The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Participants and Sample Size
2.4. Outcome Measures and Data Collection
2.5. Biochemical Parameters
2.6. Anthropometric Measurements
2.7. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 16 July 2021).
- Bliss, E.S.; Whiteside, E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front. Physiol. 2018, 9, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, O.R.; Gribble, F.M.; Reimann, F.; Lewis, J.E. Gut peptide regulation of food intake–evidence for the modulation of hedonic feeding. J. Physiol. 2021, 600, 1053–1078. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Cani, P.D. Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocr. Dev. 2017, 32, 139–164. [Google Scholar] [CrossRef]
- Martin, A.; Sun, E.W.-L.; Keating, D.J. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J. Endocrinol. 2020, 244, R1–R15. [Google Scholar] [CrossRef] [Green Version]
- Federico, A.; Dallio, M.; Tolone, S.; Gravina, A.G.; Patrone, V.; Romano, M.; Tuccillo, C.; Mozzillo, A.L.; Amoroso, V.; Misso, G.; et al. Gastrointestinal Hormones, Intestinal Microbiota and Metabolic Homeostasis in Obese Patients: Effect of Bariatric Surgery. In Vivo 2016, 30, 321–330. [Google Scholar]
- Saltiel, A.R. New therapeutic approaches for the treatment of obesity. Sci. Transl. Med. 2016, 8, 323rv2. [Google Scholar] [CrossRef]
- Lean, M.; Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence? Int. J. Obes. 2016, 40, 622–632. [Google Scholar] [CrossRef] [Green Version]
- Farhadipour, M.; Depoortere, I. The Function of Gastrointestinal Hormones in Obesity—Implications for the Regulation of Energy Intake. Nutrients 2021, 13, 1839. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Dalamaga, M.; Kokkinos, A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr. Obes. Rep. 2020, 9, 255–271. [Google Scholar] [CrossRef]
- Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients 2019, 11, 2704. [Google Scholar] [CrossRef] [Green Version]
- Barazzoni, R.; Cappellari, G.G.; Ragni, M.; Nisoli, E. Insulin resistance in obesity: An overview of fundamental alterations. Eat. Weight Disord. 2018, 23, 149–157. [Google Scholar] [CrossRef]
- Alhabeeb, H.; AlFaiz, A.; Kutbi, E.; AlShahrani, D.; Alsuhail, A.; AlRajhi, S.; Alotaibi, N.; Alotaibi, K.; AlAmri, S.; Alghamdi, S.; et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021, 13, 481. [Google Scholar] [CrossRef]
- Covasa, M.; Stephens, R.W.; Toderean, R.; Cobuz, C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front. Endocrinol. 2019, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Makaronidis, J.M.; Batterham, R.L. The role of gut hormones in the pathogenesis and management of obesity. Curr. Opin. Physiol. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Alexiadou, K.; Anyiam, O.; Tan, T. Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J. Neuroendocr. 2018, 31, e12664. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Singh, S.N. Regulation of Food Intake: A Complex Process. Def. Life Sci. J. 2018, 3, 182–189. [Google Scholar] [CrossRef]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N.; Ghrelin, C.C.K. GLP-1, and PYY (3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. United Arab Emirates-Diabetes Country Profiles. 2016. Available online: https://www.who.int/diabetes/country-profiles/are_en.pdf (accessed on 7 February 2022).
- The Association Between Gut Peptides and Markers of Obesity and Insulin Resistance in Lean and Obese Individuals in the United Arab Emirates [Internet]. 2022. Available online: https://data.mendeley.com/datasets/w297t54m98/1 (accessed on 7 February 2022).
- Brant, R. Inference for Means: Comparing Two Independent Samples. Web-Based Sample Size Calculators. Available online: https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html (accessed on 7 February 2022).
