Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers
Abstract
:1. Introduction
2. Overcoming the Technical Barrier to Efficacious Iron Fortified Foods
2.1. Selecting an Iron Fortification Compound
Relative Bioavailability (RBV) versus Sensory Changes
2.2. Inhibitors and Enhancers of Iron Absorption
2.2.1. Ascorbic Acid
2.2.2. Iron Chelates
2.2.3. Phytic Acid Degradation
3. Efficacy Studies
4. Fortification Level
5. An Update of Current Iron Fortification Technologies for Large-Scale Public Health Programs
5.1. Wheat and Maize Flours
5.2. Rice
5.3. Salt
5.4. Milk
6. Overcoming the Inflammation Barrier to Efficacious Iron Fortified Foods
7. Safety of Iron Fortified Foods
8. The Way Forward
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmermann, M.B.; Hurrell, R. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Semba, R.D. The Historical Evolution of Thought Regarding Multiple Micronutrient Nutrition. J. Nutr. 2012, 142, 143S–156S. [Google Scholar] [CrossRef] [Green Version]
- Clydesdale, F.M.; Wiemer, K.L. (Eds.) Iron Fortification of Foods; Academic Press: Orlando, FL, USA, 1985; pp. 1–176. [Google Scholar]
- Hotz, C.; McClafferty, B. From harvest to health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr. Bull. 2007, 28 (Suppl. S2), S271–S279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boy, E.; Haas, J.D.; Petry, N.; Cercamondi, C.I.; Gahutu, J.B.; Mehta, S.; Finkelstein, J.L.; Hurrell, R.F. Efficacy of iron biofortified crops. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11879–11892. [Google Scholar] [CrossRef]
- Ruth, L.R.; Jungjohann, S.; Pachon, H.; Serdula, M. Program Performance and Synthesis of Monitoring Information for Food Fortification. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 275–282. [Google Scholar]
- Rowe, L.A.; Luthringer, C.L.; Garrett, G.S. Regulatory Monitoring of Mandatory Fortification Programs. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 283–290. [Google Scholar]
- Hurrell, R.F. Fortification: Overcoming technical and practical barriers. J. Nutr. 2002, 132, S806–S812. [Google Scholar] [CrossRef] [PubMed]
- Klassen-Wigger, P.; Barclay, D.V. Market-Driven Fortification. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 63–67. [Google Scholar]
- Prentice, A.M. Clinical implications of new Insights into hepcidin-mediated regulation of iron absorption and metabolism. Ann. Nutr. Metab. 2017, 71 (Suppl. S3), 40–48. [Google Scholar] [CrossRef] [Green Version]
- Cercamondi, C.I.; Egli, I.M.; Ahouandjinou, E.; Dossa, R.; Zeder, C.; Salami, L.; Tjalsma, H.; Wiegerinck, E.; Tanno, T.; Hurrell, R.F.; et al. Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect systemic iron utilization: A double stable-isotope study in Beninese women. Am. J. Clin. Nutr. 2010, 92, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Rohner, F.; Zimmermann, M.B.; Amon, R.J.; Vounatsou, P.; Tschannen, A.B.; N’Goran, E.K.; Nindjin, C.; Cacou M-CTe’-Bonle’, M.D.; Aka, H.; Sess, D.E.; et al. In a randomized controlled trial of iron fortification, anthelmintic treatment, and intermittent preventive treatment of malaria for anemia control in Ivorian children, only anthelmintic treatment shows modest benefit. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Paganini, D.; Uyoga, M.A.; Zimmermann, M.B. Iron Fortification of Foods for Infants and Children in Low-Income Countries: Effects on the Gut Microbiome, Gut Inflammation, and Diarrhea. Nutrients 2016, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
- Zlotkin, S.; Newton, S.; Aimone, A.M.; Azindow, I.; Amenga-Etego, S.; Tchum, K.; Mahama, E.; Thorpe, K.E.; Owusu-Agyei, S. Effect of iron fortification on malaria incidence in infants and young children in Ghana: A randomized trial. JAMA 2013, 310, 938–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F. Iron Fortification Practices and Implications for Iron Addition to Salt. J. Nutr. 2021, 151 (Suppl. S1), 3S–14S. [Google Scholar] [CrossRef]
