Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 1: Nutritional and Functional Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Sample Collection
2.3. Chemicals and Reagents
2.4. Fatty Acid Composition
2.4.1. Fatty Acid Metabolism Indices
2.4.2. Functional Quality
2.5. Profile of Inorganic Elements
2.6. Vitamin E
2.7. Statistical Analysis
3. Results and Discussion
3.1. FA Profile
3.1.1. Fatty Acid Metabolism
3.1.2. Functional Traits
3.2. Inorganic Elements
3.3. Vitamin E
3.4. Nutritional Value of Conventional and Functional Meats
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Metro, D.; Tardugno, R.; Papa, M.; Bisignano, C.; Manasseri, L.; Calabrese, G.; Gervasi, T.; Dugo, G.; Cicero, N. Adherence to the Mediterranean diet in Sicilian student population. Nat. Prod. Res. 2017, 32, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef] [PubMed]
- FAO. Meat Market Review. 2021. Available online: https://www.fao.org/3/cb3700en/cb3700en.pdf (accessed on 10 January 2022).
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petracci, M.; Soglia, F.; Berri, C. Muscle Metabolism and Meat Quality Abnormalities. In Poultry Quality Evaluation; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 51–75. [Google Scholar]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. World’s Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estévez, M. Wooden-breast, white striping, and spaghetti meat: Causes, consequences and consumer perception of emerging broiler meat abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; Petracci, M.; Sirri, F.; Folegatti, E.; Franchini, A.; Meluzzi, A. The influence of the season and market class of broiler chickens on breast meat quality traits. Poult. Sci. 2007, 86, 959–963. [Google Scholar] [CrossRef]
- Parrot, P.; Walley, K. Current Attitudes to Poultry Meat: A Comparative Study of the UK and China. In Poultry Quality Evaluation; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 313–334. [Google Scholar]
- Pasquali, F.; De Cesare, A.; Meunier, M.; Guyard, M.; Rivoal, K.; Chemaly, M.; Manfreda, G. Current Challenges in Poultry Meat Safety. In Poultry Quality Evaluation; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 159–198. [Google Scholar]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Biesalski, H.K. Meat as a component of a healthy diet–are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef]
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef]
- Albergamo, A.; Vadalà, R.; Metro, D.; Nava, V.; Bartolomeo, G.; Rando, R.; Macrì, A.; Messina, L.; Gualtieri, R.; Colombo, N.; et al. Physicochemical, nutritional, microbiological, and sensory qualities of chicken burgers reformulated with Mediterranean plant ingredients and health-promoting compounds. Foods 2021, 10, 2129. [Google Scholar] [CrossRef]
- Aly, A.A.; Morsy, H.A. Studies on quality attributes of chicken burger prepared with spinach, basil and radish. J. Food Dairy Sci. 2019, 10, 153–157. [Google Scholar] [CrossRef]
- Pogorzelska-Nowicka, E.; Atanasov, A.G.; Horbańczuk, J.; Wierzbicka, A. Bioactive compounds in functional meat products. Molecules 2018, 23, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, E.; Saad, S.M.; Hassan, M.A.; Ibrahim, H.M. Assessment of the effects of selected plant extracts on quality indices and shelf life of raw chilled chicken meat. Benha Vet. Med. J. 2021, 40, 146–151. [Google Scholar] [CrossRef]
- Fazio, F.; Sikandar Habib, S.; Naz, S.; Filiciotto, F.; Cicero, N.; Ur Rehman, H.; Saddozai, S.; Hussain Rind, K.; Ali Rind, N.; Hussain Shar, A. Effect of fortified feed with olive leaves extract on the haematological and biochemical parameters of Oreochromis niloticus (Nile tilapia). Nat. Prod. Res. 2021, 36, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef]
- Morshedy, S.A.; Abdelmodather, A.M.; Basyony, M.M.; Zahran, S.A.; Hassan, M.A. Effects of Rocket Seed Oil, Wheat Germ Oil, and Their Mixture on Growth Performance, Feed Utilization, Digestibility, Redox Status, and Meat Fatty Acid Profile of Growing Rabbits. Agriculture 2021, 11, 662. [Google Scholar] [CrossRef]
- Banaszkiewicz, T.; Białek, A.; Tokarz, A.; Kaszperuk, K. Effect of dietary grape and pomegranate seed oil on the post-slaughter value and physicochemical properties of muscles of broiler chickens. Acta Sci. Pol. Technol. Aliment. 2018, 17, 199–209. [Google Scholar]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzińska, A.; Perz, K.; Hejdysz, M. Growth performance and carcass quality in broiler chickens fed on legume seeds and rapeseed meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef]
- Chen, X.; Parr, C.; Utterback, P.; Parsons, C.M. Nutritional evaluation of canola meals produced from new varieties of canola seeds for poultry. Poult. Sci. 2015, 94, 984–991. [Google Scholar] [CrossRef]
- Rymer, C.; Givens, D.I. Effect of species and genotype on the efficiency of enrichment of poultry meat with n−3 polyunsaturated fatty acids. Lipids 2006, 41, 445–451. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Application of microalgae biomass in poultry nutrition. World’s Poult. Sci. J. 2015, 71, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, M.B.; Cherian, G. Use of flaxseed in poultry feeds to meet the human need for n-3 fatty acids. World’s Poult. Sci. J. 2017, 73, 803–812. [Google Scholar] [CrossRef]
