Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism
Abstract
:1. Introduction
1.1. Familial Hypercholesterolemia
1.2. Diabetes Mellitus
2. Familial Hypercholesterolemia and Diabetes: Molecular Causes
2.1. Genetics of FH
2.2. Genetics of Type 2 Diabetes
2.3. Genetic Studies Assessing the Link between Hyperlipidemia and Type 2 Diabetes
3. Familial Hypercholesterolemia and Glucose Metabolism: Risk of Diabetes
3.1. Epidemiological Studies
3.2. Lipid-Lowering Treatment and Risk of Diabetes
3.2.1. Statins
3.2.2. Ezetimibe
3.2.3. PCSK9 Inhibitors (PCSK9-i)
3.2.4. Bempedoic Acid
3.2.5. Other Cholesterol-Lowering Drugs
3.3. Genetics and Metabolism
4. Coexistence of Diabetes and Familial Hypercholesterolemia: Clinical Consequences
4.1. Effects on the Lipoproteins
4.2. Effects on Chronic Arterial Wall Inflammation and Endothelial Dysfunction
4.3. Effects on the Cardiovascular Risk
Author, Year | Study Type * | Country | FH Diagnostic Criteria ** | N | Diabetes (%) | Univariate Association OR (95% CI) | Multivariate Association OR (95% CI) | Adjusting Covariates |
---|---|---|---|---|---|---|---|---|
Hopkins, 2001 [162] | RR | USA | MEDPED criteria | 262 | 3.0 | NS | NS | Age, sex, BMI, smoking, waist to hip ratio, hypertension, HDL-c, triglycerides, small LDL, Lp(a), homocysteine, insulin, white cell count, C-reactive protein, xanthomas, intima-medial thickness, angiotensin-converting enzyme I/D polymorphism |
De Sauvage, 2003 [163] | MC | Netherlands | Genetic test or definite DLCN criteria | 526 | 2.1 | 17.61 (2.25–137.8) | NS | Age, sex, BMI, smoking, total-c, LDL-c, HDL-c, triglycerides, Lp(a), apo A1, apo B, homocysteine |
Allard, 2014 [164] | SC | Canada | Definite DLCN criteria | 409 | 6.4 | 3.2 (1.9–5.6) | 3.6 (2.0–6.5) | Sex, BMI, smoking, family history of premature CVD, hypertension, LDL-c, HDL-c, triglycerides, Lp(a) |
Alonso, 2014 [165] | MC | Spain | Genetic test | 1960 | 3.9 | Non reported | NS | Sex, BMI, smoking, hypertension, HDL-c, triglycerides, Lp(a), type of mutation, xanthomas |
Besseling, 2014 [62] | NR | Netherlands | Genetic test | 14,283 | 2.8 | 6.40 (5.21–7.86) | 1.37 (1.03–1.82) | Age, sex, BMI, smoking, hypertension, lipid profile |
Pereira, 2014 [166] | SC | Brazil | Definite or probable DLCN criteria | 202 | 17.3 | 2.23 (1.05–4.75) | NS | Age, sex, BMI, smoking, hypertension, sedentary lifestyle, LDL-c, HDL-c, triglycerides, glucose, creatinine, xanthomas, corneal arcus, ankle-brachial index, claudication |
Chan, 2015 [167] | SC | Australia | Genetic test | 390 | 1.3 | 2.74 (1.06–7.08) | NS | Obesity, smoking, hypertension, CKD, LDL-c, HDL-c, triglycerides, Lp(a) |
De Goma, 2016 [168] | NR | USA | Genetic test or any set of clinical criteria | 1295 | 13 | 3.08 (2.04–4.64) | 1.74 (1.08–2.82) | Age, smoking, hypertension, total-c, low HDL-c |
Paquette, 2016 [155] | SC | Canada | Genetic test | 670 | 3.3 | 3.5 (1.45–8.47) | NS | Age, sex, BMI, smoking, hypertension, prior statin use, total-c, LDL-c, HDL-c, triglycerides, VLDL-c, non-HDL-c, Lp(a), apoB |
Paquette, 2017 [169] | MC | Canada | Genetic test | 1388 | 4.5 | 3.28 (1.92–5.619 | NS | Age, sex, BMI, smoking, hypertension, prior statin use, total-c, LDL-c, HDL-c, triglycerides, VLDL-c, non-HDL-c, Lp(a), apo B |
Galema Boers, 2017 [170] | SC | Netherlands | Genetic test or definite or probable DLCN criteria | 821 | 4 | 4.39 (2.15–8.97) | NS | Age, sex, BMI, smoking, hypertension, family history of CVD, previous cardiovascular disease, triglycerides, high LDL-c, low HDL-c. |
Paquette, 2019 [146] | MC | Canada | Definite, probable or possible DLCN criteria | 1412 | 5.2 | 2.9 (1.8–4.7) | NS | Montreal-FH-SCORE |
Pérez-Calahorra, 2019 [171] | NR | Spain | Genetic test or definite or probable DLCN criteria | 1958 | 6.5 | 4.99 (3.43–7.26) | NS | |
Michikura, 2022 [172] | SC | Japan | Genetic test | 176 | 12 | Non reported | NS | Age, sex, BMI, smoking, hypertension, LDL-c, HDL-c, triglycerides, Achilles tendon elasticity index |
5. Knowledge Gaps and Further Research
- In FH populations where DM is more frequent than in the general population, family co-segregation studies could be performed, comparing the prevalence of DM and pre-DM in FH-causing mutation carriers and non-carriers in the same families;
- FH-causing-mutation-specific studies in β-cells and islets, assessing their viability and function;
- Larger and longer prospective studies assessing the incidence of DM in FH and non-FH populations, as well as the cardiovascular risk of the combination of FH and DM.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, J.L.; Schrott, H.G.; Hazzard, W.R.; Bierman, E.L.; Motulsky, A.G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Investig. 1973, 52, 1544–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenarro, A.; Etxebarria, A.; De Castro-Orós, I.; Stef, M.; Bea, A.M.; Palacios, L.; Mateo-Gallego, R.; Benito-Vicente, A.; Ostolaza, H.; Tejedor, T.; et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J. Clin. Endocrinol. Metab. 2016, 101, 2113–2121. [Google Scholar] [CrossRef] [Green Version]
- De Ferranti, S.D.; Rodday, A.M.; Mendelson, M.M.; Wong, J.B.; Leslie, L.K.; Sheldrick, R.C. Prevalence of familial hypercholesterolemia in the 1999 to 2012 United States national health and nutrition examination surveys (NHANES). Circulation 2016, 133, 1067–1072. [Google Scholar] [CrossRef]
- Steyn, K.; Goldberg, Y.P.; Kotze, M.J.; Steyn, M.; Swanepoel, A.S.P.; Fourie, J.M.; Coetzee, G.A.; Van Der Westhuyzen, D.R. Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum. Genet. 1996, 98, 479–484. [Google Scholar] [CrossRef]
- Couture, P.; Morissette, J.; Gaudet, D.; Vohl, M.C.; Gagné, C.; Bergeron, J.; Després, J.P.; Simard, J. Fine mapping of low-density lipoprotein receptor gene by genetic linkage on chromosome 19p13.1-p13.3 and study of the founder effect of four French Canadian low-density lipoprotein receptor gene mutations. Atherosclerosis 1999, 143, 145–151. [Google Scholar] [CrossRef]
- Sánchez-Hernández, R.M.; Tugores, A.; Nóvoa, F.J.; Brito-Casillas, Y.; Expósito-Montesdeoca, A.B.; Garay, P.; Bea, A.M.; Riaño, M.; Pocovi, M.; Civeira, F.; et al. The island of Gran Canaria: A genetic isolate for familial hypercholesterolemia. J. Clin. Lipidol. 2019, 13, 618–626. [Google Scholar] [CrossRef]
