Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of a Nutrient Profiling Model to Classify Energy-Dense, Nutrient-Poor Food and Drinks
2.1.1. Step 1: Conceptual Model Development and Score Allocation
2.1.2. Step 2: Setting a Cut-Off Value and Classification of Food and Drinks
2.1.3. Step 3: Model Validation and Statistics
2.2. Estimating the Amount of Discretionary Energy for EDNP Food and Drinks
2.2.1. Step 1: Setting Overall Criteria and Food and Nutrient Goals for the Recommended Diets
2.2.2. Step 2: Defining Age and Sex Groups
- The number of age groups necessary when considering differences in the energy and nutrient requirements between groups.
- The variation in energy requirements within an age and sex group constitutes a maximum of 10% (maximum 1 MJ/day) compared to the average energy requirement in the age and sex groups.
- A sufficient number of participants from DANSDA 2011–2013 for the diet modeling.
2.2.3. Step 3: Developing Main Food Groups and Subgroups
2.2.4. Step 4: Developing the Recommended Diets
2.2.5. Step 5: Estimating Amount of Discretionary Energy
3. Results
3.1. Nutrient Profiling Model
Model Validation—Sensitivity and Specificity Analysis
3.2. Estimating the Amount of Discretionary Energy in the Recommended Diets
3.2.1. Sweet Drinks
3.2.2. Robustness Test and Physical Activity Level
4. Discussion
4.1. Nutrient Profiling Model
4.2. Estimated Amount of Discretionary Energy for EDNP Food and Drinks
4.3. Strenghts and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Allocating Scores by the Nutrient Profiling Model
Appendix A.1. Nutrient Density Score
Appendix A.1.1. Qualifying Nutrients
Appendix A.1.2. Disqualifying Nutrients
Appendix A.1.3. Total Nutrient Density Score
Appendix A.2. Energy Density Score
Appendix A.3. Total Nutrient-Poor, Energy-Dense Food and Drink Score
Appendix B. Food and Drinks Classified as EDNP Food and Drinks
Foods | Drinks |
---|---|
Candy (licorice, wine gum, candy, foam candy, chewing gum, artificially sweetened candy) | Soft drinks (including artificially sweetened drinks) |
Chocolate (chocolate bar, cream bun, marzipan, confectionery, chocolate spread) | Cordials (including artificially sweetened drinks) |
Cake (yeast cake, pound cake, pastry, dry cake, truffles, whipped cream cakes, cookies, pancake, pie) | Energy drinks (including artificially sweetened drinks) |
Biscuit (sweet biscuits, salt biscuits, chocolate biscuits) | Sports drinks (including artificially sweetened drinks) |
Snack bar (muesli bar, energy bar, protein bar, milk bar) | Sweet tea and coffee drinks (iced tea, ice blend including artificially sweetened tea and coffee drinks) |
Ice cream (ice cream/milk, ice cream, soda ice) | Alcoholic drinks (beer, wine, liqueur, spirits, shots, drinks, alcopops, cider) |
Desserts (chocolate mousse, puddings) | |
Snacks (chips, popcorn, crackling) |
References
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020; 835p. [CrossRef]
- World Cancer Research Fund. American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. Recommendations and Public Health and Policy Implications; World Cancer Research Fund/American Institute for Cancer Research: London, UK, 2018; pp. 1–91. [Google Scholar]
- Swinburn, B.A.; Caterson, I.; Seidell, J.; James, W.T.P. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004, 7, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Tetens, I.; Andersen, L.B.; Astrup, A.; Gondolf, U.H.; Hermansen, K.; Jakobsen, M.U.; Knudsen, V.K.; Mejborn, H.; Schwarz, P.; Tjønneland, A.; et al. Evidensgrundlaget for Danske Råd om Kost og Fysisk Aktivitet (The Evidence Base for the Danish Guidelines on Diet and Physical Activity); DTU Fødevareinstituttet: Søborg, Denmark, 2013; 163p, ISBN 9788792763969. [Google Scholar]
- Nordic Council of Ministers. Nordic Nutrition: Recommendations 2012, Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014; Volume 40, 629p, ISBN 9789289326704. [Google Scholar]
- Biltoft-Jensen, A.; Gibbons, S.; Kørup, K.; Bestle, S.M.; Christensen, B.J.; Trolle, E.; Lassen, A.D.; Matthiessen, J. Danskere er verdensmestre i slikindkøb (Danes hold the world record in buying sweets). E-Artik. DTU Fødevareinstituttet 2021, 1, 1–10. [Google Scholar]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2020; 163p.
