Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Intervention
2.3. Study Design
2.4. Statistical Analysis
3. Results
3.1. Changes in Uremic Toxins
3.2. Changes in Biochemical Parameters and Drug Therapy
3.3. Changes in Nutritional Status and Quality of Life
3.4. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. European Uremic Toxin Work (EUTox). Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.J.; Levey, A.S. Cardiovascular disease and chronic renal disease: A new paradigm. Am. J. Kidney Dis. 2000, 35 (Suppl. 1), S117–S131. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbiota flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, F.; Bäckhed, F. The gut microbiota: Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Felizardo, R.J.; Castoldi, A.; Andrade-Oliveira, V.; Câmara, N.O. The microbiota and chronic kidney disease: A double-edged sword. Clin. Transl. Immunol. 2016, 5, e86. [Google Scholar] [CrossRef]
- Montemurno, E.; Cosola, C.; Dalfino, G.; Daidone, G.; De Angelis, M.; Gobbetti, M.; Gesualdo, L. What would you like to eat, Mr CKD Microbiota? A Mediterranean Diet, please! Kidney Blood Press. Res. 2014, 39, 114–123. [Google Scholar] [CrossRef]
- Evenepoel, P.; Meijers, B.K.I.; Bammens, B.R.M.; Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009, 76, S12–S19. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.; Piceno, Y.M.; Desantis, T.Z.; Pahl, M.; Andresen, G.L.; Vaziri, N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Mafra, D.; Lobo, J.C.; Barros, A.F.; Koppe, L.; Vaziri, N.D.; Fouque, D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014, 9, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.; Glorieux, G. The uremic toxicity of Indoxyl sulphate and p-cresol sulphate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Wu, V.; Wu, P.C.; Wu, C.J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.-W.; Hsu, K.-H.; Lee, C.-C.; Sun, C.-Y.; Hsu, H.-J.; Tsai, C.-J.; Tzen, C.-Y.; Wang, Y.-C.; Lin, C.-Y.; Wu, M.-S. P-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transpl. 2011, 26, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Zheng, D.; Qiu, R.; Mai, W.; Zhou, Y. Lipoprotein-associated phospholipase A2 (Lp-PLA(2)): A novel and promising biomarker for cardiovascular risks assessment. Dis. Markers 2013, 34, 323–331. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Yu, J.; Zhang, W.; Du, R.; Liu, X.; Liu, Y.; Chen, Y.; Zeng, R.; Cao, Y. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis. Clin. Chim. Acta 2017, 465, 22–29. [Google Scholar] [CrossRef]