- Benito-Vicente, A.; Uribe, K.B.; Jebari, S.; Galicia-Garcia, U.; Ostolaza, H.; Martin, C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int. J. Mol. Sci. 2018, 19, 3426. [Google Scholar] [CrossRef] [Green Version]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Perak, A.M.; Ning, H.; De Ferranti, S.D.; Gooding, H.C.; Wilkins, J.T.; Lloyd-Jones, D.M. Long-Term Risk of Atherosclerotic Cardiovascular Disease in US Adults with the Familial Hypercholesterolemia Phenotype. Circulation 2016, 134, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Di Taranto, M.D.; Giacobbe, C.; Fortunato, G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur. J. Med. Genet. 2020, 63, 103831. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Zamora, A.; Plana, N.; Comas-Cufí, M.; Garcia-Gil, M.; Martí-Lluch, R.; Ponjoan, A.; Alves-Cabratosa, L.; Elosua, R.; Marrugat, J.; et al. Incidence of Cardiovascular Disease in Patients with Familial Hypercholesterolemia Phenotype: Analysis of 5 Years Follow-Up of Real-World Data from More than 1.5 Million Patients. J. Clin. Med. 2019, 8, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, R.; Mata, N.; Castillo, S.; Fuentes, F.; Saenz, P.; Muñiz, O.; Galiana, J.; Figueras, R.; Diaz, J.L.; Gomez-Enterría, P.; et al. Cardiovascular disease in familial hypercholesterolaemia: Influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis 2008, 200, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Akioyamen, L.E.; Genest, J.; Chu, A.; Inibhunu, H.; Ko, D.T.; Tu, J.V. Risk factors for cardiovascular disease in heterozygous familial hypercholesterolemia: A systematic review and meta-analysis. J. Clin. Lipidol. 2019, 13, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Committee, A.D.A.P.P. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S17–S38. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.H.; Qiang, H.; Wu, J.; Shen, M.; Zhang, L.; Lyu, J. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020, 20, 1415. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef]
- Boles, A.; Kandimalla, R.; Reddy, P.H. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim. Biophys. Acta. Mol. Basis Dis. 2017, 1863, 1026–1036. [Google Scholar] [CrossRef]
- Htay, T.; Soe, K.; Lopez-Perez, A.; Doan, A.H.A.; Romagosa, M.A.; Aung, K.K. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Curr. Cardiol. Rep. 2019, 21, 45. [Google Scholar] [CrossRef]
- Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 2001, 44 (Suppl. 2), S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.M.; Eliasson, B.; Gudbjörnsdottir, S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2018, 392, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Gregg, E.W.; Cheng, Y.J.; Srinivasan, M.; Lin, J.; Geiss, L.S.; Albright, A.L.; Imperatore, G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: An epidemiological analysis of linked national survey and vital statistics data. Lancet 2018, 391, 2430–2440. [Google Scholar] [CrossRef]
- Dokken, B.B. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectr. 2008, 21, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Besseling, J.; Kastelein, J.J.P.; Defesche, J.C.; Hutten, B.A.; Hovingh, G.K. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 2015, 313, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Bruikman, C.S.; Hovingh, G.K.; Kastelein, J.J.P. Molecular basis of familial hypercholesterolemia. Curr. Opin. Cardiol. 2017, 32, 262–266. [Google Scholar] [CrossRef]
- Soutar, A.K.; Naoumova, R.P.; Traub, L.M. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1963–1970. [Google Scholar] [CrossRef] [Green Version]
- Civeira, F.F.; De Castro-Orós, I.; Pocoví, M. The genetic basis of familial hypercholesterolemia: Inheritance, linkage, and mutations. Appl. Clin. Genet. 2010, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Hernández, R.M.; Civeira, F.; Stef, M.; Perez-Calahorra, S.; Almagro, F.; Plana, N.; Novoa, F.J.; Sáenz-Aranzubía, P.; Mosquera, D.; Soler, C.; et al. Homozygous Familial Hypercholesterolemia in Spain: Prevalence and Phenotype-Genotype Relationship. Circ. Cardiovasc. Genet. 2016, 9, 504–510. [Google Scholar] [CrossRef]
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; et al. Familial hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients: Clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Gidding, S.S.; Hegele, R.A.; Cuchel, M.A.; Barter, P.J.; Watts, G.F.; Baum, S.J.; Catapano, A.L.; Chapman, M.J.; Defesche, J.C.; et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 2016, 4, 850–861. [Google Scholar] [CrossRef]
- Hartgers, M.L.; Hovingh, G.K.; Kastelein, J.J.; Huijgen, R. Familial Hypercholesterolemia: Classification of Mutation Severity According to Percentile Low-Density Lipoprotein Cholesterol Useful for Predicting Coronary Artery Disease Risk. Circulation 2016, 134, A19939. [Google Scholar]
- Soria, L.F.; Ludwig, E.H.; Clarke, H.R.G.; Vega, G.L.; Grundy, S.M.; McCarthy, B.J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA 1989, 86, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tybjærg-Hansen, A.; Humphries, S.E. Familial defective apolipoprotein B-100: A single mutation that causes hypercholesterolemia and premature coronary artery disease. Atherosclerosis 1992, 96, 91–107. [Google Scholar] [CrossRef]
- Futema, M.; Taylor-Beadling, A.; Williams, M.; Humphries, S.E. Genetic testing for familial hypercholesterolemia-past, present, and future. J. Lipid Res. 2021, 62, 100139. [Google Scholar] [CrossRef]
- Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef]
- Naoumova, R.P.; Tosi, I.; Patel, D.; Neuwirth, C.; Horswell, S.D.; Marais, A.D.; Van Heyningen, C.; Soutar, A.K. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: Long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2654–2660. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Hernández, R.M.; Di Taranto, M.D.; Benito-Vicente, A.; Uribe, K.B.; Lamiquiz-Moneo, I.; Larrea-Sebal, A.; Jebari, S.; Galicia-Garcia, U.; Nóvoa, F.J.; Boronat, M.; et al. The Arg499His gain-of-function mutation in the C-terminal domain of PCSK9. Atherosclerosis 2019, 289, 162–172. [Google Scholar] [CrossRef]