- Dietitians Association of Australia. A Modelling System to Inform the Revision of the Australian Guide to Healthy Eating; Australian National Health and Medical Research Council: Canberra, Australia, 2011; 621p, ISBN 1864965398.
- Davis, K.A.; Esslinger, K.; Elvidge Munene, L.-A.; St-Pierre, S. International approaches to developing healthy eating patterns for national dietary guidelines. Nutr. Rev. 2019, 77, 388–403. [Google Scholar] [CrossRef] [PubMed]
- Biltoft-Jensen, A.; Trolle, E.; Christensen, T.; Ygil, K.H.; Fagt, S.; Matthiessen, J.; Groth, M.V.; Tetens, I. Development of a recommended food intake pattern for healthy Danish adolescents consistent with the Danish dietary guidelines, nutrient recommendations and national food preferences. J. Hum. Nutr. Diet. 2008, 21, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, H.; Van Den Berg, H. A simple visual model to compare existing nutrient profiling schemes. Food Nutr. Res. 2008, 52, 1649. [Google Scholar] [CrossRef] [PubMed]
- Ministeriet for Fødevarer; Landbrug og Fiskeri Fødevarestyrelsen (The Danish Veterinary and Food Adminstration). De Officielle Kostråd 2013 (The official Danish Dietary Guidelines); Fødevarestyrelsen: Glostrup, Denmark, 2013; pp. 1–27. ISBN 9788792688941. [Google Scholar]
- Scarborough, P.; Rayner, M.; Stockley, L. Developing nutrient profile models: A systematic approach. Public Health Nutr. 2007, 10, 330–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. Nutrient Profiling: Report of a WHO/IASO Technical Meeting; World Health Organisation: London, UK, 2011; ISBN 9789241502207. [Google Scholar]
- The National Food Institute Technical University of Denmark. The Danish Food Composition Database—Frida Version 4. Available online: https://frida.fooddata.dk/ (accessed on 24 July 2021).
- World Cancer Research Fund and American Institute for Cancer Rsearch. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; AICR: Washington, DC, USA, 2007; 537p. [Google Scholar]
- Santé Publique France. Nutri-Score Frequently Asked Questions. Scientific & Technical FAQ. Available online: https://world.openfoodfacts.org/nutriscore (accessed on 15 July 2021).
- Volatier, J.-L.; Biltoft-Jensen, A.; De Henauw, S.; Gibney, M.J.; Huybrechts, I.; McCarthy, S.N.; O’Neill, J.L.; Quinio, C.; Turrini, A.; Tetens, I. A new reference method for the validation of the nutrient profiling schemes using dietary surveys. Eur. J. Nutr. 2007, 46, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.N.; Christensen, T.; Matthiessen, J.; Knudsen, V.K.; Sørensen, M.R.; Biltoft-Jensen, A.; Hinsch, H.J.; Ygil, K.H.; Kørup, K.; Saxholt, E.; et al. Danskernes Kostvaner 2011—2013. Hovedresultater (Dietary Habits in Denmark 2011–2013. Main Results); DTU Fødevareinstituttet: Copenhagen, Denmark, 2015; 208p, ISBN 9788793109391. [Google Scholar]
- Matthiessen, J.; Knudsen, V.K.; Sorensen, M.R.; Andersen, E.W.; Raustorp, A. Reduction in pedometer-determined physical activity in the adult Danish population from 2007 to 2012. Scand. J. Public Health 2015, 43, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Scientific Advisory Committee on Nutrition SCAN. Carbohydrates and Health; TSO: Norwich, UK, 2015; 384p, ISBN 9780117082847.