- Damms-Machado, A.; Mitra, S.; Schollenberger, A.E.; Kramer, K.M.; Meile, T.; Königsrainer, A.; Huson, D.H.; Bischoff, S.C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. BioMed Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Esteghamati, A.; Ashraf, H.; Esteghamati, A.-R.; Meysamie, A.; Khalilzadeh, O.; Nakhjavani, M.; Abbasi, M. Optimal threshold of homeostasis model assessment for insulin resistance in an Iranian population: The implication of metabolic syndrome to detect insulin resistance. Diabetes Res. Clin. Pract. 2009, 84, 279–287. [Google Scholar] [CrossRef]
- Van der Kooy, K.; Seidell, J.C. Techniques for the measurement of visceral fat: A practical guide. Int. J. Obesity. 1993, 17, 187–196. [Google Scholar]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Gibson, S.; Ashwell, M. A simple cut-off for waist-to-height ratio (0·5) can act as an indicator for cardiometabolic risk: Recent data from adults in the Health Survey for England. Br. J. Nutr. 2019, 123, 681–690. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Thomas, R.; Collazo-Clavell, M.L.; Korinek, J.; Allison, T.G.; A Batsis, J.; Kuniyoshi, F.S.; Lopez-Jimenez, F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 2008, 32, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Sulaiman, N.; Elbadawi, S.; Hussein, A.; Abusnana, S.; Madani, A.; Mairghani, M.; Alawadi, F.; Sulaiman, A.; Zimmet, P.; Huse, O.; et al. Prevalence of overweight and obesity in United Arab Emirates Expatriates: The UAE National Diabetes and Lifestyle Study. Diabetol. Metab. Syndr. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Neary, M.T.; Batterham, R.L. Gut hormones: Implications for the treatment of obesity. Pharmacol. Ther. 2009, 124, 44–56. [Google Scholar] [CrossRef]
- Pucci, A.; Batterham, R.L. Endocrinology of the Gut and the Regulation of Body Weight and Metabolism. In Endotext 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556470/ (accessed on 7 February 2022).
- Fittipaldi, A.S.; Hernandez, J.; Castrogiovanni, D.; Lufrano, D.; De Francesco, P.N.; Garrido, V.; Vitaux, P.; Fasano, M.V.; Fehrentz, J.-A.; Fernández, A.; et al. Plasma levels of ghrelin, des-acyl ghrelin and LEAP2 in children with obesity: Correlation with age and insulin resistance. Eur. J. Endocrinol. 2020, 182, 165–175. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2011, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Behboudi-Gandevani, S.; Ramezani Tehrani, F.; Cheraghi, L.; Azizi, F. Could “a body shape index” and “waist to height ratio” predict insulin resistance and metabolic syndrome in polycystic ovary syndrome? Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 205, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.; Jebasingh, F.; Philip, D.M.; Kurian, M.E.; Mohan, V.; Finney, G.; Thomas, N. The waist-height ratio is a potential anthropometric index of insulin resistance: Observations based on oral glucose tolerance test in lean, normo-glycaemic, Asian Indian males from Southern India. Clin. Epidemiol. Glob. Health 2021, 11, 100762. [Google Scholar] [CrossRef]
- Bowen, J.; Noakes, M.; Clifton, P.M. Appetite Regulatory Hormone Responses to Various Dietary Proteins Differ by Body Mass Index Status Despite Similar Reductions in ad Libitum Energy Intake. J. Clin. Endocrinol. Metab. 2006, 91, 2913–2919. [Google Scholar] [CrossRef] [Green Version]
- Stinson, S.E.; Jonsson, A.E.; Lund, M.A.V.; Frithioff-Bøjsøe, C.; Holm, L.A.; Pedersen, O.; Ängquist, L.; Sørensen, T.I.A.; Holst, J.J.; Christiansen, M.; et al. Fasting Plasma GLP-1 Is Associated With Overweight/Obesity and Cardiometabolic Risk Factors in Children and Adolescents. J. Clin. Endocrinol. Metab. 2021, 106, 1718–1727. [Google Scholar] [CrossRef]
