.4 ± 0.7 | 2.4 ± 1.0 | <0.001 |
Potassium (g/day) | 2.5 ± 1.0 | 1.5 ± 0.5 | 2.1 ± 0.6 | 2.6 ± 0.8 | 2.9 ± 0.9 | 2.3 ± 1.1 | 2.1 ± 0.6 | 2.5 ± 0.7 | 2.9 ± 0.8 | 3.3 ± 0.8 | 3.3 ± 1.4 | <0.001 |
Calcium (g/day) | 1.2 ± 0.6 | 0.7 ± 0.5 | 0.8 ± 0.4 | 1.0 ± 0.6 | 1.0 ± 0.4 | 1.1 ± 0.5 | 1.3 ± 0.5 | 1.3 ± 0.6 | 1.4 ± 0.5 | 1.5 ± 0.6 | 1.5 ± 0.6 | <0.001 |
Zinc (mg/day) | 20.0 ± 14.1 | 6.7 ± 8.4 | 9.2 ± 8.2 | 12.8 ± 11.4 | 14.2 ± 7.7 | 20.4 ± 9.8 | 24.1 ± 11.4 | 25.0 ± 10.9 | 27.4 ± 12.3 | 27.4 ± 10.7 | 33.0 ± 19.2 | <0.001 |
Magnesium (mg/day) | 303.4 ± 116.8 | 146.7 ± 44.5 | 207.8 ± 55.8 | 264.6 ± 72.0 | 298.6 ± 82.8 | 286.8 ± 80.5 | 293.7 ± 52.2 | 335.5 ± 68.0 | 372.4 ± 81.1 | 420.3 ± 89.9 | 412.4 ± 155.2 | <0.001 |
Iron Intake (mg/day) | Unadjusted Model | Adjusted Model † | p Value | |
---|---|---|---|---|
HR (95%CI) | p Value | HR (95%CI) | ||
KL grade | ||||
<16.5 | 0.76 (0.64–0.89) | 0.002 | 0.75 (0.64–0.89) | 0.001 |
≥16.5 | 1.14 (1.02–1.29) | 0.025 | 1.20 (1.04–1.38) | 0.010 |
JSN score | ||||
<16.0 | 0.85 (0.75–0.97) | 0.014 | 0.86 (0.75–0.97) | 0.021 |
≥16.0 | 1.09 (1.04, 1.15) | <0.001 | 1.10 (1.03–1.16) | 0.002 |
Iron Intake (mg/day) | N | Cases (Incidence Rate) § | Unadjusted Models | p Value | Adjusted Models † | p Value |
---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | |||||
Deciles | ||||||
≤7.7 | 195 | 52 (4.7) | Ref | Ref | ||
7.7–10.9 | 189 | 42 (3.8) | 0.82 (0.55–1.23) | 0.345 | 0.81 (0.54–1.21) | 0.304 |
10.9–14.0 | 190 | 32 (2.7) | 0.60 (0.39–0.94) | 0.025 | 0.61 (0.39–0.95) | 0.027 |
14.0–18.2 | 195 | 24 (2.0) | 0.44 (0.27–0.72) | 0.001 | 0.45 (0.28–0.73) | 0.001 |
18.2–23.3 | 192 | 33 (2.8) | 0.62 (0.40–0.96) | 0.033 | 0.71 (0.45–1.12) | 0.141 |
23.3–25.7 | 198 | 41 (3.4) | 0.75 (0.50–1.13) | 0.164 | 0.77 (0.49–1.22) | 0.262 |
25.7–27.8 | 181 | 44 (4.1) | 0.89 (0.60–1.34) | 0.591 | 1.01 (0.64–1.59) | 0.955 |
27.8–30.7 | 190 | 45 (4.0) | 0.88 (0.59–1.30) | 0.522 | 1.02 (0.65–1.60) | 0.940 |
30.7–35.6 | 191 | 43 (3.8) | 0.83 (0.56–1.25) | 0.375 | 0.93 (0.58–1.50) | 0.780 |
>35.6 | 191 | 53 (4.8) | 1.04 (0.71–1.53) | 0.826 | 1.21 (0.77–1.90) | 0.403 |
Categories | ||||||
Deciles 1–2 (≤10.9) | 384 | 94 (4.2) | 1.64 (1.23–2.20) | 0.001 | 1.57 (1.17–2.10) | 0.003 |