- Talmud, P.J.; Shah, S.; Whittall, R.; Futema, M.; Howard, P.; Cooper, J.A.; Harrison, S.C.; Li, K.; Drenos, F.; Karpe, F.; et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: A case-control study. Lancet 2013, 381, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, N.; Hartgers, M.L.; Reeskamp, L.F.; Balder, J.W.; Rimbert, A.; Bazioti, V.; Wolters, J.C.; Winkelmeijer, M.; Jansen, H.P.G.; Dallinga-Thie, G.M.; et al. Taking One Step Back in Familial Hypercholesterolemia: STAP1 Does Not Alter Plasma LDL (Low-Density Lipoprotein) Cholesterol in Mice and Humans. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Lamiquiz-Moneo, I.; Restrepo-Córdoba, M.A.; Mateo-Gallego, R.; Bea, A.M.; del Pino Alberiche-Ruano, M.; García-Pavía, P.; Cenarro, A.; Martín, C.; Civeira, F.; Sánchez-Hernández, R.M. Predicted pathogenic mutations in STAP1 are not associated with clinically defined familial hypercholesterolemia. Atherosclerosis 2020, 292, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Strizich, G.; Hu, Y.; Wang, T.; Kaplan, R.C.; Qi, Q. Genetic markers of type 2 diabetes: Progress in genome-wide association studies and clinical application for risk prediction. J. Diabetes 2016, 8, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Colclough, K.; Gloyn, A.L.; Pollin, T.I. Monogenic diabetes: A gateway to precision medicine in diabetes. J. Clin. Investig. 2021, 131, e142244. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, S.S.; Bosma, A.; Henneman, L.; Rigter, T.; Spruijt, C.M.J.; Grimbergen, A.J.E.M.A.; Breuning, M.H.; De Koning, E.J.P.; Losekoot, M.; Cornel, M.C. A decade of molecular genetic testing for MODY: A retrospective study of utilization in The Netherlands. Eur. J. Hum. Genet. 2015, 23, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Qu, L.; Gong, X.; Pang, B.; Yan, W.; Wei, J. Effect of Social Factors and the Natural Environment on the Etiology and Pathogenesis of Diabetes Mellitus. Int. J. Endocrinol. 2019, 2019, 8749291. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, T.O.; Salisu, T.F. A Review of Type 2 Diabetes Mellitus Predisposing Genes. Curr. Diabetes Rev. 2019, 16, 52–61. [Google Scholar] [CrossRef]
- Mambiya, M.; Shang, M.; Wang, Y.; Li, Q.; Liu, S.; Yang, L.; Zhang, Q.; Zhang, K.; Liu, M.; Nie, F.; et al. The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Front. Public Health 2019, 7, 349. [Google Scholar] [CrossRef]
- Sirdah, M.M.; Reading, N.S. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin. Genet. 2020, 98, 525–547. [Google Scholar] [CrossRef]
- Prasad, R.B.; Groop, L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes 2015, 6, 87–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medici, F.; Hawa, M.; Ianari, A.; Pyke, D.A.; Leslie, R.D.G. Concordance rate for type II diabetes mellitus in monozygotic twins: Actuarial analysis. Diabetologia 1999, 42, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Shigemizu, D.; Tsunoda, T.; Iwata, M.; Maegawa, H.; Watada, H.; Hirose, H.; Tanaka, Y.; Tobe, K.; Kaku, K.; et al. Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population. J. Clin. Endocrinol. Metab. 2013, 98, E1667–E1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liu, C.; Si, S.; Li, Y.; Li, W.; Yuan, T.; Xue, F. Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank. Acta Diabetol. 2021, 58, 467–474. [Google Scholar] [CrossRef]
- Hertel, J.K.; Johansson, S.; Midthjell, K.; Nygård, O.; Njølstad, P.R.; Molven, A. Type 2 diabetes genes—Present status and data from Norwegian studies. Nor. Epidemiol. 2013, 23, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Szabo, M.; Máté, B.; Csép, K.; Benedek, T. Genetic Approaches to the Study of Gene Variants and Their Impact on the Pathophysiology of Type 2 Diabetes. Biochem. Genet. 2018, 56, 22–55. [Google Scholar] [CrossRef]
- Fall, T.; Xie, W.; Poon, W.; Yaghootkar, H.; Magi, R.; Knowles, J.W.; Lyssenko, V.; Weedon, M.; Frayling, T.M.; Ingelsson, E. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes 2015, 64, 2676–2684. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, D.I.; Sattar, N. Blood Lipids and Type 2 Diabetes Risk: Can Genetics Help Untangle the Web? Diabetes 2015, 64, 2344–2345. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Swerdlow, D.I.; Preiss, D.; Fairhurst-Hunter, Z.; Keating, B.J.; Asselbergs, F.W.; Sattar, N.; Humphries, S.E.; Hingorani, A.D.; Holmes, M.V. Association of Lipid Fractions with Risks for Coronary Artery Disease and Diabetes. JAMA Cardiol. 2016, 1, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Klimentidis, Y.C.; Wineinger, N.E.; Vazquez, A.I.; De Los Campos, G. Multiple metabolic genetic risk scores and type 2 diabetes risk in three racial/ethnic groups. J. Clin. Endocrinol. Metab. 2014, 99, E1814–E1818. [Google Scholar] [CrossRef]
- Klimentidis, Y.C.; Chougule, A.; Arora, A.; Frazier-Wood, A.C.; Hsu, C.H. Triglyceride-Increasing Alleles Associated with Protection against Type-2 Diabetes. PLoS Genet. 2015, 11, e1005204. [Google Scholar] [CrossRef] [PubMed]
- Besseling, J.; Kindt, I.; Hof, M.; Kastelein, J.J.P.; Hutten, B.A.; Hovingh, G.K. Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: A study of a cohort of 14,000 mutation carriers. Atherosclerosis 2014, 233, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Neil, H.A.W.; Betteridge, D.J.; Broome, K.; Durrington, P.N.; Hawkins, M.M.; Humphries, S.E.; Mann, J.I.; Miller, J.P.; Thompson, G.R.; Thorogood, M.; et al. Mortality in treated heterozygous familial hypercholesterolaemia: Implications for clinical management. Atherosclerosis 1999, 142, 105–112. [Google Scholar] [CrossRef]
- Ferriéres, J.; Lambert, J.; Lussier-Cacan, S.; Davignon, J. Coronary artery disease in heterozygous familial hypercholesterolemia patients with the same LDL receptor gene mutation. Circulation 1995, 92, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Climent, E.; Pérez-Calahorra, S.; Marco-Benedí, V.; Plana, N.; Sánchez, R.; Ros, E.; Ascaso, J.F.; Puzo, J.; Almagro, F.; Lahoz, C.; et al. Effect of LDL cholesterol, statins and presence of mutations on the prevalence of type 2 diabetes in heterozygous familial hypercholesterolemia. Sci. Rep. 2017, 7, 5596. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Hernández, R.M.; González-Lleó, A.M.; Tugores, A.; Brito-Casillas, Y.; Civeira, F.; Boronat, M.; Wägner, A. Familial hypercholesterolemia in Gran Canaria: Founder mutation effect and high frequency of diabetes. Clin. E Investig. En Arterioscler. 2021, 33, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Lalić, K.; Rajković, N.; Popović, L.; Lukač, S.S.; Stošić, L.; Rasulić, I.; Lalić, N.M. The effects of 3-year statin therapy and the achievement of LDL cholesterol target values in familial hypercholesterolemia patients: An experience from Serbia. Atherosclerosis 2018, 277, 298–303. [Google Scholar] [CrossRef]
- Sun, D.; Cao, Y.X.; You, X.D.; Zhou, B.Y.; Li, S.; Guo, Y.L.; Zhang, Y.; Wu, N.Q.; Zhu, C.G.; Gao, Y.; et al. Clinical and genetic characteristics of familial hypercholesterolemia patients with type 2 diabetes. J. Endocrinol. Investig. 2019, 42, 591–598. [Google Scholar] [CrossRef]