- Kubota, S.; Yabe, D. Elevation of Fasting GLP-1 Levels in Child and Adolescent Obesity: Friend or Foe? J. Clin. Endocrinol. Metabolism 2021, 106, 3778–3780. [Google Scholar] [CrossRef]
- Basolo, A.; Heinitz, S.; Stinson, E.J.; Begaye, B.; Hohenadel, M.; Piaggi, P.; Krakoff, J.; Votruba, S.B. Fasting glucagon-like peptide 1 concentration is associated with lower carbohydrate intake and increases with overeating. J. Endocrinol. Investig. 2018, 42, 557–566. [Google Scholar] [CrossRef]
- Færch, K.; Torekov, S.S.; Vistisen, D.; Johansen, N.B.; Witte, D.R.; Jonsson, A.; Pedersen, O.; Hansen, T.; Lauritzen, T.; Sandbæk, A.; et al. GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type 2 Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study. Diabetes 2015, 64, 2513–2525. [Google Scholar] [CrossRef] [Green Version]
- Lynch, L.; Hogan, A.E.; Duquette, D.; Lester, C.; Banks, A.; LeClair, K.; Cohen, D.E.; Ghosh, A.; Lu, B.; Corrigan, M.; et al. iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metab. 2016, 24, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Bergenstal, R.M.; Li, Y.; Porter, T.K.B.; Weaver, C.; Han, J. Exenatide once weekly improved glycaemic control, cardiometabolic risk factors and a composite index of an HbA1c <7%, without weight gain or hypoglycaemia, over 52 weeks. Diabetes Obes. Metab. 2012, 15, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Khoo, B.; Tan, T.M.-M. Combination gut hormones: Prospects and questions for the future of obesity and diabetes therapy. J. Endocrinol. 2020, 246, R65–R74. [Google Scholar] [CrossRef]
- Al-Amodi, H.S.; Abdelbasit, N.A.; Fatani, S.H.; Babakr, A.T.; Mukhtar, M.M. The effect of obesity and components of metabolic syndrome on leptin levels in Saudi women. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 357–364. [Google Scholar] [CrossRef]
- Lönnqvist, F.; Nordfors, L.; Jansson, M.; Thorne, A.; Schalling, M.; Arner, P. Leptin secretion from adipose tissue in women. Relationship to plasma levels and gene expression. J. Clin. Investig. 1997, 99, 2398–2404. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.J.; Shapiro, J.I.; Thompson, E.; Singh, S.; Liu, L.; Weingarten, J.A.; O’Hanlon, K.; Bialczak, A.; Bhesania, S.R.; Abraham, N.G. Oxidized HDL, Adipokines, and Endothelial Dysfunction: A Potential Biomarker Profile for Cardiovascular Risk in Women with Obesity. Obesity 2018, 27, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Stejskal, D.; Jedelský, L.; Bartek, J.; Růzicka, V. [Leptin, insulin and proinsulin—Their relationship]. Vnitr. Lek. 1998, 44, 361–365. [Google Scholar]
- Neseliler, S.; Hu, W.; Larcher, K.; Zacchia, M.; Dadar, M.; Scala, S.G.; Lamarche, M.; Zeighami, Y.; Stotland, S.C.; Larocque, M.; et al. Neurocognitive and Hormonal Correlates of Voluntary Weight Loss in Humans. Cell Metab. 2019, 29, 39–49. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Batterham, R.L.; Aylwin, S.J.B.; Patterson, M.; Borg, C.M.; Wynne, K.J.; Kent, A.; Vincent, R.P.; Gardiner, J.; Ghatei, M.A.; et al. Attenuated Peptide YY Release in Obese Subjects Is Associated with Reduced Satiety. Endocrinology 2006, 147, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Batterham, R.L.; Cohen, M.A.; Ellis, S.M.; Le Roux, C.; Withers, D.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Inhibition of Food Intake in Obese Subjects by Peptide YY3–N. Engl. J. Med. 2003, 349, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Cahill, F.; Shea, J.; Randell, E.; Vasdev, S.; Sun, G. Serum peptide YY in response to short-term overfeeding in young men. Am. J. Clin. Nutr. 2011, 93, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Gribble, F.M.; Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 2019, 15, 226–237. [Google Scholar] [CrossRef]