- Allen, L.H.; De Benoist, B.; Dary, O.; Hurrell, R.F. (Eds.) Guidelines on Food Fortification with Micronutrients; World Health Organization and Food and Agricultural Organization of the United Nations: Geneva, Switzerland, 2006. [Google Scholar]
- Hurrell, R.F. Efficacy and Safety of Iron Fortification. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 196–212. [Google Scholar]
- Fritz, J.C.; Pla, G.W. Application of the animal haemoglobin repletion test to iron bioavailability in foods. J. Assoc. Off. Anal. Chem. 1972, 55, 1128–1132. [Google Scholar] [PubMed]
- Hurrell, R.F. Preventing iron deficiency through food fortification. Nutr. Rev. 1997, 55, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, A.L.; Adams, C.E.; Arnaud, M.J.; Chichester, C.O.; Cook, J.D.; Harrison, B.N.; Hurrell, R.F.; Kahn, S.Y.; Morris, E.R.; Tanner, J.T.; et al. Comparison of in vitro, animal and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report of iron bioavailability. Am. J. Clin. Nutr. 1989, 49, 225–238. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Furniss, D.E.; Burri, J.; Whittaker, P.; Lynch, S.R.; Cook, J.D. Iron fortification of infant cereals: A proposal for the use of ferrous fumarate or ferrous succinate. Am. J. Clin. Nutr. 1989, 49, 1274–1282. [Google Scholar] [CrossRef]
- Moretti, D.; Zimmermann, M.B.; Wegmüller, R.; Walczyk, T.; Zeder, C.; Hurrell, R.F. Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. Am. J. Clin. Nutr. 2006, 83, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.F.; Reddy, M.B.; Dassenko, S.A.; Cook, J.D.; Shepherd, D. Ferrous fumarate fortification of a chocolate drink powder. Br. J. Nutr. 1991, 65, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.A.; Davidsson, L.; Mahmud, H.; Walczyk, T.; Hurrell, R.; Gyr, N.; Fuchs, G.J. Helicobacter pylori infection, iron absorption, and gastric acid secretion in Bangladeshi children. Am. J. Clin. Nutr. 2004, 80, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Expósito, A.B.; Villalpando, S.; Rivera, J.A.; Griffin, I.J.; Abrams, S.A. Ferrous sulfate is more bioavailable among preschoolers than other forms of iron in a milk-based weaning food distributed by PROGRESA, a national program in Mexico. J. Nutr. 2005, 135, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Harrington, M.; Hotz, C.; Zeder, C.; Polvo, G.O.; Villalpando, S.; Zimmermann, M.B.; Walczyk, T.; Rivera, J.A.; Hurrell, R.F. A comparison of the bioavailability of ferrous fumarate and ferrous sulfate in non-anemic Mexican women and children consuming a sweetened maize and milk drink. Eur. J. Clin. Nutr. 2011, 65, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndiaye, N.F.; Idohou-Dossou, N.; Bürkli, S.; Diouf, A.; Loucoubar, C.; Guiro, A.T.; Zimmermann, M.B.; Wade, S.; Moretti, D. Polyphenol-rich tea decreases iron absorption from fortified wheat bread in Senegalese mother-child pairs and bioavailability of ferrous fumarate is sharply lower in children. Eur. J. Clin. Nutr. 2020, 74, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.; Rogers, B.; Rosenberg, I.; Schlossman, N.; Wanke, C.; Bagriansky, J.; Sadler, K.; Johnson, Q.; Tilahun, J.; Masterson, A.R.; et al. Delivering Improved Nutrition: Recommendations for Changes to U.S. Food Aid Products and Programs; Tufts University: Boston, MA, USA, 2011. [Google Scholar]
- Hurrell, R.F.; Bothwell, T.; Cook, J.D.; Dary, O.; Davidsson, L.; Fairweather-Tait, S.; Hallberg, L.; Lynch, S.; Rosado, J.; Walter, T.; et al. The Usefulness of Elemental Iron for Cereal Flour Fortification: A SUSTAIN Task Force Report. Nutr. Rev. 2002, 60, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.R.; Bothwell, T. A comparison of physical properties, screening procedures and a human efficacy trial for predicting the bioavailability of commercial elemental iron powders used for food fortification. Int. J. Vitam. Nutr. Res. 2007, 77, 107–124. [Google Scholar] [CrossRef]
