Relationships between Bone Turnover Markers and Factors Associated with Metabolic Syndrome in Prepubertal Girls and Boys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Study Participants
2.2. Laboratory and Anthropometric Measurements
2.3. Decision Criteria for Study Participants
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pollock, N.K. Childhood obesity, bone development, and cardiometabolic risk factors. Mol. Cell. Endocrinol. 2015, 410, 52–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetherington-Rauth, M.; Bea, J.W.; Blew, R.M.; Funk, J.I.; Lee, V.R.; Varadi, T.C.; Roe, D.J.; Wheeler, M.D.; Going, S.B. Effect of cardiometabolic risk factors on the relationship between adiposity and bone mass in girls. Int. J. Obes. 2018, 42, 1185–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, N.K.; Bernard, P.J.; Gutin, B.; Davis, C.L.; Zhu, H.; Dong, Y.M.D. Adolescent obesity, bone mass, and cardiometabolic risk factors. J. Pediatr. 2011, 158, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, V.N.; Goldberg, T.B.L.; Mosca, L.N.; Rizzo, A.C.B.; Teixeira, A.S.; Corrente, J.E. Metabolic syndrome reduces bone mineral density in overweight adolescents. Bone 2014, 66, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Sex-Specific Relationships between Insulin Resistance and Bone Mineral Content in Korean Adolescents. J. Bone Miner. Metab. 2013, 31, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Hetherington-Rauth, M.; Bea, J.W.; Blew, R.M.; Funk, J.L.; Lee, V.R.; Roe, D.J.; Sardinha, L.B.; Going, S.B. Relationship of cardiometabolic risk biomarkers with DXA and pQCT bone health outcomes in young girls. Bone 2019, 120, 452–458. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.N.; Goldberg, T.B.L.; Silva, C.C.; Kurokawa, C.S.; Mosca Fiorelli, L.N.; Bisi Rizzo, A.C.; Corrente, J.E. Impact of metabolic syndrome and its components on bone remodeling in Adolescents. PLoS ONE 2021, 16, e0253892. [Google Scholar] [CrossRef] [PubMed]
- De Boer, M. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasikaran, S.; Cooper, C.; Eastell, R.; Griesmacher, A.; Morris, H.A.; Trenti, T.; Kanis, J.A. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 2011, 48, 1271–1274. [Google Scholar] [CrossRef]
- Bilinski, W.J.; Paradowski, P.T.; Sypniewska, G. Bone health and hyperglycemia in pediatric populations. Crit. Rev. Clin. Lab. Sci. 2020, 57, 444–457. [Google Scholar] [CrossRef]
- Delvin, E.; Alos, N.; Rauch, F.; Marcil, V.; Morel, S.; Boisvert, M.; Lecours, M.-A.; Laverdière, C.; Sinnett, D.; Krajinovic, M.; et al. Vitamin D nutritional status and bone turno ver markers in childhood acute lymphoblastic leukemia survivors: A PETALE study. Clin. Nutr. 2019, 38, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Geserick, M.; Vogel, M.; Eckelt, F.; Schlingmann, M.; Hiemisch, A.; Baber, R.; Thiery, J.; Körner, A.; Kiess, W.; Kratzsch, J. Children and adolescents with obesity have reduced serum bone turnover markers and 25-hydroxyvitamin D but increased parathyroid hormone concentrations—Results derived from new pediatric reference ranges. Bone 2020, 132, 115124. [Google Scholar] [CrossRef] [PubMed]