- Wu, M.; Li, D.; Wang, L.J.; Zhou, Y.G.; Brooks, M.S.L.; Chen, X.D.; Mao, Z.H. Extrusion detoxification technique on flaxseed by uniform design optimization. Sep. Purif. Technol. 2008, 61, 51–59. [Google Scholar] [CrossRef]
- Kumar, F.; Tyagi, P.K.; Mir, N.A.; Dev, K.; Begum, J.; Biswas, A.; Sheikh, S.A.; Tyagi, P.K.; Sharma, D.; Sahu, B.; et al. Dietary flaxseed and turmeric is a novel strategy to enrich chicken meat with long chain ω-3 polyunsaturated fatty acids with better oxidative stability and functional properties. Food Chem. 2020, 305, 125458. [Google Scholar] [CrossRef]
- Anjum, F.M.; Haider, M.F.; Khan, M.I.; Sohaib, M.; Arshad, M.S. Impact of extruded flaxseed meal supplemented diet on growth performance, oxidative stability and quality of broiler meat and meat products. Lipids Health Dis. 2013, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Seo, T.; Blaner, W.S.; Deckelbaum, R.J. Omega-3 fatty acids: Molecular approaches to optimal biological outcomes. Curr. Opin. Lipidol. 2005, 16, 11–18. [Google Scholar] [CrossRef]
- Betti, M.; Schneider, B.L.; Wismer, W.V.; Carney, V.L.; Zuidhof, M.J.; Renema, R.A. Omega-3-enriched broiler meat: 2. Functional properties, oxidative stability, and consumer acceptance. Poult. Sci. 2009, 88, 1085–1095. [Google Scholar] [CrossRef]
- Cortinas, L.; Barroeta, A.; Villaverde, C.; Galobart, J.; Guardiola, F.; Baucells, M.D. Influence of the dietary polyunsaturation level on chicken meat quality: Lipid oxidation. Poult. Sci. 2005, 84, 48–55. [Google Scholar] [CrossRef]
- Juskiewicz, J.; Jankowski, J.; Zielinski, H.; Zdunczyk, Z.; Mikulski, D.; Antoszkiewicz, Z.; Zdunczyk, P. The fatty acid profile and oxidative stability of meat from turkeys fed diets enriched with n-3 polyunsaturated fatty acids and dried fruit pomaces as a source of polyphenols. PLoS ONE 2017, 12, e0170074. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Bertol, T.M.; Pflanzer, S.B.; Sgarbieri, V.C.; Pollonio, M.A.R. ω-3 in meat products: Benefits and effects on lipid oxidative stability. J. Sci. Food Agric. 2016, 96, 2620–2634. [Google Scholar] [CrossRef]
- Moghadasian, M.H. Advances in dietary enrichment with n-3 fatty acids. Crit. Rev. Food Sci. Nutr. 2008, 48, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Parveen, R.; Khan, M.I.; Anjum, F.M.; Sheikh, M.A. Investigating potential roles of extruded flaxseed and α-tocopherol acetate supplementation for production of healthier broiler meat. Br. Poult. Sci. 2016, 57, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Curtis, J.M.; Ren, Y.; Betti, M. Effects of vitamin E and organic selenium on oxidative stability of ω-3 enriched dark chicken meat during cooking. J. Food Sci. 2010, 75, T25–T34. [Google Scholar] [CrossRef] [PubMed]
- Leskovec, J.; Levart, A.; Perić, L.; Stojčić, M.Đ.; Tomović, V.; Pirman, T.; Salobir, J.; Rezar, V. Antioxidative effects of supplementing linseed oil-enriched diets with α-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poult. Sci. 2019, 98, 6733–6741. [Google Scholar] [CrossRef]
- Taulescu, C.; Mihaiu, M.; Bele, C.; Matea, C.; Dan, S.D.; Mihaiu, R.; Lapusan, A.; Ciupa, A. Manipulating the fatty acid composition of poultry meat for improving consumer’s health. Bull. UASVM 2010, 67, 220–225. [Google Scholar]
- Voljč, M.; Frankič, T.; Levart, A.; Nemec, M.; Salobir, J. Evaluation of different vitamin E recommendations and bioactivity of α-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poult. Sci. 2011, 90, 1478–1488. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mattioli, S.; Ruggeri, S.; Mugnai, C.; Castellini, C. Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 2. fatty acid and oxidative status of meat. Ital. J. Anim. Sci. 2014, 13, 462–466. [Google Scholar]
- Popova, T.; Ignatova, M.; Petkov, E.; Stanišić, N. Difference in fatty acid composition and related nutritional indices of meat between two lines of slow-growing chickens slaughtered at different ages. Arch. Anim. Breed. 2016, 59, 319–327. [Google Scholar] [CrossRef]
- Mirshekar, R.; Boldaji, F.; Dastar, B.; Yamchi, A.; Pashaei, S. Longer consumption of flaxseed oil enhances n-3 fatty acid content of chicken meat and expression of FADS2 gene. Eur. J. Lipid Sci. Technol. 2015, 117, 810–819. [Google Scholar] [CrossRef]
- Petrovič, V.; Nollet, L.; Kováč, G. Effect of dietary supplementation of trace elements on the growth performance and their distribution in the breast and thigh muscles depending on the age of broiler chickens. Acta Vet. Brno 2010, 79, 203–209. [Google Scholar] [CrossRef]
- Kumar, F.; Tyagi, P.K.; Mir, N.A.; Tyagi, P.K.; Dev, K.; Bera, I.; Biswas, A.K.; Sharma, D.; Mandal, A.B.; Deo, C. Role of flaxseed meal feeding for different durations in the lipid deposition and meat quality in broiler chickens. J. Am. Oil Chem.’ Soc. 2019, 96, 261–271. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academies: Washington, DC, USA, 1994.
