Association of Maternal Longitudinal Hemoglobin with Small for Gestational Age during Pregnancy: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Hb and Red Cell Indices
2.3. Neonatal Outcomes
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Physical Status the Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; Report of WHO Consultation; WHO: Geneva, Switzerland, 1995; Volume 854, pp. 1–452. [Google Scholar]
- Katz, J.; Lee, A.C.; Kozuki, N.; Lawn, J.E.; Cousens, S.; Blencowe, H.; Ezzati, M.; Bhutta, Z.A.; Marchant, T.; Willey, B.A.; et al. Mortality Risk in Preterm and Small-for-Gestational-Age Infants in Low-Income and Middle-Income Countries: A Pooled Country Analysis. Lancet 2013, 382, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Garcy, A.M. A Longitudinal Study of Cognitive and Educational Outcomes of Those Born Small for Gestational Age. Acta Paediatr. 2018, 107, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, R.S. Adult Functional Outcome of Those Born Small for Gestational Age: Twenty-Six-Year Follow-Up of the 1970 British Birth Cohort. Obstet. Gynecol. Surv. 2000, 55, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iniguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Sadler, L.; Belanger, K.; Saftlas, A.; Leaderer, B.; Hellenbrand, K.; McSharry, J.-E.; Bracken, M.B. Environmental Tobacco Smoke Exposure and Small-for-Gestational-Age Birth. Am. J. Epdidemiol. 1999, 150, 695–705. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.L.; Clifton, V.L.; Prentis, P.; Ewing, A.; Miller, Y.D.; Pelzer, E.S. Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants. Genes 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Ren, A.; Wang, J.; Ye, R.W.; Li, S.; Liu, J.M.; Li, Z. Low First-Trimester Hemoglobin and Low Birth Weight, Preterm Birth and Small for Gestational Age Newborns. Int. J. Gynecol. Obstet. 2007, 98, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Badfar, G.; Shohani, M.; Soleymani, A.; Azami, M. Maternal Anemia during Pregnancy and Small for Gestational Age: A Systematic Review and Meta-Analysis. J. Matern.-Fetal Neonatal Med. 2019, 32, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, K. High and Low Hemoglobin Levels during Pregnancy: Differential Risks for Preterm Birth and Small for Gestational Age. Obstet. Gynecol. 2000, 96, 741–748. [Google Scholar] [CrossRef]
- Koller, O. The Clinical Significance of Hemodilution during Pregnancy. Obstet. Gynecol. Surv. 1982, 37, 649. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. 2011. Available online: https://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 4 March 2022).
- Liu, Y.; Li, N.; An, H.; Li, Z.; Zhang, L.; Li, H.; Zhang, Y.; Ye, R. Impact of Gestational Hypertension and Preeclampsia on Low Birthweight and Small-for-gestational-age Infants in China: A Large Prospective Cohort Study. J. Clin. Hypertens. 2021, 23, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Oaks, B.M. U-Shaped Curve for Risk Associated with Maternal Hemoglobin, Iron Status, or Iron Supplementation. Am. J. Clin. Nutr. 2017, 106, 1694S–1702S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Zhang, R.; Zhang, S.; Shi, W.; Yan, Y.; Wang, X.; Lyu, Q.; Liu, L.; Zhou, Q.; Qiu, Q.; et al. Chinese neonatal birth weight curve for different gestational age. Chin. J. Pediatr. 2015, 53, 91–103. [Google Scholar]