- Li, D.; Wei, W.; Ran, X.; Yu, J.; Li, H.; Zhao, L.; Zeng, H.; Cao, Y.; Zeng, Z.; Wan, Z. Lipoprotein-associated phospholipase A2 and risks of coronary heart disease and ischemic stroke in the general population: A systematic review and meta-analysis. Clin. Chim. Acta 2017, 471, 38–45. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI clinical practice guideline for renal nutrition in CKD: 2020 update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Riccio, E.; Di Nuzzi, A.; Pisani, A. Nutritional treatment in chronic kidney disease. The concept of nephroprotection. Clin. Exp. Nephrol. 2015, 19, 161–167. [Google Scholar] [CrossRef]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Black, A.P.; Anjos, J.S.; Cardozo, L.; Carmo, F.L.; Dolenga, C.J.; Nakao, L.S.; de Carvalho, F.D.; Rosado, A.; Eduardo, J.C.C.; Mafra, D. Does Low-Protein Diet Influence the Uremic Toxin Serum Levels from the Gut Microbiota in Non-dialysis Chronic Kidney Disease Patients? J. Ren. Nutr. 2018, 28, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Marzocco, S.; Dal, P.F.; Di, M.L.; Torraca, S.; Sirico, M.L.; Tartaglia, D.; Autore, G.; Di, I.B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013, 35, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Vaziri, N.D. Effect of Synbiotic Therapy on Gut–Derived Uremic Toxins and the Intestinal Microbiome in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.; Coombes, J.F.S.; Forbes, J.M.; McWhinney, B.C.; Ungerer, J.P.J.; Dimeski, G.; Campbell, K.L. SYNbiotics Easing Renal failure by improving Gut microbiologY (SYNERGY): A protocol of placebo-controlled randomised cross-over trial. BMC Nephrol. 2014, 15, 106. [Google Scholar] [CrossRef] [Green Version]
- Simeoni, M.; Citraro, M.L.; Cerantonio, A.; Deodato, F.; Provenzano, M.; Cianfrone, P.; Capria, M.; Corrado, S.; Libri, E.; Comi, A.; et al. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). Eur. J. Nutr. 2019, 58, 2145–2256. [Google Scholar] [CrossRef] [Green Version]
- Pavan, M. Influence of prebiotic and prebiotic supplementation on the progression of chronic kidney disease. Minerva Urol. Nefrol. 2016, 68, 222–226. [Google Scholar]
- De Mauri, A.; Carrera, D.; Bagnati, M. Probiotics-addicted low protein diet for microbiota modulation in patients with advanced chronic kidney disease (ProLowCKD): A protocol of placebo-controlled randomized trial. J. Funct. Foods 2020, 74, 104133. [Google Scholar] [CrossRef]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal faillure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.E.; Snow, K.K.; Kosinski, M.; Gandek, B. SF-36 Health Survey. In Manual and Interpretation Guide; The Health Institute, NEMCH: Boston, MA, USA, 1993. [Google Scholar]
- Cukor, D.; Fruchter, Y.; Ver Halen, N.; Naidoo, S.; Pateln, A.; Saggi, S.J. A preliminary investigation of depression and kidney function in patients with chronic kidney disease. Nephron Clin. Pract. 2012, 122, 139–145. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Physical Status: The Use and Interpretation of Anthropometry; World Health Organisation: Geneva, Switzerland, 1995. [Google Scholar]
- Frisancho, A.R. Anthropometric Standards for the Assessment of Growth and Nutritional Status; University of Michigan Press: Ann Arbor, MI, USA, 1990. [Google Scholar]