Deciles 3–5 (10.9–23.3) | 577 | 89 (2.5) | Ref | Ref | ||
Deciles 6–10 (>23.3) | 951 | 226 (4.0) | 1.58 (1.24–2.02) | <0.001 | 1.60 (1.19–2.16) | 0.002 |
Iron Intake (mg/day) | N | Cases (Incidence Rate) § | Unadjusted Models | p Value | Adjusted Models † | p Value |
---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | |||||
Deciles | ||||||
≤7.7 | 195 | 81 (8.6) | Ref | Ref | ||
7.7–10.9 | 189 | 69 (7.3) | 0.88 (0.64–1.21) | 0.431 | 0.90 (0.65–1.24) | 0.514 |
10.9–14.0 | 190 | 58 (5.6) | 0.70 (0.50–0.98) | 0.040 | 0.72 (0.51–1.00) | 0.053 |
14.0–18.2 | 195 | 51 (4.8) | 0.60 (0.42–0.85) | 0.004 | 0.61 (0.43–0.87) | 0.005 |
18.2–23.3 | 192 | 56 (5.3) | 0.66 (0.47–0.93) | 0.017 | 0.74 (0.53–1.04) | 0.089 |
23.3–25.7 | 198 | 69 (6.5) | 0.80 (0.58–1.10) | 0.169 | 0.88 (0.64–1.21) | 0.432 |
25.7–27.8 | 181 | 71 (7.5) | 0.92 (0.67–1.27) | 0.611 | 1.03 (0.75–1.43) | 0.837 |
27.8–30.7 | 190 | 74 (7.8) | 0.93 (0.68–1.28) | 0.671 | 1.04 (0.76–1.43) | 0.802 |
30.7–35.6 | 191 | 73 (7.7) | 0.93 (0.68–1.27) | 0.638 | 1.00 (0.73–1.38) | 0.988 |
>35.6 | 191 | 82 (8.9) | 1.05 (0.77–1.43) | 0.744 | 1.10 (0.81–1.49) | 0.546 |
Categories | ||||||
Deciles 1–2 (≤10.9) | 384 | 150 (7.9) | 1.44 (1.15–1.79) | 0.001 | 1.40 (1.12–1.76) | 0.004 |
Deciles 3–5 (10.9–23.3) | 577 | 165 (5.2) | Ref | Ref | ||
Deciles 6–10 (>23.3) | 951 | 369 (7.6) | 1.41 (1.18–1.70) | <0.001 | 1.37 (1.08–1.73) | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Si, H.; Zeng, Y.; Wu, Y.; Li, M.; Liu, Y.; Shen, B. Association between Iron Intake and Progression of Knee Osteoarthritis. Nutrients 2022, 14, 1674. https://doi.org/10.3390/nu14081674
Wu L, Si H, Zeng Y, Wu Y, Li M, Liu Y, Shen B. Association between Iron Intake and Progression of Knee Osteoarthritis. Nutrients. 2022; 14(8):1674. https://doi.org/10.3390/nu14081674
Chicago/Turabian StyleWu, Limin, Haibo Si, Yi Zeng, Yuangang Wu, Mingyang Li, Yuan Liu, and Bin Shen. 2022. "Association between Iron Intake and Progression of Knee Osteoarthritis" Nutrients 14, no. 8: 1674. https://doi.org/10.3390/nu14081674
APA StyleWu, L., Si, H., Zeng, Y., Wu, Y., Li, M., Liu, Y., & Shen, B. (2022). Association between Iron Intake and Progression of Knee Osteoarthritis. Nutrients, 14(8), 1674. https://doi.org/10.3390/nu14081674