Zinc Deficiency Interacts with Intestinal/Urogenital Parasites in the Pathway to Anemia in Preschool Children, Bengo–Angola
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Sample Collection
2.3. Statistical Analysis
2.4. Estimation of Mediation
2.5. Estimation of Interaction
3. Results and Discussion
3.1. Could Zinc Levels and Infections Be Contributing Jointly to Anemia?
3.2. Could Zinc Levels and Inflammation Be Contributing Jointly to Anemia?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehl-Fie, T.E.; Skaar, E.P. Nutritional immunity beyond iron: A role for manganese and zinc. Curr. Opin. Chem. Biol. 2010, 14, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, M.I.; Skaar, E.P. Nutritional immunity: Transition metals at the pathogen–host interface. Nat. Rev. Genet. 2012, 10, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.Z.; Rink, L. Zinc and the Immune System. In Nutrition and Immunity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 127–158. [Google Scholar] [CrossRef]
- Long, K.Z.; Rosado, J.L.; Montoya, Y.; Solano, M.D.L.; Hertzmark, E.; Dupont, H.L.; Santos, J.I. Effect of Vitamin A and Zinc Supplementation on Gastrointestinal Parasitic Infections among Mexican Children. Pediatrics 2007, 120, e846–e855. [Google Scholar] [CrossRef]
- Gläser, R.; Harder, J.; Lange, H.; Bartels, J.; Christophers, E.; Schröder, J.-M. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 2004, 6, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Corbin, B.D.; Seeley, E.H.; Raab, A.; Feldmann, J.; Miller, M.R.; Torres, V.J.; Anderson, K.L.; Dattilo, B.M.; Dunman, P.M.; Gerads, R.; et al. Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses. Science 2008, 319, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, K.S.; Figueroa, J.A.L.; Porollo, A.; Caruso, J.A.; Deepe, G.S. Granulocyte Macrophage-Colony Stimulating Factor Induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival. Immunity 2013, 39, 697–710. [Google Scholar] [CrossRef] [Green Version]
- Botella, H.; Stadthagen, G.; Lugo, G.; de Chastellier, C.; Neyrolles, O. Metallobiology of host–pathogen interactions: An intoxicating new insight. Trends Microbiol. 2012, 20, 106–112. [Google Scholar] [CrossRef]
- Allen, J.; Maizels, R.M. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 2011, 11, 375–388. [Google Scholar] [CrossRef]
- Zhu, J.; Min, B.; Hu-Li, J.; Watson, C.J.; Grinberg, A.; Wang, Q.; Killeen, N.; Urban, J.F., Jr.; Guo, L.; Paul, W.E. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 2004, 5, 1157–1165. [Google Scholar] [CrossRef]
- Urban, J.; Noben-Trauth, N.; Donaldson, D.D.; Madden, K.B.; Morris, S.C.; Collins, M.; Finkelman, F.D. IL-13, IL-4Rα, and Stat6 Are Required for the Expulsion of the Gastrointestinal Nematode Parasite Nippostrongylus brasiliensis. Immunity 1998, 8, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Hennigar, S.R.; McClung, J.P. Nutritional Immunity. Am. J. Lifestyle Med. 2016, 10, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Astiazarán-García, H.; Iñigo-Figueroa, G.; Quihui-Cota, L.; Anduro-Corona, I. Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients 2015, 7, 4438–4452. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.E.; Koski, K.G. Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systemic sites. J. Nutr. 2000, 130, 1412S–1420S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knez, M.; Graham, R.D.; Welch, R.M.; Stangoulis, J.C.R. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Crit. Rev. Food Sci. Nutr. 2015, 57, 2128–2143. [Google Scholar] [CrossRef]