- Vuorio, A.F.; Turtola, H.; Piilahti, K.-M.; Repo, P.; Kanninen, T.; Kontula, K. Familial Hypercholesterolemia in the Finnish North Karelia. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3127–3138. [Google Scholar] [CrossRef]
- Fuentes, F.; Alcala-Diaz, J.F.; Watts, G.F.; Alonso, R.; Muñiz, O.; Díaz-Díaz, J.L.; Mata, N.; Sanchez Muñoz-Torrero, J.F.; Brea, Á.; Galiana, J.; et al. Statins do not increase the risk of developing type 2 diabetes in familial hypercholesterolemia: The SAFEHEART study. Int. J. Cardiol. 2015, 201, 79–84. [Google Scholar] [CrossRef]
- Saavedra, Y.G.L.; Dufour, R.; Baass, A. Familial hypercholesterolemia: PCSK9 InsLEU genetic variant and prediabetes/diabetes risk. J. Clin. Lipidol. 2015, 9, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Skoumas, I.; Ioakeimidis, N.; Vlachopoulos, C.; Chrysohoou, C.; Michalakeas, C.; Georgakopoulos, C.; Katsi, V.; Panagiotakos, D.; Tousoulis, D. Statin Therapy and Risk of Diabetes Mellitus in Aging Patients with Heterozygous Familial Hypercholesterolemia or Familial Combined Hyperlipidemia: A 10-Year Follow-Up. Angiology 2018, 69, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Martagon, A.J.; Galan Ramirez, G.A.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; Elias-Lopez, D.; Gonzalez-Retana, G.; Rodríguez-Encinas, B.; Ceballos-Macías, J.J.; Romero-Zazueta, A.; et al. Familial hypercholesterolemia in Mexico: Initial insights from the national registry. J. Clin. Lipidol. 2021, 15, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Climent, E.; Pérez-Calahorra, S.; Benaiges, D.; Pintó, X.; Suárez-Tembra, M.; Plana, N.; Sánchez-Hernández, R.M.; Valdivielso, P.; Ascaso, J.F.; Pedro-Botet, J. Clinical and genetic differences between heterozygous familial hypercholesterolemia patients with and without type 2 diabetes. Rev. Esp. Cardiol. 2020, 73, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ryan, K.A.; Jaworek, T.J.; Southam, L.; Reid, J.G.; Overton, J.D.; Baras, A.; Puurunen, M.K.; Zeggini, E.; Taylor, S.I.; et al. Familial Hypercholesterolemia and Type 2 Diabetes in the Old Order Amish. Diabetes 2017, 66, 2054–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.K.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Waters, D.D.; Ho, J.E.; Boekholdt, S.M.; Demicco, D.A.; Kastelein, J.J.P.; Messig, M.; Breazna, A.; Pedersen, T.R. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: Effect of baseline risk factors for diabetes. J. Am. Coll. Cardiol. 2013, 61, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Cederberg, H.; Stančáková, A.; Yaluri, N.; Modi, S.; Kuusisto, J.; Laakso, M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: A 6 year follow-up study of the METSIM cohort. Diabetologia 2015, 58, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Rahman, H.; Okunrintemi, V.; Riaz, H.; Khan, M.S.; Sattur, S.; Kaluski, E.; Lincoff, A.M.; Martin, S.S.; Blaha, M.J. Association of Lowering Low-Density Lipoprotein Cholesterol with Contemporary Lipid-Lowering Therapies and Risk of Diabetes Mellitus: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e011581. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.J.; Jo, A.J.; Kim, Y.J.; Kang, S.H.; Cho, S.; Jo, S.H.; Park, C.Y.; Yun, S.C.; Lee, W.J.; Park, D.W. Time- and Dose-Dependent Association of Statin Use with Risk of Clinically Relevant New-Onset Diabetes Mellitus in Primary Prevention: A Nationwide Observational Cohort Study. J. Am. Heart Assoc. 2019, 8, e011320. [Google Scholar] [CrossRef]
- Choi, J.Y.; Choi, C.U.; Hwang, S.Y.; Choi, B.G.; Jang, W.Y.; Kim, D.Y.; Kim, W.; Park, E.J.; Lee, S.; Na, J.O.; et al. Effect of Pitavastatin Compared with Atorvastatin andRosuvastatin on New-Onset Diabetes Mellitus in PatientsWith Acute Myocardial Infarction. Am. J. Cardiol. 2018, 122, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Norrie, J.; Sattar, N.; Neely, R.D.G.; Cobbe, S.M.; Ford, I.; Isles, C.; Lorimer, A.R.; Macfarlane, P.W.; McKillop, J.H.; et al. Pravastatin and the development of diabetes mellitus: Evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 2001, 103, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiramitsu, S.; Ishiguro, Y.; Matsuyama, H.; Yamada, K.; Kato, K.; Noba, M.; Uemura, A.; Yoshida, S.; Matsubara, Y.; Kani, A.; et al. The effects of ezetimibe on surrogate markers of cholesterol absorption and synthesis in Japanese patients with dyslipidemia. J. Atheroscler. Thromb. 2010, 17, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagli, N.; Yavuzkir, M.; Karaca, I. The effects of high dose pravastatin and low dose pravastatin and ezetimibe combination therapy on lipid, glucose metabolism and inflammation. Inflammation 2007, 30, 230–235. [Google Scholar] [CrossRef]
- Her, A.Y.; Kim, J.Y.; Kang, S.M.; Choi, D.; Jang, Y.; Chung, N.; Manabe, I.; Lee, S.H. Effects of atorvastatin 20 mg, rosuvastatin 10 mg, and atorvastatin/ezetimibe 5 mg/5 mg on lipoproteins and glucose metabolism. J. Cardiovasc. Pharmacol. Ther. 2010, 15, 167–174. [Google Scholar] [CrossRef]
- Takeshita, Y.; Takamura, T.; Honda, M.; Kita, Y.; Zen, Y.; Kato, K.I.; Misu, H.; Ota, T.; Nakamura, M.; Yamada, K.; et al. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: A randomised controlled trial. Diabetologia 2014, 57, 878–890. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-Berthold, I.; Lewis, B.S.; et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: A prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 941–950. [Google Scholar] [CrossRef]
- De Carvalho, L.S.F.; Campos, A.M.; Sposito, A.C. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors and Incident Type 2 Diabetes: A Systematic Review and Meta-analysis With Over 96,000 Patient-Years. Diabetes Care 2018, 41, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wu, G.; Li, C.; Qin, X.; Liu, R.; Zhang, M. Safety of Proprotein Convertase Subtilisin/Kexin Type 9 Monoclonal Antibodies in Regard to Diabetes Mellitus: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Cardiovasc. Drugs 2020, 20, 343–353. [Google Scholar] [CrossRef]
- Leiter, L.A.; Banach, M.; Catapano, A.L.; Duell, P.B.; Gotto, A.M.; Laufs, U.; Mancini, G.B.J.; Ray, K.K.; Hanselman, J.C.; Ye, Z.; et al. Bempedoic acid in patients with type 2 diabetes mellitus, prediabetes, and normoglycaemia: A post hoc analysis of efficacy and glycaemic control using pooled data from phase 3 clinical trials. Diabetes. Obes. Metab. 2022. [Google Scholar] [CrossRef]