- Quinio, C.; Biltoft-Jensen, A.; De Henauw, S.; Gibney, M.J.; Huybrechts, I.; McCarthy, S.N.; O’Neill, J.L.; Tetens, I.; Turrini, A.; Volatier, J.-L. Comparison of different nutrient profiling schemes to a new reference method using dietary surveys. Eur. J. Nutr. 2007, 46, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.; Labonté, M.-È.; Mulligan, C.; Ahmed, M.; Dickinson, K.M.; L’Abbé, M.R. Comparison of nutrient profiling models for assessing the nutritional quality of foods: A validation study. Br. J. Nutr. 2018, 120, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; McKeown, N.; Kissock, K.; Beck, E.; Mejborn, H.; Vieux, F.; Smith, J.; Masset, G.; Seal, C.J. Perspective: Why Whole Grains Should Be Incorporated into Nutrient-Profile Models to Better Capture Nutrient Density. Adv. Nutr. 2021, 12, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Toews, I.; Lohner, S.; Küllenberg de Gaudry, D.; Sommer, H.; Meerpohl, J.J. Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 2019, 364, k4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, M.C.; Louzada, M.L.; de Sá, T.H.; Laverty, A.A.; Parra, D.C.; Garzillo, J.M.F.; Monteiro, C.A.; Millett, C. Artificially Sweetened Beverages and the Response to the Global Obesity Crisis. PLoS Med. 2017, 14, e1002195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lott, M.; Callahan, E.; Welker Duffy, E.; Story, M.; Daniels, S. Healthy Beverage Consumption in Early Childhood: Recommendations from Key National Health and Nutrition Organizations. Consensus Statement; Healthy Eating Research: Dunham, NC, USA, 2019. [Google Scholar]
- Johnson, R.K.; Lichtenstein, A.H.; Anderson, C.A.M.; Carson, J.A.; Després, J.P.; Hu, F.B.; Kris-Etherton, P.M.; Otten, J.J.; Towfighi, A.; Wylie-Rosett, J. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation 2018, 138, e126–e140. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015; pp. 1–59. ISBN 9789241549028.
- Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Tolerable upper intake level for dietary sugars. EFSA J. 2022, 20, e07074. [Google Scholar] [CrossRef] [PubMed]
- Karanja, N.M.; Obarzanek, E.; Lin, P.-H.; McCullough, M.L.; Phillips, K.M.; Swain, J.F.; Champagne, C.M.; Hoben, K.P. Descriptive Characteristics of the Dietary Patterns Used in the Dietary Approaches to Stop Hypertension Trial. J. Am. Diet. Assoc. 1999, 99, S19–S27. [Google Scholar] [CrossRef]
- NHLBI (National Heart Lung and Blood Institute). DASH Eating Plan. Following the Dash Eating Plan. Available online: https://www.nhlbi.nih.gov/education/dash-eating-plan (accessed on 7 July 2020).