- The Council of the European Union. Council Directive 2007/43/EC of 28 June 2007 Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0043&from=EN (accessed on 28 January 2022).
- Sirri, F.; Castellini, C.; Roncarati, A.; Franchini, A.; Meluzzi, A. Effect of feeding and genotype on the lipid profile of organic chicken meat. Eur. J. Lipid Sci. Technol. 2010, 112, 994–1002. [Google Scholar] [CrossRef]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Amor, N.B.; Lo Vecchio, G.; Nava, V.; Rando, R.; Ben Mansour, H.; Lo Turco, V. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Bua, G.D.; Albergamo, A.; Annuario, G.; Zammuto, V.; Costa, R.; Dugo, G. High-throughput icp-ms and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal. Methods 2017, 10, 1181–1190. [Google Scholar] [CrossRef]
- Cicero, N.; Gervasi, T.; Durazzo, A.; Lucarini, M.; Macrì, A.; Nava, V.; Giarratana, F.; Tardugno, R.; Vadalà, R.; Santini, A. Mineral and microbiological analysis of spices and aromatic herbs. Foods 2022, 11, 548. [Google Scholar] [CrossRef]
- Bua, D.; Annuario, G.; Albergamo, A.; Cicero, N.; Dugo, G. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry. Food Addit. Contam. Part B 2016, 9, 210–216. [Google Scholar] [CrossRef]
- Graci, S.; Collura, R.; Cammilleri, G.; Buscemi, M.D.; Giangrosso, G.; Principato, D.; Cicero, N.; Ferrantelli, V. Mercury accumulation in Mediterranean fish and cephalopods species of sicilian coasts: Correlation between pollution and the presence of Anisakis parasites. Nat. Prod. Res. 2017, 31, 1156–1162. [Google Scholar] [CrossRef]
- Albergamo, A.; Costa, R.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Nava, V.; Gervasi, T.; Toscano, G.; Germanò, M.P.; Dʼangelo, V.; et al. Grape water: Reclaim and valorization of a by-product from the industrial cryoconcentration of grape (Vitis vinifera) must. J. Sci. Food Agric. 2020, 100, 2971–2981. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, A.; Rotondo, A.; Salvo, A.; Pellizzeri, V.; Bua, D.G.; Maggio, A.; Cicero, N.; Dugo, G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat. Prod. Res. 2017, 31, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Lo Turco, V.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Compos. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Rotondo, A.; La Torre, G.L.; Gervasi, T.; Di Matteo, G.; Spanò, M.; Ingallina, C.; Salvo, A. A fast and efficient ultrasound-assisted extraction of tocopherols in cow milk followed by HPLC determination. Molecules 2021, 26, 4645. [Google Scholar] [CrossRef]
- Wang, X.Q.; Chen, X.; Tan, H.Z.; Zhang, D.X.; Zhang, H.J.; Wei, S.; Yan, H.C. Nutrient density and slaughter age have differential effects on carcase performance, muscle and meat quality in fast and slow growing broiler genotypes. Br. Poult. Sci. 2013, 54, 50–61. [Google Scholar] [CrossRef]
- Aberle, E.D.; Forrest, J.C.; Gerrard, D.E.; Mills, E.W. Principles of Meat Science, 5th ed.; Kendall Hunt: Dubuque, IA, USA, 2001. [Google Scholar]
- Hernandez, F.I.L. Performance and fatty acid composition of adipose tissue, breast and thigh in broilers fed flaxseed: A review. Curr. Res. Nutr. Food Sci. J. 2013, 1, 103–114. [Google Scholar] [CrossRef]
- Missotten, J.; De Smet, S.; Raes, K.; Doran, O. Effect of supplementation of the maternal diet withfish oil or linseedoil on fatty acid composition and expression of D5- and D6-desaturase lipogenic enzymes in tissues of female piglets. Animal 2009, 3, 1196–1204. [Google Scholar] [CrossRef] [Green Version]