- Masson, W.; Lobo, M.; Lavalle-Cobo, A.; Masson, G.; Molinero, G. Effect of bempedoic acid on new onset or worsening diabetes: A meta-analysis. Diabetes Res. Clin. Pract. 2020, 168, 108369. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, Y.; Goldberg, R.B.; Garvey, W.T.; Fonseca, V.A.; Rosenstock, J.; Jones, M.R.; Lai, Y.L.; Jin, X.; Misir, S.; Nagendran, S.; et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: A randomized, prospective study. Endocr. Pract. 2010, 16, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Kazi, D.S.; Penko, J.M.; Bibbins-Domingo, K. Statins for Primary Prevention of Cardiovascular Disease: Review of Evidence and Recommendations for Clinical Practice. Med. Clin. N. Am. 2017, 101, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Tramacere, I.; Boncoraglio, G.B.; Banzi, R.; Del Giovane, C.; Kwag, K.H.; Squizzato, A.; Moja, L. Comparison of statins for secondary prevention in patients with ischemic stroke or transient ischemic attack: A systematic review and network meta-analysis. BMC Med. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlson, B.W.; Palmer, M.K.; Nicholls, S.J.; Lundman, P.; Barter, P.J. Doses of rosuvastatin, atorvastatin and simvastatin that induce equal reductions in LDL-C and non-HDL-C: Results from the VOYAGER meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Adhyaru, B.B.; Jacobson, T.A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 2018, 15, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.O.; Li, X.; Krauss, R.M.; Rotter, J.I.; Chen, Y.D.I. Relationship of sex to diabetes risk in statin trials. Diabetes Care 2013, 36, e100–e101. [Google Scholar] [CrossRef] [Green Version]
- Preiss, D.; Seshasai, S.R.K.; Welsh, P.; Murphy, S.A.; Ho, J.E.; Waters, D.D.; DeMicco, D.A.; Barter, P.; Cannon, C.P.; Sabatine, M.S.; et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA 2011, 305, 2556–2564. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaborators Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: A meta-analysis. Lancet 2008, 371, 117–125. [CrossRef]
- Mach, F.; Ray, K.K.; Wiklund, O.; Corsini, A.; Catapano, A.L.; Bruckert, E.; De Backer, G.; Hegele, R.A.; Hovingh, G.K.; Jacobson, T.A.; et al. Adverse effects of statin therapy: Perception vs. the evidence—Focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Heart J. 2018, 39, 2526–2539. [Google Scholar] [CrossRef]
- Sasaki, J.; Iwashita, M.; Kono, S. Statins: Beneficial or adverse for glucose metabolism. J. Atheroscler. Thromb. 2006, 13, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Calvo, M.; Lisnock, J.M.; Bull, H.G.; Hawes, B.E.; Burnett, D.A.; Braun, M.P.; Crona, J.H.; Davis, H.R.; Dean, D.C.; Detmers, P.A.; et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 2005, 102, 8132–8137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, T.; Nozue, T.; Yamada, M.; Mizuguchi, I.; Sasaki, M.; Michishita, I. Effects of ezetimibe on atherogenic lipoproteins and glucose metabolism in patients with diabetes and glucose intolerance. Diabetes Res. Clin. Pract. 2013, 100, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Hiramitsu, S.; Miyagishima, K.; Ishii, J.; Matsui, S.; Naruse, H.; Shiino, K.; Kitagawa, F.; Ozaki, Y. Effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load. J. Cardiol. 2012, 60, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Shang, H.; Wu, J. Effect of ezetimibe on glycemic control: A systematic review and meta-analysis of randomized controlled trials. Endocrine 2018, 60, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-B.; Kim, B.; Han, K.; Kim, J.A.; Roh, E.; Hong, S.H.; Choi, K.M.; Baik, S.H.; Yoo, H.J. Combination of Statin and Ezetimibe versus Statin Monotherapy on Cardiovascular Disease and Type 2 Diabetes Incidence among Adults with Impaired Fasting Glucose: A Propensity-Matched Nationwide Cohort Study. J. Lipid Atheroscler. 2021, 10, 303–312. [Google Scholar] [CrossRef]
- Kikuchi, K.; Nezu, U.; Inazumi, K.; Miyazaki, T.; Ono, K.; Orime, K.; Shirakawa, J.; Sato, K.; Koike, H.; Wakasugi, T.; et al. Double-blind randomized clinical trial of the effects of ezetimibe on postprandial hyperlipidaemia and hyperglycaemia. J. Atheroscler. Thromb. 2012, 19, 1093–1101. [Google Scholar] [CrossRef]
- Ascaso, J.F. Inhibition of proprotein convertase subtilisin/kexin type 9 in the treatment of hypercholesterolemia. Endocrinol. Nutr. 2016, 63, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Ganda, O.P.; Plutzky, J.; Sanganalmath, S.K.; Bujas-Bobanovic, M.; Koren, A.; Mandel, J.; Letierce, A.; Leiter, L.A. Efficacy and safety of alirocumab among individuals with diabetes mellitus and atherosclerotic cardiovascular disease in the ODYSSEY phase 3 trials. Diabetes. Obes. Metab. 2018, 20, 2389–2398. [Google Scholar] [CrossRef]
- Lotta, L.A.; Sharp, S.J.; Burgess, S.; Perry, J.R.B.; Stewart, I.D.; Willems, S.M.; Luan, J.; Ardanaz, E.; Arriola, L.; Balkau, B.; et al. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis Supplemental content. JAMA 2016, 316, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Kashyap, M.L. Niacin, lipids, and heart disease. Curr. Cardiol. Rep. 2003, 5, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Zafrir, B.; Jain, M. Lipid-lowering therapies, glucose control and incident diabetes: Evidence, mechanisms and clinical implications. Cardiovasc. Drugs Ther. 2014, 28, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Sharma, A.; Krishnamoorthy, P.; Garg, J.; Virmani, D.; Sharma, T.; Stefanini, G.; Kostis, J.B.; Mukherjee, D.; Sikorskaya, E. Role of Niacin in Current Clinical Practice: A Systematic Review. Am. J. Med. 2017, 130, 173–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, G.L.; Dunn, F.L.; Grundy, S.M. Effect of colesevelam hydrochloride on glycemia and insulin sensitivity in men with the metabolic syndrome. Am. J. Cardiol. 2011, 108, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Ritz-Laser, B.; Meda, P.; Constant, I.; Klages, N.; Charollais, A.; Morales, A.; Magnan, C.; Ktorza, A.; Philippe, J. Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology 1999, 140, 4005–4014. [Google Scholar] [CrossRef] [PubMed]