- Koppe, L.; Fouque, L.; Soulage, C.O. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins 2018, 10, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mafra, D.; Borges, N.; Alvarenga, L. Dietary components that may influence the disturbed gut microbiota in chronic kidney disease. Nutrients 2019, 11, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.M.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Vitetta, L.; Gobe, G. Uremia and chronic kidney disease: The role of the gut microflora and therapies with pro- and prebiotics. Mol. Nutr. Food Res. 2013, 57, 824–832. [Google Scholar] [CrossRef]
- Fuke, N.; Nagata, N.; Suganuma, H.; Ota, T. Regulation of gut microbiota and metabolic endotoxiemia with dietary factors. Nutrients 2019, 11, 2277. [Google Scholar] [CrossRef] [Green Version]
- Cosola, C.; Rocchetti, M.T.; Di, B.I. An Innovative Synbiotic Formulation Decreases Free Serum Indoxyl Sulfate, Small Intestine Permeability and Ameliorates Gastrointestinal Symptoms in a Randomized Pilot Trial in Stage IIIb-IV CKD Patients. Toxins 2021, 13, 334. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, T.W.; Lu, W.L. Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease. Cells 2021, 10, 114. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian vegan diets and multiple health and plasma lipids: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Yokoama, Y.; Levin, S.M.; Barnard, N.D. Association between plant-based diets and plasma lipids: A systematic reviewe and meta-analysis. Nutr. Rev. 2017, 75, 683–698. [Google Scholar] [CrossRef]
- Najjar, R.S.; Moore, C.E.; Montgomery, B.D. Consumption of a defined, plant-based diet reduces lipoprotein a, inflammation and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018, 41, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Nazha, M.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Bilocati, M.; Avagnina, P.; Versino, E. Patient survival and costs on moderately restricted low-protein diet in advanced CKD: Equivalent survival at lower costs? Nutrients 2016, 8, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rysz, J.; Cialkowska-Risz, A.; Gluba-Brzozka, A. The effect of diet on the survival of patients with chronic kidney disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, G.B.; Cupisti, A.; Aucella, F.; Regolisti, G.; Lomonte, C.; Ferraresi, M.; Claudia, D.A.; Ferraresi, C.; Russo, R.; La Milia, V.; et al. Green nephrology and eco-dialysis: A position statement by the Italian Society of Nephrology. J. Nephrol. 2020, 33, 681–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total patients | N. 60 |
---|---|
Age (years, mean ± SD) | 64.8 ± 11.8 |
Male/female (N/%) | 42 (70%) |
Hypertension N (%) | 53 (88%) |
Diabetes N (%) | 17 (28%) |
Coronary artery disease N (%) | 10 (16%) |
Cause of CKD | |
Hypertension N (%) | 24 (40%) |
Diabetes N (%) | 9 (15%) |
Genetics (N%) | 12 (20%) |