- Doran, O.; Moule, S.K.; Teye, G.A.; Whittington, F.M.; Hallett, K.G.; Wood, J.D. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br. J. Nutr. 2006, 95, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Poureslami, R.; Raes, K.; Turchini, G.M.; Huyghebaert, G.; De Smet, S. Effect of diet, sex and age on fatty acid metabolism in broiler chickens: N-3 and n-6 PUFA. Br. J. Nutr. 2010, 104, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.V.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Starčević, K.; Mašek, T.; Brozić, D.; Filipović, N.; Stojević, Z. Growth performance, serum lipids and fatty acid profile of different tissues in chicken broilers fed a diet supplemented with linseed oil during a prolonged fattening period. Vet. Arh. 2014, 84, 75–84. [Google Scholar]
- Mech, A.; Suganthi, U.; Rao, S.B.N.; Sejian, V.; Soren, M.; David, C.; Awachat, V.; Kadakol, V. Effect of dietary supplementation of linseed oil and natural antioxidants on production performance, fatty acid profile and meat lipid per oxidation in broilers. Asian J. Dairy Food Res. 2021, 40, 62–68. [Google Scholar]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Kumar, F.; Sharma, D.; Biswas, A.; Verma, A.K. Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Eur. J. Lipid Sci. Technol. 2018, 120, 1700470. [Google Scholar] [CrossRef]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Wani, M.A.; Deo, C.; Biswas, A.; Verma, A.K. Performance and meat quality of broiler chicken fed a ration containing flaxseed meal and higher dietary lysine levels. J. Agric. Sci. 2018, 156, 291–299. [Google Scholar] [CrossRef]
- El-Samee, A.; Laila, D.; El-Wardany, I.; Abdel-Fattah, S.A.; El-Azeem, A.; Nafisa, A.; Elsharkawy, M.S. Dietary omega-3 and antioxidants improve long-chain omega-3 and lipid oxidation of broiler meat. Bull. Natl. Res. Cent. 2019, 43, 45. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Sparks, N.H.C. Tissue-specific fatty acid and α-tocopherol profiles in male chickens depending on dietary tuna oil and vitamin E provision. Poult. Sci. 2000, 79, 1132–1142. [Google Scholar] [CrossRef]
- Rebolé, A.; Rodriguez, M.L.; Ortiz, L.T.; Alzueta, C.; Centeno, C.; Viveros, A.; Brenes, A.; Arija, I. Effect of dietary high-oleic acid sunflower seed, palm oil and vitamin E supplementation on broiler performance, fatty acid composition and oxidation susceptibility of meat. Br. Poult. Sci. 2006, 47, 581–591. [Google Scholar] [CrossRef]
- Contreras, M.A.; Rapoport, S.I. Recent studies on interactions between n-3 and n-6 polyunsaturated fatty acids in brain and other tissues. Curr. Opin. Lipidol. 2002, 13, 267–272. [Google Scholar] [CrossRef]
- Vermunt, S.H.; Mensink, R.P.; Simonis, M.M.; Hornstra, G. Effects of dietary α-linolenic acid on the conversion and oxidation of 13C-α-linolenic acid. Lipids 2000, 35, 137–142. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Ruggeri, S.; Mattioli, S.; Castellini, C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poult. Sci. 2012, 91, 2039–2045. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Moussavi Javardi, M.S.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The correlation between dietary fat quality indices and lipid profile with Atherogenic index of plasma in obese and non-obese volunteers: A cross-sectional descriptive-analytic case-control study. Lipids Health Dis. 2020, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Burlikowska, K.; Szymeczko, R. Changes in blood chemistry in broiler chickens during the fattening period. Folia Biol. (Krakow) 2011, 59, 183–187. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; Cabi: Wallingford, UK, 2010. [Google Scholar]