- Briaud, I.; Harmon, J.S.; Kelpe, C.L.; Segu, V.B.G.; Poitout, V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 2001, 50, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Liu, J.; Hou, F.; Liu, Z.; Cao, X.; Seo, H.; Gao, B. Cholesterol induces pancreatic β cell apoptosis through oxidative stress pathway. Cell Stress Chaperones 2011, 16, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Cnop, M.; Hannaert, J.C.; Grupping, A.Y.; Pipeleers, D.G. Low density lipoprotein can cause death of islet β-cells by its cellular uptake and oxidative modification. Endocrinology 2002, 143, 3449–3453. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Molina, M.T.; Aguilar-Salinas, C.A.; Rodríguez-Cruz, M.; Riaño, D.; Villalobos-Comparan, M.; Coral-Vazquez, R.; Menjivar, M.; Yescas-Gomez, P.; Königsoerg-Fainstein, M.; Romero-Hidalgo, S.; et al. The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: Association with obesity and obesity-related comorbidities. Diabetes 2007, 56, 1881–1887. [Google Scholar] [CrossRef] [Green Version]
- Haghvirdizadeh, P.; Ramachandran, V.; Etemad, A.; Heidari, F.; Ghodsian, N.; Bin Ismail, N.; Ismail, P. Association of ATP-Binding Cassette Transporter A1 Gene Polymorphisms in Type 2 Diabetes Mellitus among Malaysians. J. Diabetes Res. 2015, 2015, 289846. [Google Scholar] [CrossRef] [Green Version]
- Dullaart, R.P.F.; Annema, W.; de Boer, J.F.; Tietge, U.J.F. Pancreatic β-cell function relates positively to HDL functionality in well-controlled Type 2 diabetes mellitus. Atherosclerosis 2012, 222, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Sokooti, S.; Flores-Guerrero, J.L.; Kieneker, L.M.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. HDL Particle Subspecies and Their Association with Incident Type 2 Diabetes: The PREVEND Study. J. Clin. Endocrinol. Metab. 2021, 106, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Perego, C.; Da Dalt, L.; Pirillo, A.; Galli, A.; Catapano, A.L.; Norata, G.D. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, G.; Ferrannini, E.; D’Amore, A.; Volpe, C.; Varricchio, M.; D’Onofrio, F. Effects of physiological plasma insulin levels on glucose turnover parameters in familial hypercholesterolemia. Atherosclerosis 1993, 101, 111–115. [Google Scholar] [CrossRef]
- Galvan, A.Q.; Santoro, D.; Natali, A.; Sampietro, T.; Boni, C.; Masoni, A.; Buzzigoli, G.; Ferrannini, E. Insulin sensitivity in familial hypercholesterolemia. Metabolism 1993, 42, 1359–1364. [Google Scholar] [CrossRef]
- Karhapää, P.; Voutilainen, E.; Kovanen, P.T.; Laakso, M. Insulin resistance in familial and nonfamilial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1993, 13, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Koks, N.; de Vries, M.A.; Birnie, E.; Alipour, A.; Castro Cabezas, M. Glucose-dependent leucocyte activation in familial hypercholesterolemia. Eur. J. Clin. Investig. 2017, 47, 839–846. [Google Scholar] [CrossRef]
- Oliveira, R.B.d.; Carvalho, C.P.d.F.; Polo, C.C.; Dorighello, G.d.G.; Boschero, A.C.; Oliveira, H.C.F.d.; Collares-Buzato, C.B. Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice. Int. J. Exp. Pathol. 2014, 95, 296–308. [Google Scholar] [CrossRef]
- Da Dalt, L.; Ruscica, M.; Bonacina, F.; Balzarotti, G.; Dhyani, A.; Di Cairano, E.; Baragetti, A.; Arnaboldi, L.; De Metrio, S.; Pellegatta, F.; et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: The role of the low-density lipoprotein receptor. Eur. Heart J. 2019, 40, 357–368. [Google Scholar] [CrossRef]
- Peyot, M.L.; Roubtsova, A.; Lussier, R.; Chamberland, A.; Essalmani, R.; Murthy Madiraju, S.R.; Seidah, N.G.; Prentki, M.; Prat, A. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2021, 1866, 158968. [Google Scholar] [CrossRef]
- Tada, H.; Kawashiri, M.A.; Yoshida, T.; Teramoto, R.; Nohara, A.; Konno, T.; Inazu, A.; Mabuchi, H.; Yamagishi, M.; Hayashi, K. Lipoprotein(A) in familial hypercholesterolemia with proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutations. Circ. J. 2016, 80, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paige, E.; Masconi, K.L.; Tsimikas, S.; Kronenberg, F.; Santer, P.; Weger, S.; Willeit, J.; Kiechl, S.; Willeit, P. Lipoprotein(a) and incident type-2 diabetes: Results from the prospective Bruneck study and a meta-analysis of published literature. Cardiovasc. Diabetol. 2017, 16, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Calahorra, S.; Civeira, F.; Guallar-Castillón, P.; Pinto, X.; Banegas, J.R.; Pedro-Botet, J.; Suarez-Tembra, M.; Mauri, M.; Soler, C.; Rodriguez-Artalejo, F.; et al. Behavioural cardiovascular risk factors and prevalence of diabetes in subjects with familial hypercholesterolaemia. Eur. J. Prev. Cardiol. 2020, 27, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Coady, S.; Sorlie, P.D.; D’agostino, R.B.; Pencina, M.J.; Vasan, R.S.; Meigs, J.B.; Levy, D.; Savage, P.J. Increasing Cardiovascular Disease Burden Due to Diabetes Mellitus the Framingham Heart Study. Circulation 2007, 115, 1544–1550. [Google Scholar] [CrossRef]
- Raghavan, S.; Vassy, J.L.; Ho, Y.L.; Song, R.J.; Gagnon, D.R.; Cho, K.; Wilson, P.W.F.; Phillips, L.S. Diabetes Mellitus-Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults. J. Am. Heart Assoc. 2019, 8, e011295. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism. 2014, 63, 1469–1479. [Google Scholar] [CrossRef]
- Tribble, D.L.; Rizzo, M.; Chait, A.; Lewis, D.M.; Blanche, P.J.; Krauss, R.M. Enhanced oxidative susceptibility and reduced antioxidant content of metabolic precursors of small, dense low-density lipoproteins. Am. J. Med. 2001, 110, 103–110. [Google Scholar] [CrossRef]
- Paiker, J.E.; Raal, F.J.; Waisberg, R.; Buthelezi, E.P. Quantity versus quality of LDL cholesterol in patients with familial hypercholesterolemia-which is more important? Clin. Chim. Acta 2001, 314, 167–173. [Google Scholar] [CrossRef]
- Kolovou, G.D.; Kostakou, P.M.; Anagnostopoulou, K.K. Familial hypercholesterolemia and triglyceride metabolism. Int. J. Cardiol. 2011, 147, 349–358. [Google Scholar] [CrossRef]
- Chemello, K.V.; García-Nafría, J.; Gallo, A.; Martín, C.; Lambert, G.; Blom, D. Lipoprotein metabolism in familial hypercholesterolemia. J. Lipid Res. 2021, 62, 100062. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Watts, G.F. Postprandial lipoprotein metabolism in familial hypercholesterolemia: Thinking outside the box. Metabolism 2012, 61, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Wittekoek, M.E.; Pimstone, S.N.; Reymer, P.W.; Feuth, L.; Botma, G.J.; Defesche, J.C.; Prins, M.; Hayden, M.R.; Kastelein, J.J. A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for cardiovascular disease in patients with familial hypercholesterolemia. Circulation. 1998, 97, 729–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganjali, S.; Momtazi, A.A.; Banach, M.; Kovanen, P.T.; Stein, E.A.; Sahebkar, A. HDL abnormalities in familial hypercholesterolemia: Focus on biological functions. Prog. Lipid Res. 2017, 67, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. Familial Hypercholesterolemia: Do HDL Play a Role? Biomedicines 2021, 9, 810. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Bernard, S.; Ruel, I.; Blank, D.W.; Genest, J.; Baass, A. Diabetes is associated with an increased risk of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 2019, 13, 123–128. [Google Scholar] [CrossRef]