- Eide, D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc Homeostasis in Humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef] [Green Version]
- King, J.C. Yet Again, Serum Zinc Concentrations Are Unrelated to Zinc Intakes. J. Nutr. 2018, 148, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Pullan, R.; Brooker, S. The health impact of polyparasitism in humans: Are we under-estimating the burden of parasitic diseases? Parasitology 2008, 135, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, S.-R.; Vijaykumar, V.; Prashanth, N.; Sudarshan, H.; Biggs, B.-A.; Black, J.; Shet, A. A community based field research project investigating anaemia amongst young children living in rural Karnataka, India: A cross sectional study. BMC Public Health 2009, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Wapnir, R.A. Zinc Deficiency, Malnutrition and the Gastrointestinal Tract. J. Nutr. 2000, 130, 1388S–1392S. [Google Scholar] [CrossRef]
- DaCal, E.; Saugar, J.M.; De Lucio, A.; Hernández-De-Mingo, M.; Robinson, E.; Köster, P.C.; Aznar-Ruiz-De-Alegría, M.L.; Espasa, M.; Ninda, A.; Gandasegui, J.; et al. Prevalence and molecular characterization of Strongyloides stercoralis, Giardia duodenalis, Cryptosporidium spp., and Blastocystis spp. isolates in school children in Cubal, Western Angola. Parasites Vectors 2018, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, C.P. Host-Pathogen Interactions: The Role of Iron. J. Nutr. 2007, 137, 1341–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Nutritional Anaemias: Tools for Effective Prevention and Control; World Health Organization: Geneva, Switzerland, 2017.
- Fançony, C.; Soares, Â.; Lavinha, J.; Barros, H.; Brito, M. Effectiveness of Nutrition and WASH/malaria educational community-based interventions in reducing anemia in children from Angola. Sci. Rep. 2021, 11, 5603. [Google Scholar] [CrossRef]
- Fançony, C.; Soares, Â.; Lavinha, J.; Barros, H.; Brito, M. Efficacy of Nutrition and WASH/Malaria Educational Community-Based Interventions in Reducing Anemia in Preschool Children from Bengo, Angola: Study Protocol of a Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosário, E.V.N.; Costa, D.; Francisco, D.; Brito, M. HDSS Profile: The Dande Health and Demographic Surveillance System (Dande HDSS, Angola). Int. J. Epidemiol. 2017, 46, 1094–1094g. [Google Scholar] [CrossRef]
- Costa, J.; Rosário, E.; Langa, A.; António, G.; Bendriss, A.; Vaz-Nery, S. Setting up a Demographic Surveillance System in the Dande Municipality, Angola. Afr. Popul. Studies. 2012, 26, 133–146. [Google Scholar]
- WHO. Basic Laboratory Methods in Medical Parasitology; WHO: Geneva, Switzerland, 1991.
- Mendoza, N.M.; Cucunubá, Z.; Aponte, S.; Gonzalez, N.E.; Bernal, S.D. Evaluación de campo de la precisión diagnóstica de la prueba de diagnóstico rápido SD Bioline Malaria Antigen Pf/Pv® en Colombia. Biomédica 2013, 33, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Katz, N.; Chaves, A.; Pellegrino, J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev. Inst. Med. Trop. São Paulo 1972, 14, 397–400. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Mackinnon, D.P.; Dwyer, J.H. Estimating Mediated Effects in Prevention Studies. Eval. Rev. 1993, 17, 144–158. [Google Scholar] [CrossRef]