- Yao, H.; Zhao, X.; Fan, R.; Sattar, H.; Zhao, J.; Zhao, W.; Zhang, Z.; Li, Y.; Xu, S. Selenium deficiency-induced alterations in ion profiles in chicken muscle. PLoS ONE 2017, 12, e0184186. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J.; Sun, X.X.; Li, C.Y.; Wu, X.H.; Yao, J.H. Effects of copper, iron, zinc, and manganese supplementation in a corn and soybean meal diet on the growth performance, meat quality, and immune responses of broiler chickens. J. Appl. Poult. Res. 2011, 20, 263–271. [Google Scholar] [CrossRef]
- Sirri, F.; Maiorano, G.; Tavaniello, S.; Chen, J.; Petracci, M.; Meluzzi, A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poult. Sci. 2016, 95, 1813–1824. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, L.; Hu, S.; An, S.; Lv, Z.; Wang, Z.; Wu, Y.; Zhu, Y.; Zhao, M.; Gu, C.; et al. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Arch. Anim. Nutr. 2019, 73, 324–337. [Google Scholar] [CrossRef]
- Lin, X.; Yang, T.; Li, H.; Ji, Y.; Zhao, Y.; He, J. Interactions between different selenium compounds and essential trace elements involved in the antioxidant system of laying hens. Biol. Trace Elem. Res. 2020, 193, 252–260. [Google Scholar] [CrossRef]
- Feroci, G.; Badiello, R.; Fini, A. Interactions between different selenium compounds and zinc, cadmium and mercury. J. Trace Elem. Med. Biol. 2005, 18, 227–234. [Google Scholar] [CrossRef]
- Korish, M.A.; Attia, Y.A. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals 2020, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, 364, 5–24. [Google Scholar]
- Andrée, S.; Jira, W.; Schwind, K.H.; Wagner, H.; Schwägele, F. Chemical safety of meat and meat products. Meat Sci. 2010, 86, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Rudy, M. The analysis of correlations between the age and the level of bioaccumulation of heavy metals in tissues and the chemical composition of sheep meat from the region in SE Poland. Food Chem. Toxicol. 2009, 47, 1117–1122. [Google Scholar] [CrossRef]
- de Mendoza García, M.H.; Moreno, D.H.; Rodríguez, F.S.; Beceiro, A.L.; Álvarez, L.E.F.; López, M.P. Sex-and age-dependent accumulation of heavy metals (Cd, Pb and Zn) in liver, kidney and muscle of roe deer (Capreolus capreolus) from NW Spain. J. Environ. Sci. Health Part A 2011, 46, 109–116. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.P.; Teng, X.H.; Fu, J. Effects of dietary selenium against lead toxicity are related to the ion profile in chicken muscle. Biol. Trace Elem. Res. 2016, 172, 496–503. [Google Scholar] [CrossRef]
- Xu, T.; Gao, X.; Liu, G. The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol. Trace Elem. Res. 2016, 169, 365–373. [Google Scholar] [CrossRef]
- Liu, R.; Jia, T.; Cui, Y.; Lin, H.; Li, S. The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol. Trace Elem. Res. 2018, 184, 240–246. [Google Scholar] [CrossRef]
- Bou, R.; Guardiola, F.; Grau, A.; Grimpa, S.; Manich, A.; Barroeta, A.; Codony, R. Influence of dietary fat source, α-tocopherol, and ascorbic acid supplementation on sensory quality of dark chicken meat. Poult. Sci. 2001, 80, 800–807. [Google Scholar] [CrossRef]
- Habibian, M.; Ghazi, S.; Moeini, M.M. Effects of dietary selenium and vitamin E on growth performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers reared under heat stress. Biol. Trace Elem. Res. 2016, 169, 142–152. [Google Scholar] [CrossRef]