- Pathak, V.; Flatt, P.R.; Irwin, N. Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides 2018, 100, 229–235. [Google Scholar] [CrossRef]
- Rehfeld, J.F. Measurement of cholecystokinin in plasma with reference to nutrition related obesity studies. Nutr. Res. 2020, 76, 1–8. [Google Scholar] [CrossRef]
- Niederau, C.; Meereis-Schwanke, K.; Klonowski-Stumpe, H.; Herberg, L. CCK-resistance in Zucker obese versus lean rats. Regul. Pept. 1997, 70, 97–104. [Google Scholar] [CrossRef]
- Tanday, N.; English, A.; Lafferty, R.A.; Flatt, P.R.; Irwin, N. Benefits of Sustained Upregulated Unimolecular GLP-1 and CCK Receptor Signalling in Obesity-Diabetes. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef]
- Stępień, M.; Rosniak-Bak, K.; Paradowski, M.; Misztal, M.; Kujawski, K.; Banach, M.; Rysz, J. Waist circumference, ghrelin and selected adipose tissue-derived adipokines as predictors of insulin resistance in obese patients: Preliminary results. Med, Sci. Monit. 2011, 17, PR13–PR18. [Google Scholar] [CrossRef] [Green Version]
- Mani, B.K.; Zigman, J.M. Ghrelin as a Survival Hormone. Trends Endocrinol. Metab. 2017, 28, 843–854. [Google Scholar] [CrossRef]
- Holst, J.J.; Deacon, C.F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia 2005, 48, 612–615. [Google Scholar] [CrossRef]
Lean (Mean ± SD or n (%)) | Obese (Mean ± SD or n (%)) | p-Value | |
---|---|---|---|
Age (years) | 29.67 ± 10.73 | 29.95 ± 9.13 | 0.565 |
Female | 19 (61.3) | 27 (62.8) | 0.896 |
BMI (kg/m2) | 22.49 ± 1.93 | 43.12 ± 6.83 | <0.001 * |
WC (cm) | 76.70 ± 14.83 | 123.29 ± 17.76 | <0.001 * |
Appropriate | 23 (74.2) | 0 (0) | <0.001 * |
Increased risk | 8 (25.8) | 43 (100) | |
WtHR | 0.48 ± 0.05 | 0.74 ± 0.08 | <0.001 * |
Normal | 16 (51.6) | 0 (0) | <0.001 * |
High | 15 (48.4) | 43 (100) | |
PBF (%) | 26.62 ± 9.39 | 46.13 ± 30 | <0.001 * |
Adequate | 24 (77.4) | 0 (0) | <0.001 * |
Increased risk | 7 (22.6) | 41 (95.3) | |
FBS (mg/dL) | 91.67 ± 11.03 | 103.11 ± 27.29 | 0.003 * |
Insulin (mU/mL) | 3.71 ± 4.41 | 22.0 ± 14.01 | <0.001 * |
HOMA-IR | 0.86 ± 1.03 | 5.65 ± 4.14 | <0.001 * |
Leptin (ng/mL) | 20.94 ± 7.96 | 55.18 ± 18.58 | <0.001 * |
GLP-1 (pM) | 12.64 ± 8.57 | 23.99 ± 12.83 | <0.001 * |
GLP-2 (ng/mL) | 2.29 ± 1.06 | 3.59 ± 1.76 | <0.001 * |
CCK (pg/mL) | 68.64 ± 34.39 | 53.01 ± 28.16 | 0.037 * |
PYY (pg/mL) | 61.85 ± 33.99 | 74.98 ± 50.51 | 0.355 |
Ghrelin (pg/mL) | 796.08 ± 266.79 | 531.75 ± 96.12 | <0.001 * |
GLP-1 | GLP-2 | Insulin | Leptin | CCK | PYY | Ghrelin | ||
---|---|---|---|---|---|---|---|---|
WC (M) | r | 0.687 a | 0.423 a | 0.713 a | 0.801 a | 0.266 a | 0.21 b | −0.722 b |
p | <0.001 * | 0.025 * | <0.001 * | <0.001 * | 0.172 | 0.28 | <0.001 * | |
WC (F) | r | 0.382 a | 0.286 a | 0.61 a | 0.762 a | −0.346 a | 0.07 b | −0.603 b |
p | 0.01 * | 0.057 | <0.001 * | <0.001 * | 0.020 * | 0.65 | <0.001 * | |
PBF (M) | r | 0.644 a | 0.517 a | 0.655 a | 0.854 a | −0.143 a | 0.26 b | −0.681 b |
p | <0.001 * | 0.007 * | <0.001 * | <0.001 * | 0.484 | 0.2 | <0.001 * | |
PBF (F) | r | 0.224 a | 0.211 a | 0.525 a | 0.714 a | −0.384 a | 0.07 b | −0.593 b |
p | 0.139 | 0.164 | <0.001 * | <0.001 * | 0.009 * | 0.66 | <0.001 * | |
BMI | r | 0.426 a | 0.403 a | 0.614 a | 0.801 a | −0.356 a | 0.09 b | −0.680 b |