- Ananth, C.V. Menstrual versus Clinical Estimate of Gestational Age Dating in the United States: Temporal Trends and Variability in Indices of Perinatal Outcomes. Paediatr. Perinat. Epidemiol. 2007, 21, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Cordina, M.; Bhatti, S.; Fernandez, M.; Syngelaki, A.; Nicolaides, K.H.; Kametas, N.A. Association between Maternal Haemoglobin at 27–29weeks Gestation and Intrauterine Growth Restriction. Pregnancy Hypertens. 2015, 5, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, R.; Eilers, P.H.C.; Yassine, S.; Hofman, A.; Steegers, E.A.P.; Jaddoe, V.W.V. Risk Factors and Consequences of Maternal Anaemia and Elevated Haemoglobin Levels during Pregnancy: A Population-Based Prospective Cohort Study: Haemoglobin Levels and Pregnancy Complications. Paediatr. Perinat. Epidemiol. 2014, 28, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Koller, O.; Sandvei, R.; Sagen, N. High Hemoglobin Levels During Pregnancy and Fetal Risk. Int. J. Gynecol. Obstet. 1980, 18, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Koller, O.; Sagen, N.; Ulstein, M.; Vaula, D. Fetal Growth Retardation Associated with Inadequate Haemodilution in Otherwise Uncomplicated Pregnancy. Acta Obstet. Gynecol. Scand 1979, 58, 9–13. [Google Scholar] [CrossRef]
- Steer, P.J. Maternal Hemoglobin Concentration and Birth Weight. Am. J. Clin. Nutr. 2000, 71, 1285S–1287S. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Lind, T. Red Cell Mass During And After Normal Pregnancy. Br. J. Obstet. Gynaecol. 1979, 86, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.A.; Hutton, E.; Brant, R.F.; Collet, J.P.; Gregg, K.; Saunders, R.; Ipsiroglu, O.; Gafni, A.; Triolet, K.; Tse, L.; et al. A Randomized Controlled Trial of an Intervention for Infants’ Behavioral Sleep Problems. BMC Pediatr. 2015, 15, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephansson, O. Maternal Hemoglobin Concentration During Pregnancy and Risk of Stillbirth. JAMA 2000, 284, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian, C.G.; Wilson, M.J.; Lopez, M.; Yamashiro, H.; Tellez, W.; Rodriguez, A.; Bigham, A.W.; Shriver, M.D.; Rodriguez, C.; Vargas, E.; et al. Augmented Uterine Artery Blood Flow and Oxygen Delivery Protect Andeans from Altitude-Associated Reductions in Fetal Growth. Am. J. Physiol.-Reg. I 2009, 296, R1564–R1575. [Google Scholar] [CrossRef] [Green Version]
- Huisman, A.; Aarnoudse, J.G. Increased 2Nd Trimester Hemoglobin Concentration in Pregnancies Later Complicated by Hypertension and Growth Retardation: Early Evidence of a Reduced Plasma Volume. Acta Obstet. Gynecol. Scand 1986, 65, 605–608. [Google Scholar] [CrossRef]
- Lu, Z.M.; Goldenberg, R.L.; Cliver, S.P.; Cutter, G.; Blankson, M. The Relationship Between Maternal Hematocrit and Pregnancy Outcome. Obstet. Gynecol. 1991, 77, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Buekens, P.; Fraser, W.D.; Guo, Z. Anemia during Pregnancy in a Chinese Population. Int. J. Gynecol. Obstet. 2003, 83, 159–164. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Krebs, N.F.; Cusick, S.E. The Benefits and Risks of Iron Supplementation in Pregnancy and Childhood. Annu. Rev. Nutr. 2019, 39, 121–146. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 3233) |
---|---|
Maternal characteristics | |
Age (year) | 28.3 ± 3.3 |
Height (cm) | 160.4 ± 5.0 |
Pre-pregnancy weight (kg) | 53.5 ± 7.4 |
Pre-pregnancy BMI (kg/m2) | 20.8 ± 2.7 |
Educational level | |
≤12 years | 380 (11.8) |
13–15 years | 789 (24.4) |
≥16 years | 1966 (60.8) |
Unclear | 98 (3.0) |
Average personal income | |
≤4999 CNY | 1149 (35.5) |
5000–9999 CNY | 1367 (42.3) |
≥10,000 CNY | 666 (20.6) |
Unclear | 51 (1.6) |
Ethnicity (Han Chinese) | 3151 (97.5) |
Primipara | 2735 (84.6) |
Active or passive smoking (yes) | 101 (3.1) |
Alcohol consumption (yes) | 54 (1.8) |
Iron supplement (yes) | 1747 (54.0) |
Gestational weight gain (kg) | 16.0 ± 4.5 |
GHD (yes) | 176 (5.4) |
Infant characteristics | |