- Eriksen, L.; Davidsen, M.; Jensen, H.A.R.; Ryd, J.T.; Strøbæk, L.; White, E.D.; Sørensen, J.; Juel, K. Sygdomsbyrden i Danmark—Risikofaktorer (The burden of Disease in Denmark—Risk Factors), 2nd ed.; Sundhedsstyrelsen: Copenhagen, Denmark, 2016; 362p, ISBN 9788771047998. [Google Scholar]
Final Classification | ||||
---|---|---|---|---|
Core Foods | EDNP Foods | Total | ||
Predicted classification | Core foods | 1180 | 74 | 1254 |
EDNP foods | 75 | 153 | 228 | |
Total | 1255 | 227 | 1482 | |
Sensitivity (%) | 94 | |||
Specificity (%) | 67 |
Final Classification | ||||
---|---|---|---|---|
Core Drinks | EDNP Drinks | Total | ||
Predicted classification | Core drinks | 78 | 22 | 100 |
EDNP drinks | 2 | 59 | 61 | |
Total | 80 | 81 | 161 | |
Sensitivity (%) | 97 | |||
Specificity (%) | 73 |
4–6 Year (n = 203) | 7–9 Year (n = 218) | 10–13 Year (n = 269) | Males 14–60 Year (n = 1206) | Females 14–60 Year (n = 1289) | 61–75 Year (n = 761) | |
---|---|---|---|---|---|---|
Unprocessed red meat, g/week | 185 | 225 | 350 | 350 | 350 | 350 |
Processed red meat, g/week | 0 | 0 | 0 | 0 | 0 | 0 |
Fish, g/week | 210 | 250 | 350 | 350 | 350 | 350 |
Fatty fish, g/week | 120 | 140 | 200 | 200 | 200 | 200 |
Lean fish, g/week | 90 | 110 | 150 | 150 | 150 | 150 |
Vegetables, g/day | 200 | 250 | 300 | 300 | 300 | 300 |
Vegetables coarse, g/day | 100 | 125 | 150 | 150 | 150 | 150 |
Vegetables fine, g/day | 100 | 125 | 150 | 150 | 150 | 150 |
Fruit, g/day | 200 | 250 | 300 | 300 | 300 | 300 |
Fruit juice max., g/day | 65 | 80 | 100 | 100 | 100 | 100 |
Whole grain, g/day | 45 | 53 | 68 | 88 | 71 | 67 |
Milk and dairy products, g/day | 250 | 250 | 250 | 250 | 250 | 250 |
Cheese, g/day | 10 | 15 | 17 | 30 | 25 | 20 |
Nuts, g/day | 20 | 20 | 30 | 30 | 30 | 30 |
Age and Sex Groups | 4–6 Year (n = 208) | 7–9 Year (n = 218) | 10–13 Year (n = 269) | Males 14–60 Year (n = 1206) | Females 14–60 Year (n = 1289) | 61–75 Year (n= 761) |
---|---|---|---|---|---|---|
PAL (moderate physical activity level) | 1.57 | 1.57 | 1.73 | 1.73/1.60 * | 1.73/1.60 * | 1.60 |
Energy requirement (MJ/day) | 6.0 | 7.1 | 9.1 | 11.7 | 9.4 | 8.9 |
Energy content in the recommended diets (MJ/day) | 5.8 | 6.8 | 8.5 | 11.0 | 8.9 | 8.5 |
Discretionary energy after robustness test (MJ/week) | 1.6 | 2.3 | 3.8 | 5.0 | 3.5 | 2.6 |
Percent discretionary energy of the energy requirements (%) | 4 | 5 | 6 | 6 | 5 | 4 |
Portion size (kJ) | 450 | 450 | 450 | 700 | 700 | 450 |
Max. number of weekly portions | 4 | 5 | 8 ** | 7 | 5 | 6 |
Max. amount of weekly sweet drinks *** (cl/week) | 25 | 33 | 50 | 50 | 50 | 33 |
Max. number of weekly alcoholic standard drinks **** | 0 | 0 | 0 | 11 (14–17 year = 0) | 7 (14–17 year = 0) | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biltoft-Jensen, A.; Matthiessen, J.; Hess Ygil, K.; Christensen, T. Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy. Nutrients 2022, 14, 1477. https://doi.org/10.3390/nu14071477
Biltoft-Jensen A, Matthiessen J, Hess Ygil K, Christensen T. Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy. Nutrients. 2022; 14(7):1477. https://doi.org/10.3390/nu14071477
Chicago/Turabian StyleBiltoft-Jensen, Anja, Jeppe Matthiessen, Karin Hess Ygil, and Tue Christensen. 2022. "Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy" Nutrients 14, no. 7: 1477. https://doi.org/10.3390/nu14071477
APA StyleBiltoft-Jensen, A., Matthiessen, J., Hess Ygil, K., & Christensen, T. (2022). Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy. Nutrients, 14(7), 1477. https://doi.org/10.3390/nu14071477