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.002 * | 0.44 | <0.001 * | |
WtHR | r | 0.549 a | 0.444 a | 0.651 a | 0.756 a | −0.291 a | 0.18 b | −0.706 b |
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.012 * | 0.13 | <0.001 * | |
Insulin | r | 0.699 a | 0.418 a | - | 0.474 a | −0.064 a | 0.11 b | −0.495 b |
p | <0.001 * | <0.001 * | - | <0.001 * | 0.589 | 0.34 | <0.001 * | |
FBS | r | 0.242 b | 0.175 b | 0.29 b | 0.278 b | −0.193 b | 0.17 b | −0.309 b |
p | 0.039 * | 0.139 | 0.013 * | 0.017 * | 0.102 | 0.14 | 0.008 * | |
HOMA-IR | r | 0.738 b | 0.368 b | 0.992 b | 0.588 b | −0.071 b | 0.14 b | −0.514 b |
p | <0.001 * | 0.001 * | <0.001 * | <0.001 * | 0.553 | 0.25 | <0.001 * |
GLP-1 | GLP-2 | Insulin | Leptin | CCK | PYY | Ghrelin | ||
---|---|---|---|---|---|---|---|---|
BMI ^ | r | 0.426 a | 0.403 a | 0.61 a | 0.801 a | −0.356 a | 0.093 b | −0.680 b |
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.002 * | 0.435 | <0.001 * | |
WC (M) | r | 0.361 a | −0.224 a | 0.324 a | 0.095 a | 0.099 a | 0.060 b | −0.146 b |
p | 0.064 | 0.260 | 0.099 | 0.636 | 0.622 | 0.766 | 0.466 | |
WC (F) | r | 0.312 a | 0.015 a | 0.297 a | 0.150 a | 0.012 a | 0.130 b | −0.154 b |
p | 0.039 * | 0.923 | 0.050 | 0.330 | 0.936 | 0.400 | 0.317 | |
PBF (M) | r | 0.281 a | −0.058 a | 0.110 a | 0.245 a | 0.346 a | 0.154 b | 0.103 b |
p | 0.174 | 0.783 | 0.601 | 0.238 | 0.091 | 0.464 | 0.625 | |
PBF (F) | r | −0.044 a | −0.163 a | 0.070 a | −0.053 a | −0.071 a | 0.164 b | −0.040 b |
p | 0.776 | 0.290 | 0.652 | 0.732 | 0.648 | 0.287 | 0.796 | |
WtHR | r | 0.447 a | 0.203 a | 0.275 a | 0.071 a | 0.103 a | 0.209 b | −0.302 b |
p | <0.001 * | 0.087 | 0.019 * | 0.553 | 0.389 | 0.078 | 0.019 * | |
Insulin | r | 0.612 a | 0.236 a | - | −0.038 a | 0.209 a | 0.070 b | −0.093 b |
p | <0.001 * | 0.046 * | - | 0.749 | 0.077 | 0.557 | 0.438 | |
FBS | r | 0.074 b | 0.027 b | 0.032 b | −0.161 b | −0.046 b | 0.149 b | −0.044 b |
p | 0.535 | 0.825 | 0.787 | 0.176 | 0.704 | 0.213 | 0.716 | |
HOMA | r | 0.667 b | 0.170 b | 0.987 b | 0.009 b | 0.273 b | 0.100 b | −0.094 b |
p | <0.001 * | 0.154 | <0.001 * | 0.940 | 0.021 * | 0.405 | 0.432 |
Predictors | OR | p-Value | R Square | 95% CI | |
---|---|---|---|---|---|
HOMA-IR a | BMI GLP-1 | 1.229 1.221 | <0.001 0.002 | 0.764 | 1.108–1.363 1.079–1.382 |
Weight status b | Leptin GLP-1 | 1.367 1.239 | 0.002 0.033 | 0.898 | 1.117–1.672 1.018–1.508 |
WC c | BMI GLP-1 | 3.876 1.196 | 0.027 0.048 | 0.871 | 1.169–12.848 1.001–1.430 |
WtHR d | BMI GLP-1 | 10.276 1.591 | 0.023 0.021 | 0.900 | 1.373–76.934 1.072–2.363 |
PBF e | BMI GLP-1 | 4.847 0.717 | 0.008 0.020 | 0.910 | 1.503–15.636 0.542–0.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali Ahmad, M.; Karavetian, M.; Moubareck, C.A.; Wazz, G.; Mahdy, T.; Venema, K. The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients 2022, 14, 1271. https://doi.org/10.3390/nu14061271
Ali Ahmad M, Karavetian M, Moubareck CA, Wazz G, Mahdy T, Venema K. The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients. 2022; 14(6):1271. https://doi.org/10.3390/nu14061271
Chicago/Turabian StyleAli Ahmad, Manal, Mirey Karavetian, Carole Ayoub Moubareck, Gabi Wazz, Tarek Mahdy, and Koen Venema. 2022. "The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates" Nutrients 14, no. 6: 1271. https://doi.org/10.3390/nu14061271
APA StyleAli Ahmad, M., Karavetian, M., Moubareck, C. A., Wazz, G., Mahdy, T., & Venema, K. (2022). The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients, 14(6), 1271. https://doi.org/10.3390/nu14061271