- Knol, M.J.; Van Der Tweel, I.; Grobbee, D.E.; Numans, M.E.; Geerlings, M.I. Estimating interaction on an additive scale between continuous determinants in a logistic regression model. Int. J. Epidemiol. 2007, 36, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa-Figueiredo, J.C.; Gamboa, D.; Pedro, J.; Fançony, C.; Langa, A.J.; Magalhaes, R.S.; Stothard, R.; Nery, S.V. Epidemiology of Malaria, Schistosomiasis, Geohelminths, Anemia and Malnutrition in the Context of a Demographic Surveillance System in Northern Angola. PLoS ONE 2012, 7, e33189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelkitli, E.; Ozturk, N.; Aslan, N.A.; Kilic-Baygutalp, N.; Bayraktutan, Z.; Kurt, N.; Bakan, N.; Bakan, E. Serum zinc levels in patients with iron deficiency anemia and its association with symptoms of iron deficiency anemia. Ann. Hematol. 2016, 95, 751–756. [Google Scholar] [CrossRef]
- Atasoy, H.I.; Buğdayci, G. Zinc deficiency and its predictive capacity for anemia: Unique model in school children. Pediatr. Int. 2018, 60, 703–709. [Google Scholar] [CrossRef]
- Houghton, L.A.; Parnell, W.R.; Thomson, C.D.; Green, T.J.; Gibson, R.S. Serum Zinc Is a Major Predictor of Anemia and Mediates the Effect of Selenium on Hemoglobin in School-Aged Children in a Nationally Representative Survey in New Zealand. J. Nutr. 2016, 146, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, V.; Pullakhandam, R.; Nair, K.M. Coordinate expression and localization of iron and zinc transporters explain iron–zinc interactions during uptake in Caco-2 cells: Implications for iron uptake at the enterocyte. J. Nutr. Biochem. 2012, 23, 1146–1154. [Google Scholar] [CrossRef]
- Walker, C.F.; Kordas, K.; Stoltzfus, R.J.; Black, R.E. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am. J. Clin. Nutr. 2005, 82, 5–12. [Google Scholar] [CrossRef]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Hester, J.; Hanna-Rose, W.; Diaz, F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 191, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C.; Tang, M.S.; Easton, A.V.; Devlin, J.C.; Chua, L.L.; Cho, I.; Moy, F.M.; Khang, T.F.; Lim, Y.A.L.; Loke, P. Linking the effects of helminth infection, diet and the gut microbiota with human whole-blood signatures. PLoS Pathog. 2019, 15, e1008066. [Google Scholar] [CrossRef] [PubMed]
- Harnett, W.; Harnett, M.M. Helminth-derived immunomodulators: Can understanding the worm produce the pill? Nat. Rev. Immunol. 2010, 10, 278–284. [Google Scholar] [CrossRef]
- Popovic, A.; Bourdon, C.; Wang, P.W.; Guttman, D.S.; Soofi, S.; Bhutta, Z.A.; Bandsma, R.H.J.; Parkinson, J.; Pell, L.G. Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut. Nat. Commun. 2021, 12, 6729. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Forbes, D.A.; Cook, A.G.; Sanfilippo, F.M.; Kemna, E.H.; Swinkels, D.W.; Burgner, D.P. An Insight into the Relationships between Hepcidin, Anemia, Infections and Inflammatory Cytokines in Pediatric Refugees: A Cross-Sectional Study. PLoS ONE 2008, 3, e4030. [Google Scholar] [CrossRef] [Green Version]
- Liuzzi, J.P.; Lichten, L.A.; Rivera, S.; Blanchard, R.K.; Aydemir, T.B.; Knutson, M.D.; Ganz, T.; Cousins, R.J. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 2005, 102, 6843–6848. [Google Scholar] [CrossRef] [Green Version]