- Skřivan, M.; Marounek, M.; Dlouhá, G.; Ševčíková, S. Dietary selenium increases vitamin E contents of egg yolk and chicken meat. Br. Poult. Sci. 2008, 49, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br. Poult. Sci. 2000, 41, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Italian Society for Human Nutrition (SINU). Dietary Reference Values of Nutrients and Energy for Italian Population. Available online: http://sinu.it/tabelle-larn-2014/ (accessed on 27 February 2022).
Feeding Program | Market Class | Total (According to the Diet Program) | |||
---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | |||
Control | n flocks | 12 | 12 | 12 | 36 |
n samples | 60 | 60 | 60 | 180 | |
n replicates | 3 | 3 | 3 | 9 | |
Functional | n flocks | 12 | 12 | 12 | 36 |
n samples | 60 | 60 | 60 | 180 | |
n replicates | 3 | 3 | 3 | 9 | |
Total (according to the market class) | 24 | 24 | 24 | 72 | |
120 | 120 | 120 | 360 | ||
6 | 6 | 6 | 18 |
Starter | Grower 1 | Grower 2 | Finisher | ||
---|---|---|---|---|---|
Ingredients (%) | |||||
Corn | Control | 45.70 | 48.53 | 55.27 | 56.88 |
Functional | 46.45 | 51.38 | 55.56 | 57.69 | |
Soybean meal | Control | 36.93 | 32.10 | 27.70 | 25.92 |
Functional | 36.40 | 32.22 | 27.73 | 25.65 | |
Wheat middlings | Control | 5.90 | 8.35 | 6.00 | 6.08 |
Functional | 4.00 | 4.00 | 4.00 | 4.00 | |
Sunflower meal | Control | 1.25 | 1.25 | 1.90 | 2.00 |
Functional | 1.00 | 1.00 | 1.00 | 1.00 | |
Oil, fat | Control | 4.20 | 5.15 | 5.70 | 5.95 |
Functional | 3.50 | 4.30 | 5.03 | 5.20 | |
Corn gluten meal | Control | 1.25 | 0.70 | - | - |
Functional | 1.32 | 0.55 | - | - | |
Extruded linseed meal | Control | - | - | - | - |
Functional | 2.50 | 2.50 | 3.13 | 3.13 | |
Vitamin E (100,000 UI/Kg feed) | Control | - | - | - | - |
Functional | 0.22 | 0.23 | 0.23 | 0.23 | |
Selenium (2000 mg/Kg feed) | Control | - | - | - | - |
Functional | 0.01 | 0.01 | 0.01 | 0.01 | |
Premix (Min. + Vit. + Enz. + Amin.) | Control | 4.77 | 3.92 | 3.43 | 3.17 |
Functional | 4.60 | 3.81 | 3.33 | 3.09 | |
Proximate composition (%) | |||||
Volume | Control | 100 | 100 | 100 | 100 |
Functional | 100 | 100 | 100 | 100 | |
AME (Kcal/Kg) | Control | 2996 | 3094 | 3187 | 3214 |
Functional | 2991 | 3095 | 3184 | 3215 | |
Dry matter | Control | 89.34 | 89.20 | 89.00 | 89.00 |
Functional | 89.30 | 89.20 | 89.00 | 89.00 | |
Crude Protein | Control | 23.32 | 21.30 | 19.10 | 18.40 |
Functional | 23.30 | 21.30 | 19.20 | 18.40 | |
Crude Fiber | Control | 3.12 | 3.10 | 3.00 | 2.90 |
Functional | 3.20 | 3.10 | 2.90 | 2.90 | |
Ether extract | Control | 6.75 | 7.80 | 8.40 | 8.70 |
Functional | 6.90 | 7.70 | 8.70 | 8.90 | |
Ash | Control | 6.77 | 5.90 | 5.40 | 5.20 |
Functional | 6.80 | 6.10 | 5.50 | 5.30 | |
Lysine (digest) | Control | 1.28 | 1.15 | 1.02 | 0.96 |
Functional | 1.28 | 1.15 | 1.02 | 0.96 | |
Metionine + Cysteine (digest) | Control | 0.95 | 0.87 | 0.80 | 0.75 |
Functional | 0.95 | 0.87 | 0.80 | 0.75 | |
Threonine (digest) | Control | 0.87 | 0.78 | 0.69 | 0.64 |
Functional | 0.87 | 0.78 | 0.69 | 0.64 | |
Calcium | Control | 1.00 | 0.90 | 0.80 | 0.70 |
Functional | 1.00 | 0.90 | 0.80 | 0.70 | |
Phosphorus | Control | 0.70 | 0.60 | 0.50 | 0.50 |
Functional | 0.70 | 0.60 | 0.50 | 0.50 | |
Selenium (mg/Kg feed) * | Control | 0.10 | 0.10 | 0.10 | 0.10 |
Functional | 0.40 | 0.40 | 0.40 | 0.40 | |
Vitamin E (mg/Kg feed) | Control | 84 | 70 | 70 | 70 |
Functional | 299 | 300 | 300 | 300 |
% | Market Class | Dietary Treatment | Source of Variation | |||||