- Morovat, A.; Catchpole, A.; Meurisse, A.; Carlisi, A.; Bekaert, A.C.; Rousselle, O.; Paddon, M.; James, T.; Cavalier, É. IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: Method evaluation and reference intervals in adults and children. Clin. Chem. Lab. Med. 2013, 51, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Crofton, P.M.; Evans, N.; Taylor, M.R.H.; Holland, C.V. Serum Crosslaps: Pediatric reference intervals from birth to 19 years of age. Clin. Chem. 2002, 48, 671–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Eapen, E.; Steele, S.; Grey, V. Establishment of reference intervals for bone markers in children and adolescents. Clin. Biochem. 2011, 44, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos. Int. 2014, 25, 729–736. [Google Scholar] [CrossRef]
- Gennai, I.; Di Iorgi, N.; Reggiardo, G.; Gatti, C.; Bertelli, E.; Allegri, A.E.M.; Barco, S.; Maghnie, M.; Tripodi, G.; Cangemi, G. Age- and sex-matched reference curves for serum collagen type I C-telopeptides and bone alkaline phosphatase in children and adolescents: An alternative multivariate statistical analysis approach. Clin. Biochem. 2016, 49, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Szternel, L.; Krintus, M.; Bergmann, K.; Derezinski, T.; Sypniewska, G. Non-fasting lipid profile detetrmination in presumably healthy children: Impact on the assessment of lipid abnormalities. PLoS ONE 2018, 13, e0198433. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.L.; McBride, P.E. A review of guidelines for dyslipidemia in children and adolescents. WMJ 2012, 111, 274–281. [Google Scholar]
- Bilinski, W.J.; Szternel, L.; Siodmiak, J.; Krintus, M.; Paradowski, P.T.; Domagalski, K.; Sypniewska, G. Effect of fasting hyperglycemia and insulin resistance on bone turnover markers in children aged 9–11 years. J. Diabetes Complicat. 2021, 35, 108000. [Google Scholar] [CrossRef]
- Krzyzaniak, A.; Krzywinska-Wiewiorowska, M.; Stawinska-Witoszynska, B.; Kaczmarek, M.; Krzych, L.; Kowalska, M.; Szilágyi-Pągowska, I.; Palczewska, I.; Karch, A.; Jośko, J.; et al. Blood pressure references for Polish children and adolescents. Eur. J. Pediatr. 2009, 168, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, 23–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fintini, D.; Cianfarani, C.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The bones of children with obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Gao, P.; Li, Y. The association between metabolic syndrome and bone mineral density: A meta-analysis. Endocrine 2012, 42, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Q.; Yuan, X.; Wang, J.; Li, C.; Sheng, H.; Qu, S.; Li, H. Association between metabolic syndrome and os-teoporosis: A meta-analysis. Bone 2013, 57, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E.; Lukas, P.; Bottani, M.; Aarsand, A.K.; Ceriotti, F.; Coskun, A.; Díaz-Garzón, J.; Fernàndez-Calle, P.; Guerra, E.; Locatelli, M.; et al. European biological variation study (Eu-BIVAS): Within- and between-subject biological variation estimates of beta-isomerized