Others N (%) | 15 (25%) |
T0 | T2 | |
---|---|---|
Lp-PLA2 (nmol/mL/min) | 164.8 ± 43.9 | 160.6 ± 51.4 |
t-PC (μM) | 135.3 ± 78.4 | 120.7 ± 69.9 |
f-PC (μM) | 5.21 ± 3.89 | 4.1 ± 3.1 |
t-IS (μM) | 30.5 ± 14.6 | 30.2 ± 20.2 |
f-IS (μM) | 1.44 ± 0.82 | 1.35 ± 0.99 |
EPI-CKD (mL/min) | 18.1 ± 3.6 | 18.2 ± 3.7 |
Urine proteins (g/24 h) | 1.6 ± 1.4 | 1.7 ± 1.9 |
Hb (g/dL) | 12.0 ± 1.5 | 11.9 ± 1.5 |
BUN (mg/dL) | 52 ± 17 | 46 ± 15 1 |
Uric acid (mg/dL) | 6 ± 1.5 | 6 ± 1.2 |
Albumin (mg/dL) | 4.2 ±0.3 | 4.1 ± 0.3 |
Calcium (mg/dL) | 9.1 ± 0.6 | 9.1 ± 0.5 |
Phosphorus (mg/dL) | 3.7 ± 0.7 | 3.7 ± 0.8 |
Total cholesterol (mg/dL) | 185 ± 41 | 171 ± 34 2 |
HDL (mg/dL) | 45 ± 13 | 45 ± 13 |
Triglycerides (mg/dL) | 194 ± 148 | 161 ± 70 3 |
LDL (mg/dL) | 105 ± 37 | 95 ± 30 |
RCP (mg/dL) | 0.54 ± 0.87 | 0.48 ± 0.62 |
HCO3 (mEq/L) | 22.7 ± 3.2 | 23.6 ± 2.6 |
PTH (ng/mL) | 90.7 ± 75.4 | 97.2 ± 57.9 |
Urine natrium (mEq/day) | 142 ± 59 | 145 ± 60 |
Epoetin (UI/week) | 0 (0–18,000) | 0 (0–18,000) |
Furosemide (mg/day) | 25 (0–350) | 25 (0–250) |
Hypotensive agents (dose/day) | 1.7 (0–4) | 1.5 (0–4.5) |
Statins (dose/pts/day) * | 0.4 (0–2) | 0.5 (0–2) |
Omega fatty acids (g/day) * | 0 (0–4) | 0 (0–3) |
TUN g/24 h | 10.8 ± 3.4 | 9.3 ± 3.1 4 |
PCR g/24 h | 67.5 ± 2.1 | 58.4 ± 19.4 5 |
nPCR g/kg/24 h | 0.90 ± 0.30 | 0.77 ± 0.20 6 |
Probiotics Group | Placebo Group | |||
---|---|---|---|---|
T2 | T5 | T2 | T5 | |
Lp-PLA2 (nmol/mL/min) | 162.9 ± 53.5 | 162.7 ± 37.9 | 155.4 ± 39.3 | 167.5 ± 51.4 1 |
t-PC (μM) | 124.1 ± 63.1 | 114.8 ± 56.6 | 116.7 ± 77.0 | 125.9 ± 90.0 |
f-PC (μM) | 3.89 ± 2.13 | 4.52 ± 2.62 | 4.49 ± 3.86 | 5.38 ± 5.89 |
t-IS (μM) | 30.3 ± 23.7 | 28.1 ± 11.7 | 30.1 ± 17.6 | 34.5 ± 20.2 2 |
f-IS (μM) | 1.32 ± 1.07 | 1.29 ± 0.55 | 1.38 ± 0.92 | 1.55 ± 0.94 |
Probiotics Group | Placebo Group | |||
---|---|---|---|---|
T2 | T5 | T2 | T5 | |
eGFR (CKD-EPI, mL/min) | 18.8 ± 5.1 | 19.9 ± 5.4 | 17.6 ± 4.3 | 17.3 ± 6.4 |
Mean creatinine and urea clearance (mL/min) | 17.6 ± 5.7 | 17.9 ± 6.7 | 17.6 ± 5.3 | 18.7 ± 7.9 |
Urine proteins (g/24 h) | 1.2 ± 1.6* | 1.2 ± 1.7 | 1.9 ± 2.1 | 2.7 ± 2.4 1 |
Hb (g/dL) | 11.7 ± 1.5 | 12.0 ± 1.6 | 12.0 ± 1.5 | 12.2 ± 1.6 |
BUN (mg/dL) | 47 ± 16 | 45 ± 16 | 46 ± 14 | 48 ± 18 |
Uric acid (mg/dL) | 6.1 ± 1.4 | 5.7 ± 1.6 | 5.9 ± 1.0 | 5.9 ± 1.2 |
Albumin (mg/dL) | 4.2 ± 0.3 | 4.1 ± 0.3 | 4.1 ± 0.3 | 4.1 ± 0.4 |
Calcium (mg/dL) | 9.1 ± 0.6 | 8.9 ± 0.6 | 9.1 ± 0.4 | 9.1 ± 0.6 |
Phosphorus (mg/dL) | 3.7 ± 0.9 | 3.6 ± 0.8 | 3.7 ± 0.7 | 3.9 ± 0.9 |
Total cholesterol (mg/dL) | 174 ± 34 | 179 ± 31 | 169 ± 36 | 185 ± 40 2 |
HDL (mg/dL) | 43.9 ± 12.7 | 45 ± 11.4 | 47 ± 14 | 47 ± 12 |
Triglycerides (mg/dL) | 161 ± 75 | 158 ± 70 | 162 ± 66 | 178 ± 92 |
LDL (mg/dL) | 99 ± 31 | 102 ± 31 | 90 ± 28 | 104 ± 35 3 |
RCP (mg/dL) | 0.54 ± 0.71 | 0.48 ± 0.62 | 0.37 ± 0.47 | 0.6 ± 0.9 |
HCO3 (mEq/L) | 24.1 ± 2.2 | 23.6 ± 2.9 | 23.1 ± 2.9 | 23.4 ± 3.0 |
PTH (ng/mL) | 89.1 ± 48.8 | 81.0 ± 38.8 | 106.2 ± 65.7 | 120.6 ± 101.1 |