- Foote, E.M.; Sullivan, K.M.; Ruth, L.J.; Oremo, J.; Sadumah, I.; Williams, T.N.; Suchdev, P.S. Determinants of anemia among preschool children in rural, western Kenya. Am. J. Trop. Med. Hyg. 2013, 88, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Fancony, C.; Soares, A.; Lavinha, J.; Barros, H.; Brito, M. Iron deficiency anaemia among 6-to-36-month children from northern Angola. BMC Pediatr 2020, 20, 298. [Google Scholar] [CrossRef]
Models | Effect Being Tested | |
---|---|---|
Does inflammation (or malarial inflammation) mediate the effect of zinc deficiency in anemia? | ||
Model 1: Bivariate regression | Anemia = B0 + B1 zinc deficiency + e1 | Direct effect of zinc deficiency on anemia |
Model 2: Bivariate regression | Inflammation = B0 + B2 zinc deficiency + e2 | Direct effect of zinc deficiency on inflammation |
Model 3: Multiple regression | Anemia = B0 + B3 zinc deficiency + B2 inflammation + e3 | Joint effect of zinc deficiency and inflammation on anemia |
Does having at least one intestinal/urogenital parasite mediate the effect of zinc deficiency in anemia? | ||
Model 4: Bivariate regression | Anemia = B0 + B1 zinc deficiency + e1 | Direct effect of zinc deficiency on anemia |
Model 5: Bivariate regression | Having at least one intestinal/urogenital = B0 + B2 zinc deficiency + e2 | Direct effect of zinc deficiency on having at least one intestinal/urogenital |
Model 6: Multiple regression | Anemia = B0 + B3 zinc deficiency + B2 having at least one intestinal/urogenital + e3 | Joint effect of zinc deficiency and having at least one intestinal/urogenital on anemia |
Models | Effect Being Tested | |
---|---|---|
Does zinc deficiency interact with inflammation to cause anemia? | ||
Model 7: Bivariate regression | Anemia = B0 + B1 zinc deficiency + e1 | Direct effect of zinc deficiency on anemia |
Model 8: Bivariate regression | Anemia = B0 + B2 inflammation + e2 | Direct effect of inflammation on anemia |
Model 9: Multiple regression | Anemia = B0 + B3 zinc deficiency + B2 Inflammation (or malarial inflammation) + B3 zinc deficiency * Inflammation (or malarial inflammation) + e3 | Joint effect of zinc deficiency and inflammation on anemia |
Does zinc deficiency interact with having at least one intestinal/urogenital parasite to cause anemia? | ||
Model 10: Bivariate regression | Anemia = B0 + B1 zinc deficiency + e1 | Direct effect of zinc deficiency on anemia |
Model 11: Bivariate regression | Anemia = B0 + B2 having at least one intestinal/urogenital parasite + e2 | Direct effect of having at least one intestinal/urogenital parasite on anemia |
Model 12: Multiple regression | Anemia = B0 + B3 zinc deficiency + B2 having at least one intestinal/urogenital parasite + B3 zinc deficiency having at least one intestinal/urogenital parasite + e3 | Joint effect of zinc deficiency and having at least one intestinal/urogenital on anemia |
Total Population | Frequency among Zinc Level Groups | Association with Zinc Levels * | |||||||
---|---|---|---|---|---|---|---|---|---|
Normal | Low | High | Normal | Low | High | ||||
% (n/N) | % (n/N) | % (n/N) | % (n/N) | OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Anemia | |||||||||
No | 54.1 (460/851) | 53.5 (336/628) | 36.2 (21/58) | 62.4 (103/165) | Ref | Ref | Ref | Ref | Ref |
Yes | 45.9 (391/851) | 46.5 (292/628) | 63.8 (37/58) | 37.6 (62/165) | 2.0 (1.2–3.5) | 0.013 | 0.7 (0.5–1) | 0.041 | |
P. falciparum | |||||||||
No | 94.7 (805/850) | 93.3 (585/627) | 98.3 (57/58) | 98.8 (163/165) | Ref | Ref | Ref | Ref | Ref |
Yes | 5.3 (45/850) | 6.7 (42/627) | 1.7 (1/58) | 1.2 (2/165) | 0.2 (0–1.8) | 0.168 | 0.2 (0–0.7) | 0.015 | |