- Spiga, R.; Marini, M.A.; Mancuso, E.; Di Fatta, C.; Fuoco, A.; Perticone, F.; Andreozzi, F.; Mannino, G.C.; Sesti, G. Uric Acid Is Associated with Inflammatory Biomarkers and Induces Inflammation via Activating the NF-κB Signaling Pathway in HepG2 Cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Mirza, S.; Hossain, M.; Mathews, C.; Martinez, P.; Pino, P.; Gay, J.L.; Rentfro, A.; McCormick, J.B.; Fisher-Hoch, S.P. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: A cross-sectional study. Cytokine 2012, 57, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Derosa, G.; Fogari, E.; D’Angelo, A.; Bianchi, L.; Bonaventura, A.; Romano, D.; Maffioli, P. Adipocytokine levels in obese and non-obese subjects: An observational study. Inflammation 2013, 36, 914–920. [Google Scholar] [CrossRef]
- Rahman, T.; Hamzan, N.S.; Mokhsin, A.; Rahmat, R.; Ibrahim, Z.O.; Razali, R.; Thevarajah, M.; Nawawi, H. Enhanced status of inflammation and endothelial activation in subjects with familial hypercholesterolaemia and their related unaffected family members: A case control study. Lipids Health Dis. 2017, 16, 81. [Google Scholar] [CrossRef] [Green Version]
- Ganjali, S.; Keshavarz, R.; Hosseini, S.; Mansouri, A.; Mannarino, M.R.; Pirro, M.; Jamialahmadi, T.; Sahebkar, A. Evaluation of Oxidative Stress Status in Familial Hypercholesterolemia. J. Clin. Med. 2021, 10, 5867. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Liberale, L.; Reiner, Ž.; Carbone, F.; Montecucco, F.; Sahebkar, A. Inflammatory Biomarkers for Cardiovascular Risk Stratification in Familial Hypercholesterolemia. Rev. Physiol. Biochem. Pharmacol. 2020, 177, 25–52. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.C.M.; Van Aalst-Cohen, E.S.; Tanck, M.W.; Trip, M.D.; Lansberg, P.J.; Liem, A.H.; Roeters Van Lennep, H.W.O.; Sijbrands, E.J.G.; Kastelein, J.J.P. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: Data in 2400 patients. J. Intern. Med. 2004, 256, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Okada, H.; Nohara, A.; Yamagishi, M.; Takamura, M.; Kawashiri, M.A. Effect of Cumulative Exposure to Low-Density Lipoprotein-Cholesterol on Cardiovascular Events in Patients with Familial Hypercholesterolemia. Circ. J. 2021, 85, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Dufour, R.; Baass, A. The Montreal-FH-SCORE: A new score to predict cardiovascular events in familial hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 80–86. [Google Scholar] [CrossRef]
- Pérez De Isla, L.; Alonso, R.; Mata, N.; Fernández-Pérez, C.; Muñiz, O.; Díaz-Díaz, J.L.; Saltijeral, A.; Fuentes-Jiménez, F.; De Andrés, R.; Zambón, D.; et al. Predicting Cardiovascular Events in Familial Hypercholesterolemia: The SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation 2017, 135, 2133–2144. [Google Scholar] [CrossRef]
- Paquette, M.; Bernard, S.; Cariou, B.; Hegele, R.A.; Genest, J.; Trinder, M.; Brunham, L.R.; Béliard, S.; Baass, A. Familial Hypercholesterolemia-Risk-Score: A New Score Predicting Cardiovascular Events and Cardiovascular Mortality in Familial Hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2632–2640. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Skoumas, J.; Chrysohoou, C.; Toutouza, M.; Stefanadis, C.I.; Toutouzas, P.K. Importance of LDL/HDL cholesterol ratio as a predictor for coronary heart disease events in patients with heterozygous familial hypercholesterolaemia: A 15-year follow-up (1987–2002). Curr. Med. Res. Opin. 2003, 19, 89–94. [Google Scholar]
- Humphries, S.E.; Cooper, J.A.; Capps, N.; Durrington, P.N.; Jones, B.; McDowell, I.F.W.; Soran, H.; Neil, A.H.W. Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. Atherosclerosis 2019, 281, 207. [Google Scholar] [CrossRef] [Green Version]
- Gidding, S.S. Diabetes and familial hypercholesterolemia: An unhealthy marriage. Rev. Española Cardiol. 2020, 73, 705–706. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, P.N.; Stephenson, S.; Wu, L.L.; Riley, W.A.; Xin, Y.; Hunt, S.C. Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 2001, 87, 547–553. [Google Scholar] [CrossRef]
- De Sauvage Nolting, P.R.W.; Defesche, J.C.; Buirma, R.J.A.; Hutten, B.A.; Lansberg, P.J.; Kastelein, J.J.P. Prevalence and significance of cardiovascular risk factors in a large cohort of patients with familial hypercholesterolaemia. J. Intern. Med. 2003, 253, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Allard, M.D.; Saeedi, R.; Yousefi, M.; Frohlich, J. Risk stratification of patients with familial hypercholesterolemia in a multi-ethnic cohort. Lipids Health Dis. 2014, 13, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, R.; Andres, E.; Mata, N.; Fuentes-Jiménez, F.; Badimón, L.; López-Miranda, J.; Padró, T.; Muñiz, O.; Díaz-Díaz, J.L.; Mauri, M.; et al. Lipoprotein(a) levels in familial hypercholesterolemia: An important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 2014, 63, 1982–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.; Miname, M.; Makdisse, M.; Filho, R.K.; Santos, R.D. Association of Peripheral Arterial and Cardiovascular Diseases inFamilial Hypercholesterolemia. Arq. Bras. Cardiol. 2014, 103, 118. [Google Scholar] [CrossRef]
- Chan, D.C.; Pang, J.; Hooper, A.J.; Burnett, J.R.; Bell, D.A.; Bates, T.R.; Van Bockxmeer, F.M.; Watts, G.F. Elevated lipoprotein(a), hypertension and renal insufficiency as predictors of coronary artery disease in patients with genetically confirmed heterozygous familial hypercholesterolemia. Int. J. Cardiol. 2015, 201, 633–638. [Google Scholar] [CrossRef]
- Degoma, E.M.; Ahmad, Z.S.; O’Brien, E.C.; Kindt, I.; Shrader, P.; Newman, C.B.; Pokharel, Y.; Baum, S.J.; Hemphill, L.C.; Hudgins, L.C.; et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States. Circ. Cardiovasc. Genet. 2016, 9, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Paquette, M.; Brisson, D.; Dufour, R.; Khoury, É.; Gaudet, D.; Baass, A. Cardiovascular disease in familial hypercholesterolemia: Validation and refinement of the Montreal-FH-SCORE. J. Clin. Lipidol. 2017, 11, 1161–1167. [Google Scholar] [CrossRef]