- Swain, J.H.; Newman, S.M.; Hunt, J.R. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area. J. Nutr. 2003, 133, 3546–3552. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.; Hulthen, L.; Hallberg, L. The relative bioavailability in humans of elemental iron powders for use in food fortification. Eur. J. Nutr. 2006, 45, 37–44. [Google Scholar] [CrossRef]
- Walter, T.; Dallman, P.R.; Pizarro, F.; Velozo, L.; Peña, G.; Bartholmey, S.J.; Hertrampf, E.; Olivares, M.; Letelier, A.; Arredondo, M. Effectiveness of iron-fortified infant cereal in prevention of iron deficiency anemia. Pediatrics 1993, 91, 976–982. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Winichagoon, P.; Gowachirapant, S.; Hess, S.Y.; Harrington, M.; Chavasit, V.; Lynch, S.; Hurrell, R.F. Comparison of the efficacy of wheat-based snacks fortified with ferrous sulphate, electrolytic iron, or hydrogen-reduced elemental iron: A randomized, double blind, controlled trial in Thai women. Am. J. Clin. Nutr. 2005, 82, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.B.; Cook, J.D. Assessment of dietary determinants of nonheme-iron absorption in humans and rats. Am. J. Clin. Nutr. 1991, 54, 723–728. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Stekel, A.; Olivares, M.; Pizarro, F.; Chadud, P.; Lopez, I.; Amar, M. Absorption of fortification iron from milk formulas in infants. Am. J. Clin. Nutr. 1986, 43, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, M.; Torrance, J.D.; Bothwell, T.H.; MacPhail, A.P.; Derman, D.; Mills, W.; Mayet, F. The relative effect of ascorbic acid on iron absorption from soy-based and milk-based infant formulas. Am. J. Clin. Nutr. 1984, 40, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro, F.; Olivares, M.; Hertrampf, E.; Nuñez, S.; Tapia, M.; Cori, H.; Lopez de Romana, D. Ascorbyl palmitate enhances iron bioavailability in iron-fortified bread. Am. J. Clin. Nutr. 2006, 84, 830–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F.; Reddy, M.B.; Burri, J.; Cook, J.D. An evaluation of EDTA compounds for iron fortification of cereal-based foods. Br. J. Nutr. 2000, 84, 903–910. [Google Scholar] [CrossRef]
- Hurrell, R.; Ranum, P.; de Pee, S.; Biebinger, R.; Hulthen, L.; Quentin, J.; Lynch, S. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. Food Nutr. Bull. 2010, 31, S7–S15. [Google Scholar] [CrossRef]
- WHO. Recommendations on Wheat and Maize Flour Fortification Meeting Report: Interim Consensus Statement; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Bovell-Benjamin, A.C.; Viteri, F.E.; Allen, L.H. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am. J. Clin. Nutr. 2000, 71, 1563–1569. [Google Scholar] [CrossRef]
- Hurrell, R.F. Phytic acid degradation as a means of improving iron absorption. Int. J. Vit. Nutr. Res. 2004, 74, 445–452. [Google Scholar] [CrossRef]
- Davidsson, L.; Galan, P.; Cherouvrier, F.; Kastenmayer, P.; Juillerat, M.-A.; Hercberg, S.; Hurrell, R.F. Iron Bioavailability from Infant Cereals by Infants: The Effect of Dephytinization. Am. J. Clin. Nutr. 1997, 65, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Troesch, B.; Egli, I.; Zeder, C.; Hurrell, R.F.; de Pee, S.; Zimmermann, M.B. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am. J. Clin. Nutr. 2009, 89, 539–544. [Google Scholar] [CrossRef]