At least one intestinal or urogenital parasite | |||||||||
No | 83.5 (628/752) | 85.3 (464/544) | 78.4 (40/58) | 82.7 (124/150) | Ref | Ref | Ref | Ref | Ref |
Yes | 15.6 (117/752) | 14.7 (80/544) | 21.6 (11/58) | 17.3 (26/150) | 1.6 (0.8–3.2) | 0.196 | 1.2 (0.7–2) | 0.429 | |
Inflammation | |||||||||
No | 54.8 (463/845) | 55.1 (343/623) | 41.4 (24/58) | 58.5 (96/164) | Ref | Ref | Ref | Ref | Ref |
Malarial ** | 3.3 (28/845) | 4.0 (25/623) | 56.9 (33/58) | 1.2 (2/164) | 0.6 (0.07–4.4) | 0.591 | 0.3 (0.07–1.2) | 0.092 | |
Non-malarial *** | 41.9 (354/845) | 40.9 (255/623) | 1.7 (1/58) | 40.2 (66/164) | 1.9 (1.1–3.2) | 0.028 | 0.9 (0.7–1.3) | 0.664 | |
Diarrhea | |||||||||
No | 59 (497/843) | 59.5 (370/622) | 71.9 (41/57) | 52.4 (86/164) | Ref | Ref | Ref | Ref | Ref |
Yes | 41 (346/843) | 40.5 (252/622) | 28.1 (16/57) | 47.6 (78/164) | 0.6 (0.3–1) | 0.069 | 1.3 (0.9–1.9) | 0.104 |
Model_Effect | Independent Variables | Dependent Variable | OR (IC95%) | p-Value |
---|---|---|---|---|
Does inflammation (or malarial inflammation) mediate the effect of zinc deficiency on anemia? | ||||
1_Med. | Zinc deficiency | Anemia | 2.03 (1.16, 3.54) | 0.013 |
2_Med. | Zinc deficiency | Inflammation | 1.70 (0.99, 2.94) | 0.055 |
3_Med. | Zinc deficiency | Anemia | 1.93 (1.10, 3.38) | 0.022 * |
Inflammation | 1.57 (1.16, 2.12) | 0.004 | ||
Does having at least one intestinal/urogenital parasite mediate the effect of zinc deficiency on anemia? | ||||
4_Med. | Zinc deficiency | Anemia | 2.30 (1.26, 4.22) | 0.007 |
5_Med. | Zinc deficiency | Having at least one parasite # | 1.60 (0.79, 3.24) | 0.196 |
6_Med. | Zinc deficiency | Anemia | 2.39 (1.30, 4.40) | 0.005 * |
Having at least one parasite # | 0.63 (0.40, 1.00) | 0.051 | ||
Does zinc deficiency interact with inflammation to cause anemia? | ||||
7_Int. | Zinc deficiency | Anemia | 1.38 (0.60, 3.16) | 0.444 |
8_Int. | Inflammation | Anemia | 1.49 (1.09, 2.05) | 0.013 |
9_Int. | Zinc deficiency * Inflammation | Anemia | 1.86 (0.59, 5.87) | 0.290 |
Does zinc deficiency interact with having at least one intestinal/urogenital parasite to cause anemia? | ||||
10_Int. | Zinc deficiency | Anemia | 1.57 (0.81, 3.02) | 0.182 |
11_Int. | Having at least one parasite # | Anemia | 0.50 (0.30, 0.83) | 0.007 |
12_Int. | Zinc deficiency * Having at least one parasite # | Anemia | 13.26 (1.46, 120.72) | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fançony, C.; Soares, Â.; Lavinha, J.; Brito, M. Zinc Deficiency Interacts with Intestinal/Urogenital Parasites in the Pathway to Anemia in Preschool Children, Bengo–Angola. Nutrients 2022, 14, 1392. https://doi.org/10.3390/nu14071392
Fançony C, Soares Â, Lavinha J, Brito M. Zinc Deficiency Interacts with Intestinal/Urogenital Parasites in the Pathway to Anemia in Preschool Children, Bengo–Angola. Nutrients. 2022; 14(7):1392. https://doi.org/10.3390/nu14071392
Chicago/Turabian StyleFançony, Cláudia, Ânia Soares, João Lavinha, and Miguel Brito. 2022. "Zinc Deficiency Interacts with Intestinal/Urogenital Parasites in the Pathway to Anemia in Preschool Children, Bengo–Angola" Nutrients 14, no. 7: 1392. https://doi.org/10.3390/nu14071392
APA StyleFançony, C., Soares, Â., Lavinha, J., & Brito, M. (2022). Zinc Deficiency Interacts with Intestinal/Urogenital Parasites in the Pathway to Anemia in Preschool Children, Bengo–Angola. Nutrients, 14(7), 1392. https://doi.org/10.3390/nu14071392