- Galema-Boers, A.M.; Lenzen, M.J.; Engelkes, S.R.; Sijbrands, E.J.; Roeters van Lennep, J.E. Cardiovascular risk in patients with familial hypercholesterolemia using optimal lipid-lowering therapy. J. Clin. Lipidol. 2018, 12, 409–416. [Google Scholar] [CrossRef]
- Perez-Calahorra, S.; Laclaustra, M.; Marco-Benedí, V.; Lamiquiz-Moneo, I.; Pedro-Botet, J.; Plana, N.; Sanchez-Hernandez, R.M.; Amor, A.J.; Almagro, F.; Fuentes, F.; et al. Effect of lipid-lowering treatment in cardiovascular disease prevalence in familial hypercholesterolemia. Atherosclerosis 2019, 284, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michikura, M.; Ogura, M.; Hori, M.; Matsuki, K.; Makino, H.; Hosoda, K.; Harada-Shiba, M. Association between Achilles Tendon Softness and Atherosclerotic Cardiovascular Disease in Patients with Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2022, 63151. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | N | Sample Characteristics | Diagnostic Criteria of FH | Diabetes (%) |
---|---|---|---|---|---|
Ferrières, 1995 [64] | Canada | 263 | French Canadian HeFH patients | Genetic test (LDLR mutation) | Men with CHD 1.9% Women and men without CHD 0% |
Vuorio, 1997 [69] | Finland | 179 | 55 HeFH with CHD and 124 HeFH without CHD | Genetic test (LDLR mutation) | 9 and 0%, respectively |
Neil, 1998 [63] | UK | 1185 | HeFH | Simon Broome Criteria | 1.2% men 0.5% women |
Fuentes, 2015 [70] | Spain | 3823 | 2558 HeFH vs. 1265 unaffected relatives | Genetic test (LDLR mutation) | 2.3% |
Saavedra, 2015 [71] | Canada | 188 | HeFH | Genetic test (PCSK9-InsLEU or LDLR mutations) | 4 and 2%, respectively |
Besseling, 2015 [26] | Netherlands | 63,320 | 25,137 HeFH vs. 38,183 unaffected relatives | Genetic test (APOB, PCSK9 or LDLR mutations) | 1.75% |
Skoumas, 2017 [72] | Greece | 280 | 90 HeFH vs. 112 familial combined hyperlipidemia vs. 78 controls | Clinical criteria or genetic test | 2% |
Climent, 2017 [65] | Spain | 1732 | HeFH | Definite or probable DLCN criteria | 5.9% |
Sun, 2018 [68] | China | 289 | HeFH | Definite or probable DLCN criteria | 20.1% |
Sánchez-Hernández, 2021 [66] | Spain | 68 | p.[Tyr400 Phe402del] LDLR carriers | Genetic test (LDLR mutation) | 25% |
Mehta, 2021 [73] | Mexico | 336 | 332 HeFH and 4HoFH | Definite, probable, or possible DLCN criteria | 11.3% |
Author, Year | N | Characteristics/Therapy | Mean Follow-Up | Mean Results | Statistical Measures (OR, HR or RR) (95% CI) |
---|---|---|---|---|---|
Sattar, 2010 [76] | 91,140 | Meta-analysis. All statins | 4 years | NODM 9% | OR 1.09 (1.02–1.17) |
Waters, 2013 [77] | 15,056 | Atorvastatin 80 mg vs. atorvastatin 10 mg or simvastatin 20–40 mg | 4.9 years | 0–1 NODM risk factors: NODM 3.22% vs. 3.35% 2–4 NODM risk factors: NODM 14.3% vs. 11.9% | HR 0.97 (0.77–1.22) HR 1.24 (1.08–1.42) |
Cederberg, 2014 [78] | 8749 | Non-diabetic patients. All statins vs. control | 5.9 years | NODM 11.2% vs. 5.8% High and low dose simvastatin High dose atorvastatin | HR 1.46 (1.22–1.74) HR 1.44 (1.23–1.68) and 1.28 (1.01–1.62) HR 1.37 (1.14–1.65) |
Khan, 2019 [79] | 163,688 | Non-diabetic patients. Intensive therapy (PCSK9i or statins) vs. less intensive therapy (placebo/usual care) | 4.2 years | NODM 6.1% vs. 5.8% | RR 1.07 (1.03–1.11) |
Ko, 2019 [80] | 2,162,119 | Duration of statin use (<1 year vs. 1–2 years vs. >2 years) Cumulative dosing of statin (low-tertile vs. middle-tertile vs. high-tertile) | 3.9 years | NODM 8.2% vs. 14.6% vs. 19.8% NODM 6.7% vs. 11.5% vs. 18.6% | HR 1.25 (1.21–1.28) vs. 2.22 (2.16–2.29) vs. 2.62 (2.56–2.67) HR 1.06 (1.02–1.10) vs. 1.74 (1.70–1.79) vs. 2.52 (2.47–2.57) |
Choi, 2018 [81] | 2483 | 5–10 mg rosuvastatin vs. 10–20 mg and atorvastatin vs. 2–4 mg pitavastatin | 3 years | NODM 10.4% vs. 8.4% vs. 3% | HR Rosuvastatin vs. Pitavastatin: 3.9 (1.8–8.7) HR Atorvastatin vs. Pitavastatin: 2.6 (1.2–5.9) |
Freeman, 2001 [82] | 5974 | All statins | 3.5–6.1 years | NODM 2.3% | Pravastatin therapy HR 0.70 (0.50–0.99) |
Hiramitsu, 2010 [83] | 120 | Ezetimibe | 12 weeks | HbA1c: −3.4%; p = 0.05 | |
Dagli, 2007 [84] | 100 | High-dose pravastatin (40 mg) vs. combination low-dose pravastatin (10 mg) plus ezetimibe (10 mg) | 6 months | HOMA IR: 3.16 vs. 2.05; p = 0.01 | |
Her, 2010 [85] | 76 | Atorvastatin 20 mg vs. rosuvastatin 10 mg vs. atorvastatin 5 mg plus ezetimibe 5 mg | 8 weeks | HbA1c: +3% vs. +1.2% vs. −0.4%; p = 0.03 | |
Takeshita, 2013 [86] | 32 | Ezetimibe vs. placebo in NAFLD patients | 6 months | HbA1c: 6.5% vs. 6%; p = 0.041 | |
Sabatine, 2017 [87] | 27,564 | EVOLOCUMAB vs. placebo | 2.2 years | NODM 8% vs. 7.6% | HR 1.05 (0.94–1.17) |
de Carvalho, 2017 [88] | 68,123 | Meta-analysis: PCSK9i vs. placebo | 78 weeks | Mean difference in FBG 1.88 (0.91–2.68) mg/dL; p < 0.001 HbA1c 0.032% (0.011–0.050); p <0.001 NODM | RR 1.04 (0.96–1.13); p = 0.427 |
Chen, 2019 [89] | 65,957 | Meta-analysis: PCSK9i vs. placebo | Global NODM ALIROCUMAB Homogeneous statin use ALIROCUMAB and EVOLOCUMAB vs. ezetimibe | RR 0.97 (0.91–1.02) RR 0.91 (0.85–0.98) RR 2.14 (1.12–4.07) RR 0.60 (0.37–0.99) | |
Leiter, 2022 [90] | 3621 | Bempedoic acid vs. placebo | 1 year | NODM 0.3% vs. 0.8%; p > 0.05 T2DM: HbA1c −0.12% vs. 0.07%; p < 0.0001 pre-T2DM: HbA1c −0.06% vs. −0.02; p < 0.0004 | |
Masson, 2020 [91] | 3629 | Meta-analysis: bempedoic acid vs. placebo | 4–52 weeks | NODM | OR 0.66 (0.48–0.90) |
Handelsma, 2010 [92] | 216 | Colesevelam vs. placebo in pre-T2DM patients | 16 weeks | FBG: −4.0 mg/dL vs. −2.0 mg/dL; p = 0.02 HbA1c: −0.12% vs. −0.03%; p = 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Lleó, A.M.; Sánchez-Hernández, R.M.; Boronat, M.; Wägner, A.M. Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients 2022, 14, 1503. https://doi.org/10.3390/nu14071503
González-Lleó AM, Sánchez-Hernández RM, Boronat M, Wägner AM. Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients. 2022; 14(7):1503. https://doi.org/10.3390/nu14071503
Chicago/Turabian StyleGonzález-Lleó, Ana M., Rosa María Sánchez-Hernández, Mauro Boronat, and Ana M. Wägner. 2022. "Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism" Nutrients 14, no. 7: 1503. https://doi.org/10.3390/nu14071503
APA StyleGonzález-Lleó, A. M., Sánchez-Hernández, R. M., Boronat, M., & Wägner, A. M. (2022). Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients, 14(7), 1503. https://doi.org/10.3390/nu14071503