- Gera, T.; Sachdev, H.S.; Boy, E. Effect of iron-fortified foods on hematologic and biological outcomes: Systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 309–324. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Guideline: Fortification of Maize Flour and Corn Meal with Vitamins and Minerals; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Muthayya, S.; Thankachan, P.; Hirve, S.; Amalrajan, V.; Thomas, T.; Lubree, H.; Agarwal, D.; Srinivasan, K.; Hurrell, R.F.; Yajnik, C.S.; et al. Iron fortification of whole wheat flour reduces iron deficiency and iron deficiency anemia and increases body iron stores in Indian school-aged children. J. Nutr. 2012, 142, 1997–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaron, G.J.; Laillou, A.; Wolfson, J.; Moench-Pfanner, R. Fortification of staple cereal flours with iron and other micronutrients: Cost implications of following World Health Organization-endorsed recommendations. Food Nutr. Bull. 2012, 33, S336–S343. [Google Scholar] [PubMed]
- Hurrell, R.F. The Potential of Iodine and Iron Double-Fortified Salt Compared with Iron-Fortified Staple Foods to Increase Population Iron Status. J. Nutr. 2021, 151 (Suppl. S1), 47S–63S. [Google Scholar] [CrossRef] [PubMed]
- Van Stuijvenberg, M.E.; Smuts, C.M.; Lombard, C.J.; Dhansay, M.A. Fortifying brown bread with sodium iron EDTA, ferrous fumarate, or electrolytic iron does not affect iron status in South African school children. J. Nutr. 2008, 138, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Glinz, D.; Wegmüller, R.; Ouattara, M.; Diakité, V.G.; Aaron, G.J.; Hofer, L.; Zimmermann, M.B.; Adiossan, L.G.; Utzinger, J.; N’Goran, E.K.; et al. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12-to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial. Nutrients 2017, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Pachon, H. Wheat and Maize Flour Fortification. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 123–129. [Google Scholar]
- Moretti, D.; Lee, T.C.; Zimmermann, M.B.; Hurrell, R.F. Development and evaluation of iron-fortified extruded rice grains. J. Food Sci. 2005, 70, 330–336. [Google Scholar] [CrossRef]
- Hackl, L.; Cercamondi, C.I.; Zeder, C.; Wild, D.; Adelmann, H.; Zimmermann, M.B.; Moretti, D. Co-fortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes. Am. J. Clin. Nutr. 2016, 103, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Moretti, D.; Zimmermann, M.B.; Muthayya, S.; Thankachan, P.; Lee, T.-C.; Kurpad, A.V.; Hurrell, R.F. Extruded rice fortified with micronized ground ferric pyrophosphate reduces iron deficiency in Indian schoolchildren: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2006, 84, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Radhika, M.S.; Nair, K.M.; Kumar, R.H.; Rao, M.V.; Ravinder, P.; Reddy, C.G.; Brahmam, G.N. Micronized ferric pyrophosphate supplied through extruded rice kernels improves body iron stores in children: A double-blind, randomized, placebo-controlled midday meal feeding trial in Indian schoolchildren. Am. J. Clin. Nutr. 2011, 94, 1202–1210. [Google Scholar] [CrossRef] [Green Version]
- Beinner, M.A.; Velasquez-Meléndez, G.; Pessoa, M.C.; Greiner, T. Iron-fortified rice is as efficacious as supplemental iron drops in infants and young children. J. Nutr. 2010, 140, 49–53. [Google Scholar] [CrossRef]
- Perignon, M.; Fiorentino, M.; Kuong, K.; Dijkhuizen, M.A.; Burja, K.; Parker, M.; Chamnan, C.; Berger, J.; Wieringa, F.T. Impact of multi-micronutrient fortified rice on hemoglobin, iron and vitamin A status of Cambodian school chil- dren: A double-blind cluster-randomized controlled trial. Nutrients 2016, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthayya, S.; Hall, J.; Bagriansky, J.; Sugimoto, J.; Gundry, D.; Matthias, D.; Prigge, S.; Hindle, P.; Moench-Pfanner, R.; Maberly, G. Rice fortification: An emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr. Bull. 2012, 33, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.S.N.; Vijayasarathi, C. Fortification of common salt with iron: Effect of chemical additives on stability and bioavailability. Am. J. Clin. Nutr. 1975, 28, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Diosady, L.; Alberti, J.; Mannar, M.; FitzGerald, S. Stability of iodine in iodized salt used for correction of iodine-deficiency disorders. Food Nutr. Bull. 1997, 18, 388–396. [Google Scholar] [CrossRef]