C-terminal telopeptide of type I collagen (beta-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 2 and uncarboxylated-unphosphorylated matrix-gla protein- a cooperation between the EFLM working group on biological variation and the IOF-IFCC Committee on bone metabolism. Osteoporos. Int. 2020, 31, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- de Dios, O.; Vales-Villamarín, C.; Herrero, L.; Pérez-Segura, P.; Soriano-Guillén, L.; Garcés, C. Analysis of lep-tin-adiponectin ratio and C-reactive protein as potential biomarkers of metabolic syndrome in adolescents. Clin. Chem. Lab. Med. 2021, 59, e382–e385. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.-H.; Shin, M.-H.; Chung, E.-K.; Lee, Y.-H.; Kweon, S.-S.; Park, K.-S.; Choi, J.-S. Association between bone mineral densities and serum lipid profiles of pre- and postmenopausal rural women in South Korea. Osteoporos. Int. 2005, 16, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Nam, G.E.; Cho, K.H.; Choi, Y.S.; Kim, S.M.; Han, B.D. Low bone mineral density is associated with dyslipidemia in South Korean men: The 2008–2010 Korean National Healand Nutrition Examination Survey. Endocr. J. 2013, 60, 1179–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, K.Y.; Chan, C.Y.; Subramaniam, S.; Muhammad, N.; Fairus, A.; Ng, P.Y.; Jamil, N.A.; Aziz, N.A.; Ima-Nirwana, S.; Mohamed, N. Positive association between metabolic syndrome and bone mineral density among Malaysians. Int. J. Med. Sci. 2020, 17, 2585–2593. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Lu, H.; Liu, P. Association between essential hypertension and bone mineral density: A systematic review and meta-analysis. Oncotarget 2017, 8, 68916–68927. [Google Scholar] [CrossRef] [PubMed]
- Catena, C.; Colussi, G.L.; Brosolo, G.; Bertin, N.; Novello, M.; Palomba, A.; Sechi, L.A. Salt, Aldosterone, and Parathyroid Hormone: What Is the Relevance for Organ Damage? Int. J. Endocrinol. 2017, 2017, 4397028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagiri, H.; Yamada, T.; Oka, Y. Adiposity and cardiovascular disorders: Disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res. 2007, 101, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loke, S.S.; Chang, H.W.; Li, W.C. Association between metabolic syndrome and bone mineral density in a Tai-wanese elderly population. J. Bone Miner. Metab. 2018, 36, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.L.; Abrahamsen, B.; Napoli, N.; Akesson, K.; Chandran, M.; Eastell, R.; Fuleihan, G.E.-H.; Josse, R.; Kendler, D.; Kraenzlin, M.; et al. Diagnosis and management of bone fragility in diabetes: An emerging challenge. Osteoporos. Int. 2018, 29, 2585–2596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Girls without MetS n = 51 | Girls with Central Obesity and ≥2 MetS Features n = 10 | p | Boys without MetS n = 38 | Boys with Central Obesity and ≥2 MetS Features n = 16 | p |
---|---|---|---|---|---|---|
Age [years] | 10 (9–10) | 9 (9–10) | 0.226 | 9.5 (9–10) | 10 (9–10) | 0.500 |
BMI centile | 54 (19–64) | 96 (95–97) | <0.001 | 36 (16–44) | 96 (95–97) | <0.001 |