Gestational age (wk) | 39.3 ± 1.4 |
Cesarean delivery | 1315 (40.7) |
Male | 1753 (54.2) |
Birth weight (g) | 3343 ± 434 |
Length (cm) | 50.2 ± 1.4 |
SGA n (%) | 208 (6.4) |
Characteristics | Mid-Pregnancy | Late Pregnancy | p Value |
---|---|---|---|
Gestational age at measurement (average, week) | 19.5 ± 4.0 | 34.7 ± 3.8 | |
Hb (g/L) | 116.7 ± 8.9 | 116.2 ± 11.6 | 0.034 |
Anemia | 624 (19.3) | 895 (27.7) | <0.001 |
Red blood cell count (×1012/L) | 3.8 ± 0.4 | 3.9 ± 0.4 | <0.001 |
Hct (L/L) | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.818 |
MCV (fl) | 91.5 ± 5.0 | 92.8 ± 5.9 | <0.001 |
MCH (pg) | 30.4 ± 1.9 | 29.9 ± 2.3 | <0.001 |
MCHC (g/L) | 332.4 ± 11.4 | 321.9 ± 12.9 | <0.001 |
RDW (%) | 37.0 ± 12.9 | 35.7 ± 14.5 | <0.001 |
Hb Concentrations (g/L) | n | SGA | Model 1 † | Model 2 ‡ | Model 3 § |
---|---|---|---|---|---|
[n (%)] | RR (95% CI) | aRR (95% CI) | aRR (95% CI) | ||
Middle stage of pregnancy | |||||
≥130 | 234 | 17 (7.3) | 1.13 (0.68, 1.86) | 1.30 (0.79, 2.15) | 1.30 (0.79, 2.15) |
120–129 | 997 | 64 (6.4) | 0.99 (0.73, 1.36) | 1.05 (0.77, 1.42) | 1.05 (0.77, 1.42) |
110–119 | 1378 | 89 (6.5) | Reference | Reference | Reference |
<110 | 624 | 38 (6.1) | 0.94 (0.65, 1.36) | 0.86 (0.60, 1.23) | 0.86 (0.60, 1.23) |
Late stage of pregnancy | |||||
≥130 | 396 | 45 (11.4) | 1.96 (1.36, 2.81) * | 2.19 (1.52, 3.15) * | 2.16 (1.49, 3.13) * |
120–129 | 842 | 59 (7.0) | 1.21 (0.86, 1.70) | 1.20 (0.85, 1.68) | 1.19 (0.85, 1.68) |
110–119 | 1100 | 64 (5.8) | Reference | Reference | Reference |
<110 | 895 | 40 (4.5) | 0.77 (0.52, 1.13) | 0.70 (0.48, 1.03) | 0.70 (0.48, 1.03) |
n | Hb-Middle | Hb-Late | Iron Supplement | SGA | Adjusted Model † | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | [n (%)] | [n (%)] | Adjusted RR (95% CI) | ||
Hb-late < 130 | ||||||
Hb change < −6.0 g/L | 930 | 120.3 ± 7.8 | 107.0 ± 8.9 | 464 (49.9) | 33 (3.6) | 0.56 (0.37, 0.85) * |
Hb change −6.0~1.9 g/L | 901 | 116.7 ± 7.7 | 114.2 ± 7.8 | 479 (53.2) | 60 (6.7) | Reference |
Hb change ≥ 2.0 g/L | 1006 | 110.9 ± 7.6 | 118.8 ± 7.3 | 552 (54.9) | 70 (7.0) | 1.08 (0.77, 1.50) |
Hb-late ≥ 130 | ||||||
Hb change < 8 g/L | 121 | 130.4 ± 4.8 | 133.2 ± 2.6 | 73 (60.3) | 11 (9.1) | 0.75 (0.35, 1.59) |
Hb change 8~15.9 g/L | 140 | 123.2 ± 4.6 | 134.8 ± 4.2 | 93 (66.4) | 17 (12.1) | Reference |
Hb change ≥ 16 g/L | 135 | 116.4 ± 6.6 | 139.0 ± 7.9 | 86 (63.7) | 17 (12.6) | 0.88 (0.47, 1.63) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wang, W.; Li, Q.; Huang, L.; Chen, X.; Zhang, X.; Wang, X.; Han, W.; Hu, X.; Yang, X.; et al. Association of Maternal Longitudinal Hemoglobin with Small for Gestational Age during Pregnancy: A Prospective Cohort Study. Nutrients 2022, 14, 1403. https://doi.org/10.3390/nu14071403
Xu S, Wang W, Li Q, Huang L, Chen X, Zhang X, Wang X, Han W, Hu X, Yang X, et al. Association of Maternal Longitudinal Hemoglobin with Small for Gestational Age during Pregnancy: A Prospective Cohort Study. Nutrients. 2022; 14(7):1403. https://doi.org/10.3390/nu14071403
Chicago/Turabian StyleXu, Shangzhi, Weiming Wang, Qian Li, Li Huang, Xi Chen, Xu Zhang, Xiaoyi Wang, Weizhen Han, Xingwen Hu, Xuefeng Yang, and et al. 2022. "Association of Maternal Longitudinal Hemoglobin with Small for Gestational Age during Pregnancy: A Prospective Cohort Study" Nutrients 14, no. 7: 1403. https://doi.org/10.3390/nu14071403
APA StyleXu, S., Wang, W., Li, Q., Huang, L., Chen, X., Zhang, X., Wang, X., Han, W., Hu, X., Yang, X., Hao, L., Xiong, G., & Yang, N. (2022). Association of Maternal Longitudinal Hemoglobin with Small for Gestational Age during Pregnancy: A Prospective Cohort Study. Nutrients, 14(7), 1403. https://doi.org/10.3390/nu14071403