---|---|---|---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | Standard | Enriched | Market Class | Dietary Treatment | Market Class × Dietary Treatment | |
Total fat | 1.68 ± 0.17 a | 2.91 ± 0.19 b | 4.03 ± 0.68 c | 3.13 ± 0.78 | 2.62 ± 0.65 | * | * | * |
C14:0 | 0.84 ± 0.03 a | 0.70 ± 0.04 b | 0.59 ± 0.06 c | 0.74 ± 0.10 | 0.68 ± 0.12 | * | NS | * |
C16:0 | 26.91 ± 2.18 | 26.50 ± 2.74 | 25.45 ± 1.77 | 28.33 ± 1.05 | 24.25 ± 0.93 | NS | * | * |
C18:0 | 8.55 ± 0.52 | 8.51 ± 0.51 | 8.11 ± 0.32 | 8.57 ± 0.57 | 8.21 ± 0.32 | NS | NS | NS |
C20:0 | 0.17 ± 0.07 | 0.22 ± 0.04 | 0.21 ± 0.08 | 0.15 ± 0.04 | 0.26 ± 0.04 | * | * | NS |
SFA | 36.48 ± 2.36 | 35.93 ± 0.51 | 34.35 ± 1.83 | 37.78 ± 1.40 | 33.39 ± 1.08 | NS | * | * |
C16:1n-7 | 3.66 ± 0.71 | 3.66 ± 0.62 | 4.07 ± 0.53 | 4.26 ± 0.42 | 3.33 ± 0.44 | NS | NS | NS |
C18:1n-7 | 31.30 ± 0.77 | 31.40 ± 0.35 | 32.02 ± 0.62 | 31.40 ± 0.84 | 31.70 ± 0.88 | NS | NS | NS |
MUFA | 34.96 ± 1.28 | 35.00 ± 1.60 | 36.09 ± 1.63 | 35.66 ± 0.95 | 35.04 ± 1.01 | NS | NS | NS |
C18:2n-6 | 19.79 ± 2.89 | 19.16 ± 1.19 | 18.26 ± 1.76 | 20.08 ± 1.08 | 18.06 ± 1.64 | NS | NS | * |
C18:3n-6 | 0.52 ± 0.40 | 0.51 ± 0.39 | 0.60 ± 0.50 | 0.13 ± 0.03 | 0.95 ± 0.11 | NS | NS | NS |
C18:3n-3 | 4.90 ± 3.14 a | 4.96 ± 2.90 a | 6.54 ± 2.54 a | 2.77 ± 1.09 | 8.18 ± 0.70 | * | * | * |
C20:2n-6 | 0.28 ± 0.04 | 0.36 ± 0.10 | 0.31 ± 0.09 | 0.38 ± 0.07 | 0.25 ± 0.04 | NS | * | NS |
C20:4n-6 | 0.62 ± 0.19 | 0.65 ± 0.20 | 0.80 ± 0.27 | 0.89 ± 0.13 | 0.49 ± 0.05 | NS | * | NS |
C20:5n-3 | 0.30 ± 0.24 | 0.29 ± 0.23 | 0.44 ± 0.29 | 0.11 ± 0.05 | 0.58 ± 0.12 | NS | * | NS |
C22:6n-3 | 0.44 ± 0.24 | 0.44 ± 0.26 | 0.50 ± 0.27 | 0.23 ± 0.03 | 0.69 ± 0.15 | NS | * | NS |
PUFA | 26.90 ± 4.73 a | 26.33 ± 2.94 a | 27.44 ± 2.29 a | 24.18 ± 2.35 | 29.60 ± 1.66 | * | * | * |
Metabolic Indices | Market Class | Dietary Treatment | Source of Variation | |||||
---|---|---|---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | Standard | Enriched | Market Class | Dietary Treatment | Market Class × Dietary Treatment | |
Thioesterase index | 32.12 ± 1.94 a | 37.58 ± 2.40 b | 43.27 ± 2.32 c | 38.58 ± 4.30 | 36.73 ± 5.76 | * | NS | NS |
Elongase index | 0.32 ± 0.03 | 0.32 ± 0.03 | 0.32 ± 0.02 | 0.30 ± 0.02 | 0.34 ± 0.02 | NS | NS | NS |
11.98 ± 1.35 | 12.11 ± 1.54 | 13.75 ± 1.09 | 13.09 ± 1.36 | 12.07 ± 1.59 | NS | NS | NS | |
78.52 ± 1.41 | 78.66 ± 1.11 | 79.80 ± 0.73 | 78.57 ± 1.42 | 79.42 ± 0.84 | NS | * | NS | |
39.45 ± 1.82 | 39.91 ± 2.29 | 41.55 ± 1.76 | 38.65 ± 1.44 | 41.96 ± 1.48 | NS | NS | * | |
6.10 ± 1.74 | 6.60 ± 1.60 | 7.50 ± 2.36 | 5.03 ± 0.54 | 8.44 ± 1.22 | NS | * | * |
Functional Indices | Market Class | Dietary Treatment | Source of Variation | |||||
---|---|---|---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | Standard | Enriched | Market Class | Dietary Treatment | Market Class × Dietary Treatment | |
S/P | 0.59 ± 0.08 | 0.59 ± 0.07 | 0.54 ± 0.05 | 0.63 ± 0.04 | 0.52 ± 0.03 | NS | * | * |
h/H | 2.04 ± 0.29 | 2.06 ± 0.29 | 2.19 ± 0.20 | 1.87 ± 0.13 | 2.33 ± 0.13 | NS | * | * |
AI | 1.77 ± 0.25 | 1.75 ± 0.25 | 1.62 ± 0.17 | 1.91 ± 0.13 | 1.51 ± 0.09 | NS | * | * |
TI | 0.85 ± 0.26 | 0.84 ± 0.25 | 0.69 ± 0.16 | 1.00 ± 0.13 | 0.58 ± 0.04 | NS | * | * |
n-6/n-3 | 5.83 ± 3.74 | 5.42 ± 3.29 | 3.25 ± 1.57 | 7.52 ± 2.24 | 2.15 ± 0.25 | NS | * | * |
Analyte | Market Class | Dietary Treatment | Source of Variation | |||||
---|---|---|---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | Standard | Enriched | ||||