- Baxter, J.; Zlotkin, S. Compendium of Evidence on Double Fortified Salt; The Micronutrient Initiative: Toronto, ON, Canada, 2014. [Google Scholar]
- Diosady, L.L.; Mannar, M.G.V.; Krishnaswamy, K. Improving the lives of millions through new double fortification of salt technology. Matern. Child Nutr. 2019, 15 (Suppl. S3), e12773. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Wegmueller, R.; Zeder, C.; Chaouki, N.; Rohner, F.; Saïssi, M.; Torresani, T.; Hurrell, R.F. Dual fortification of salt with iodine and micronized ferric pyrophosphate: A randomized, double-blind, controlled trial. Am. J. Clin. Nutr. 2004, 80, 952–959. [Google Scholar] [CrossRef]
- Haas, J.D.; Rahn, M.; Venkatramanan, S.; Marquis, G.S.; Wenger, M.; Murray-Kolb, L.E.; Wesley, A.; Reinhart, G.A. Double-fortified salt is efficacious in improving indicators of iron deficiency in female Indian tea pickers. J. Nutr. 2014, 144, 957–964. [Google Scholar] [CrossRef]
- Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.; Zimmermann, M.B. Dual fortification of salt with iodine and iron: A randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India. Am. J. Clin. Nutr. 2008, 88, 1378–1387. [Google Scholar]
- Mannar, M.G.V. Salt. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 143–151. [Google Scholar]
- EFSA Panel on Food Additives and Flavourings (FAF). Safety assessment of titanium dioxide as a food additive. EFSA J. 2021, 19, 6585. [Google Scholar]
- Lopez de Romana, D.; Olivares, M.; Pizarro, F. Milk and Milk Products. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R.F., Eds.; Academic Press: London, UK, 2018; pp. 175–181. [Google Scholar]
- Henare, S.J.; Nur Singh, N.; Ellis, A.M.; Moughan, P.J.; Thompson, A.K.; Walczyk, T. Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. Am. J. Clin. Nutr. 2019, 110, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Villalpando, S.; Shamah, T.; Rivera, J.A.; Lara, Y.; Monterrubio, E. Fortifying milk with ferrous gluconate and zinc oxide in a public nutrition program reduced the prevalence of anemia in toddlers. J. Nutr. 2006, 136, 2633–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazawal, S.; Black, R.E.; Ramsan, M.; Chwaya, H.M.; Stolzfus, R.J.; Dutta, A.; Dhingra, U.; Kabole, I.; Deb, S.; Othman, M.K.; et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: Community-based, randomised, placebo-controlled trial. Lancet 2006, 367, 133–143. [Google Scholar] [CrossRef]
- Osman, A.K.; al-Othaimeen, A. Experience with ferrous bisglycine chelate as an iron fortified milk. Int. J. Vitam. Nutr. Res. 2002, 72, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Martorell, R.; Ascencio, M.; Tacsan, L.; Alfaro, T.; Young, M.F.; Addo, O.Y.; Dary, O.; Flores-Ayala, R. Effectiveness evaluation of the food fortification pro- gram of Costa Rica: Impact on anemia prevalence and hemoglobin concentrations in women and children. Am. J. Clin. Nutr. 2015, 101, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Camaschella, C.; Girelli, D. The changing landscape of iron deficiency. Mol. Asp. Med. 2020, 75, 1008. [Google Scholar] [CrossRef]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Donahue Angel, M.; Rohner, F. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef]
- Suchdev, P.S.; Williams, A.M.; Mei, Z.; Flores-Ayala, R.; Pasricha, S.R.; Rogers, L.M.; Namaste, S.M. Assessment of iron status in settings of inflammation: Challenges and potential approaches. Am. J. Clin. Nutr. 2017, 106 (Suppl. S6), 1626S–1633S. [Google Scholar] [CrossRef] [Green Version]