Urine natrium (mEq/day) | 133 ± 62 | 135 ± 54 | 145 ± 60 | 162 ± 67 |
TUN g/24 h | 9.1 ± 2.9 | 8.6 ± 3.5 | 9.5 ± 3.3 | 9.4 ± 3.6 |
PCR g/24 h | 57.2 ± 1.8 | 56.0 ± 1.9 | 59.7 ± 2.9 | 61.6 ± 2.9 |
nPCR g/kg/24 h | 0.74 ± 0.19 | 0.76 ± 0.18 | 0.81 ± 0.21 | 0.87 ± 0.31 |
Probiotics Group | Placebo Group | |||
---|---|---|---|---|
T2 | T5 | T2 | T5 | |
Epoetin (UI/week) | 0 (0–8000) | 0 (0–8000) | 0 (0–8000) | 0 (0–8000) |
Furosemide (mg/day) | 25 (0–500) | 0 (0–100) 1 | 0 (0–125) | 0 (0–125) |
Antihypertensive agents (dose/day) | 1.5 (0–4.5) | 1 (0–3) 2 | 1 (0–4) | 1 (0–4) |
Statins (dose/pts/day) | 0 (0–2) | 0 (0–2) | 0.5 (0–2) | 0 (0–2) |
Omega fatty acids (g/day) | 0 (0–2) | 0 (0–2) | 0 (0–3) | 0 (0–2) |
Probiotics Group | Placebo Group | |||
---|---|---|---|---|
T2 | T5 | T2 | T5 | |
BMI (kg/cm2) | 30.6 ± 10.2 | 30.6 ± 11.2 | 28.0 ± 5.9 | 28.0 ± 6.2 |
Free fat mass (kg) | 52.8 ± 8.9 | 52.2 ± 8.9 | 52.6 ± 13.9 | 55.3 ± 9.8 |
Fat mass (kg) | 24.8 ± 6.7 | 23.8 ± 6.9 | 21.6 ± 10.3 | 22.1 ±9.1 |
Angle phase | 4.87 ± 0.90 | 4.95 ± 0.96 | 4.73 ± 1.3 | 5.1 ± 0.8 |
Hand grip (kg) | 33.4 ± 11.7 | 30.7 ± 11.2 | 36.1 ± 8.5 | 34.6 ± 9.2 |
Physical functioning (points) | 70.5 ± 20.2 | 66.5 ± 24.4 | 72.5 ± 23.3 | 72.8 ± 22.9 |
Physical role functioning (points) | 41.4 ± 43.4 | 59 ± 39.8 | 60.3 ± 39.2 | 64.1 ± 41.1 |
Bodily pain (points) | 62.7 ± 28.0 | 71.2 ± 27.7 | 73.6 ± 26.2 | 73.1 ± 29.9 |
General health perception (points) | 46.3 ± 19.2 | 44.9 ± 20.3 | 53.2 ± 22.5 | 55.4 ± 19.1 |
Vitality (points) | 48.1 ± 22.4 | 48.5 ± 24.9 | 56.9 ± 22.8 | 55.4 ± 26.3 |
Social role functioning (points) | 69.8 ± 29.1 | 65.1 ± 30.7 | 73.1 ± 23.5 | 73.2 ± 6.7 |
Emotional role functioning (points) | 48.1 ± 42.8 | 57.7 ± 40.4 1 | 71.2 ± 41.5 | 70.8 ± 36.7 |
Mental health (points) | 62.4 ± 22.3 | 64.5 ± 26.7 | 69.1 ± 18.2 | 66.9 ± 20.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mauri, A.; Carrera, D.; Bagnati, M.; Rolla, R.; Vidali, M.; Chiarinotti, D.; Pane, M.; Amoruso, A.; Del Piano, M. Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial. Nutrients 2022, 14, 1637. https://doi.org/10.3390/nu14081637
De Mauri A, Carrera D, Bagnati M, Rolla R, Vidali M, Chiarinotti D, Pane M, Amoruso A, Del Piano M. Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial. Nutrients. 2022; 14(8):1637. https://doi.org/10.3390/nu14081637
Chicago/Turabian StyleDe Mauri, Andreana, Deborah Carrera, Marco Bagnati, Roberta Rolla, Matteo Vidali, Doriana Chiarinotti, Marco Pane, Angela Amoruso, and Mario Del Piano. 2022. "Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial" Nutrients 14, no. 8: 1637. https://doi.org/10.3390/nu14081637
APA StyleDe Mauri, A., Carrera, D., Bagnati, M., Rolla, R., Vidali, M., Chiarinotti, D., Pane, M., Amoruso, A., & Del Piano, M. (2022). Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial. Nutrients, 14(8), 1637. https://doi.org/10.3390/nu14081637