mg/100g | Market Class | Dietary Treatment | Market Class × Dietary Treatment | |||||
Na | 14.93 ± 8.94 | 15.88 ± 10.08 | 27.44 ± 22.05 | 6.52 ± 0.43 | 32.32 ± 12.34 | * | NS | NS |
Mg | 245.10 ± 179.27 | 250.01 ± 196.40 | 328.46 ± 280.02 | 66.84 ± 5.96 | 482.20 ± 91.99 | * | NS | * |
K | 424.29 ± 406.09 | 411.27 ± 396.41 | 473.36 ± 390.72 | 40.21 ± 9.21 | 799.06 ± 49.22 | * | NS | NS |
Fe | 1.36 ± 0.88 | 1.49 ± 1.09 | 2.21 ± 1.46 | 0.62 ± 0.19 | 2.75 ± 0.72 | NS | * | NS |
Zn | 0.27 ± 0.17 | 0.40 ± 0.20 | 0.60 ± 0.15 | 0.31 ± 0.23 | 0.54 ± 0.11 | NS | NS | * |
µg/100g | ||||||||
Mn | 22.48 ± 16.25 | 26.92 ± 21.73 | 31.19 ± 28.98 | 6.33 ± 4.56 | 48.06 ± 9.89 | * | * | NS |
Se | 8.35 ± 3.64 | 10.34 ± 6.19 | 20.11 ± 17.84 | 5.33 ± 1.11 | 20.53 ± 13.10 | * | * | * |
As | <LOD | 0.10 ± 0.00 | 0.40 ± 0.25 | 0.18 ± 0.25 | 0.18 ± 0.15 | NS | NS | NS |
Cd | 0.92 ± 0.47 | 1.22 ± 0.52 | 1.65 ± 0.44 | 0.98 ± 0.47 | 1.55 ± 0.48 | * | * | * |
Pb | 1.12 ± 0.73 | 1.03 ± 0.66 | 0.54 ± 0.27 | 0.49 ± 0.18 | 1.30 ± 0.66 | * | * | NS |
Analyte | Market Class | Dietary Treatment | Source of Variation | |||||
---|---|---|---|---|---|---|---|---|
Light Broiler | Medium Broiler | Heavy Broiler | Standard | Experimental | Market Class | Dietary Treatment | Market Class × Dietary Treatment | |
Vitamin E | 1.57 ± 0.42 | 1.61 ± 0.45 | 2.20 ± 1.04 | 1.23 ± 0.55 | 2.36 ± 0.65 | * | NS | * |
Nutrient and Relative AI or PRI | Light Broiler | Medium Broiler | Heavy Broiler | ||
---|---|---|---|---|---|
Coverage (%) | |||||
EPA + DHA | AI: 250 mg/die | Control | 0.89 | 3.64 | 5.52 |
Functional | 3.59 | 13.08 | 28.84 | ||
Mg | PRI:240 mg/die | Control | 2.71 | 2.61 | 2.90 |
Functional | 9.80 | 10.61 | 20.03 | ||
K | AI:39 g/die | Control | 0.20 | 0.20 | 0.22 |
Functional | 1.12 | 1.21 | 1.51 | ||
Fe | PRI:10 mg/die | Control | 5.22 | 4.81 | 8.52 |
Functional | 22.0 | 24.92 | 35.61 | ||
Zn | AI:2.7 mg/die | Control | 7.04 | 8.25 | 14.11 |
Functional | 15.92 | 17.8 | 24.46 | ||
Mn | PRI:12 mg/die | Control | 0.10 | 0.03 | 0.03 |
Functional | 0.35 | 0.36 | 0.48 | ||
Se | PRI: 55µg/die | Control | 9.40 | 9.40 | 10.32 |
Functional | 20.92 | 28.25 | 62.85 | ||
Vitamin E | AI: 13 mg/die | Control | 13.84 | 9.46 | 9.85 |
Functional | 15.00 | 15.39 | 24.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albergamo, A.; Vadalà, R.; Nava, V.; Bartolomeo, G.; Rando, R.; Colombo, N.; Gualtieri, R.; Petracci, M.; Di Bella, G.; Costa, R.; et al. Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 1: Nutritional and Functional Traits. Nutrients 2022, 14, 1666. https://doi.org/10.3390/nu14081666
Albergamo A, Vadalà R, Nava V, Bartolomeo G, Rando R, Colombo N, Gualtieri R, Petracci M, Di Bella G, Costa R, et al. Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 1: Nutritional and Functional Traits. Nutrients. 2022; 14(8):1666. https://doi.org/10.3390/nu14081666
Chicago/Turabian StyleAlbergamo, Ambrogina, Rossella Vadalà, Vincenzo Nava, Giovanni Bartolomeo, Rossana Rando, Nadia Colombo, Roberto Gualtieri, Massimiliano Petracci, Giuseppa Di Bella, Rosaria Costa, and et al. 2022. "Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 1: Nutritional and Functional Traits" Nutrients 14, no. 8: 1666. https://doi.org/10.3390/nu14081666
APA StyleAlbergamo, A., Vadalà, R., Nava, V., Bartolomeo, G., Rando, R., Colombo, N., Gualtieri, R., Petracci, M., Di Bella, G., Costa, R., & Cicero, N. (2022). Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 1: Nutritional and Functional Traits. Nutrients, 14(8), 1666. https://doi.org/10.3390/nu14081666