- Barkley, J.S.; Wheeler, K.S.; Pachón, H. Anaemia prevalence may be reduced among countries that fortify flour. Br. J. Nutr. 2015, 114, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Engle-Stone, R.; Nankap, M.; Ndjebayi, A.O.; Allen, L.H.; Shahab-Ferdows, S.; Hampel, D.; Killilea, D.W.; Gimou, M.M.; Houghton, L.A.; Friedman, A.; et al. Iron, Zinc, Folate, and Vitamin B-12 Status Increased among Women and Children in Yaoundé and Douala, Cameroon, 1 Year after Introducing Fortified Wheat Flour. J. Nutr. 2017, 147, 1426–1436. [Google Scholar] [CrossRef]
- Righetti, A.A.; Wegmüller, R.; Glinz, D.; Ouattara, M.; Adiossan, L.G.; N’Goran, E.K.; Utzinger, J.; Hurrell, R.F. Effects of inflammation and Plasmodium falciparum infection on soluble transferrin receptor and plasma ferritin concentration in different age groups: A prospective longitudinal study in Cote d’Ivoire. Am. J. Clin. Nutr. 2013, 97, 1364–1374. [Google Scholar] [CrossRef] [Green Version]
- Andang’o, P.E.; Osendarp, S.J.; Ayah, R.; West, C.E.; Mwaniki, D.L.; De Wolf, C.A.; Kraaijenhagen, R.; Kok, P.F.J.; Verhoef, H. Efficacy of iron-fortified whole maize flour on iron status of schoolchildren in Kenya: A randomized controlled trial. Lancet 2007, 369, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, G.C.; Delehanty, L.L.; Talbot, A.L.; Gonias, S.L.; Tong, W.H.; Rouault, T.A.; Dewar, B.; Macdonald, J.M.; Chruma, J.J.; Goldfarb, A.N. Iron control of erythroid development by a novel aconitase-associated regulatory pathway. Blood 2010, 116, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F. Safety and efficacy of iron supplements in malaria-endemic areas. Ann. Nutr. Metab. 2011, 59, 64–66. [Google Scholar] [CrossRef]
- Brittenham, G.M.; Andersson, M.; Egli, I.; Foman, J.T.; Zeder, C.; Westerman, M.E.; Hurrell, R.F. Circulating non-transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: A randomized study. Am. J. Clin. Nutr. 2014, 100, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B.; Chassard, C.; Rohner, F.; N’Goran, E.K.; Nindjin, C.; Dostal, A.; Utzinger, J.; Ghattas, H.; Lacroix, C.; Hurrell, R.F. The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Cote d’Ivoire. Am. J. Clin. Nutr. 2010, 92, 1406–1415. [Google Scholar] [CrossRef]
- Gera, T.; Sachdev, H.P. Effect of iron supplementation on incidence of infectious illness in children: Systematic review. BMJ 2002, 325, 1142. [Google Scholar] [CrossRef] [Green Version]
- Paganini, D.; Uyoga, M.A.; Cercamondi, C.I.; Moretti, D.; Mwasi, E.; Schwab, C.; Bechtler, S.; Mutuku, F.M.; Galetti, V.; Lacroix, C.; et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am. J. Clin. Nutr. 2017, 106, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Paganini, D.; Uyoga, M.A.; Kortman, G.A.M.; Cercamondi, C.I.; Moretti, D.; Barth-Jaeggi, T.; Schwab, C.; Boekhorst, J.; Timmerman, H.M.; Lacroix, C.; et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: A randomised controlled study in Kenyan infants. Gut 2017, 66, 1956–1967. [Google Scholar] [CrossRef] [Green Version]
- Mikulic, N.; Uyoga, M.A.; Mwasi, E.; Stoffel, N.U.; Zeder, C.; Karanja, S.; Zimmermann, M.B. Iron Absorption is Greater from Apo-Lactoferrin and is Similar Between Holo-Lactoferrin and Ferrous Sulfate: Stable Iron Isotope Studies in Kenyan Infants. J. Nutr. 2020, 150, 3200–3207. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurrell, R.F. Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers. Nutrients 2022, 14, 1609. https://doi.org/10.3390/nu14081609
Hurrell RF. Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers. Nutrients. 2022; 14(8):1609. https://doi.org/10.3390/nu14081609
Chicago/Turabian StyleHurrell, Richard F. 2022. "Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers" Nutrients 14, no. 8: 1609. https://doi.org/10.3390/nu14081609
APA StyleHurrell, R. F. (2022). Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers. Nutrients, 14(8), 1609. https://doi.org/10.3390/nu14081609