WC [cm] | 63 (58–69) | 80 (78–82) | <0.001 | 64 (60–67) | 86 (83–89) | <0.001 |
Glucose [mmol/L] | 5.1 (4.7–5.2) | 5.5 (4.8–5.6) | 0.098 | 5.0 (4.7–5.3) | 5.1 (4.8–5.5) | 0.205 |
Insulin [µIU/mL] | 6.5 (4.2–10.0) | 12.5 (11.3–13.7) | <0.001 | 9.1 (4.6–13.3) | 17.6 (9.8–21.1) | <0.001 |
HOMA-IR | 1.45 (0.93–2.30) | 2.82 (2.50–3.47) | <0.001 | 1.93 (1.12–3.05) | 4.51 (2.10–4.91) | <0.001 |
TG [mmol/L] | 0.77 (0.54–0.95) | 1.25 (1.17–1.39) | <0.001 | 0.62 (0.49–0.82) | 1.37 (1.07–1.79) | <0.001 |
HDL-C [mmol/L] | 1.53 (1.35–1.79) | 1.35 (1.25–1.59) | 0.048 | 1.56 (1.40–1.92) | 1.27 (1.25–1.38) | 0.009 |
SBP [mmHg] | 107 (99–112) | 116 (112–125) | 0.001 | 108 (102–111) | 116 (113–120) | 0.004 |
DBP [mmHg] | 63 (59–66) | 72 (66–76) | <0.001 | 63 (60–67) | 68 (65–72) | 0.008 |
CRP [mg/L] | 0.46 (0.18–1.21) | 1.72 (0.75–1.86) | 0.053 | 0.23 (0.14–1.10) | 2.56 (1.21–3.03) | <0.001 |
i-P1NP [ng/mL] | 1429 (1230–1581) | 1383 (1141–1488) | 0.291 | 1299 (1194–1449) | 1252 (1208–1358) | 0.506 |
CTX-1 [ng/mL] | 1.65 (1.19–2.15) | 0.98 (0.80–1.07) | 0.001 | 1.59 (1.11–2.14) | 1.24 (0.84–1.69) | 0.057 |
BTI | 0.26 (−0.41–0.85) | 0.92 (0.61–1.55) | 0.005 | −0.28 (−0.95–0.37) | 0.28 (−0.15–0.45) | 0.103 |
Variable | Girls with MetS n (%) | Boys with MetS n (%) | p | p * |
---|---|---|---|---|
CRP > 3.0 mg/L | 2 (20) | 5 (31) | 0.538 | 0.717 |
Fasting hyperinsulinemia | 6 (60) | 10 (63) | 0.878 | 0.878 |
HOMA-IR > 3.0 | 5 (50) | 10 (63) | 0.513 | 0.717 |
25(OH)D < 20 ng/mL | 2 (20) | 5 (31) | 0.538 | 0.717 |
Independent Variables | OR per 1SD Increase in Variable (95% CI) Girls, n = 61 | p | p * | OR per 1SD Increase in Variable (95% CI) Boys, n = 54 | p | p * |
---|---|---|---|---|---|---|
CRP | 2.07 (1.03–4.14) | 0.041 | 0.048 | 7.36 (2.2–24.2) | 0.001 | 0.004 |
HOMA-IR | 4.44 (1.70–11.61) | 0.002 | 0.007 | 3.48 (1.50–8.08) | 0.004 | 0.009 |
TG | 8.23 (2.0–33.9) | 0.004 | 0.007 | 17.6 (3.34–60.9) | <0.001 | 0.004 |
CTX-1 | 0.28 (0.11–0.69) | 0.006 | 0.008 | 0.58 (0.31–1.062) | 0.082 | 0.100 |
P1NP | 0.71 (0.34–1.49) | 0.371 | 0.371 | 0.83 (0.41–1.07) | 0.613 | 0.613 |
SBP | 6.53 (1.82–23.41) | 0.004 | 0.007 | 2.71 (1.12–6.53) | 0.026 | 0.036 |
DBP | 4.06 (1.68–9.80) | 0.002 | 0.007 | 2.50 (1.14–5.50) | 0.023 | 0.036 |
Independent Variables | R2 | Beta (Standardized) | p | p * |
---|---|---|---|---|
Model 1 | 0.13 | 0.016 | ||
HOMA-IR | −0.31 | 0.017 | 0.034 | |
BMI centile | −0.11 | 0.385 | 0.385 | |
Model 2 | 0.12 | 0.024 | ||
HOMA-IR | −0.33 | 0.019 | 0.038 | |
WC | −0.03 | 0.812 | 0.812 |
Independent Variables | OR per 1SD Increase in Variable (95% CI) Girls n = 61 | NR2 | p | p * | OR per 1SD Increase in Variable (95% CI) Boys n = 54 | NR2 | p | p * |
---|---|---|---|---|---|---|---|---|
HOMA-IR | 2.80 (1.42–5.52) | 0.220 | 0.003 | 0.009 | 1.23 (0.74–2.06) | 0.016 | 0.419 | 0.629 |
BMI centile | 1.83 (0.98–3.42) | 0.089 | 0.057 | 0.058 | 0.95 (0.53–1.70) | 0.001 | 0.858 | 0.858 |
WC | 1.67 (0.98–2.86) | 0.083 | 0.058 | 0.058 | 1.16 (0.85–1.59) | 0.007 | 0.348 | 0.629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilinski, W.J.; Stefanska, A.; Szternel, L.; Bergmann, K.; Siodmiak, J.; Krintus, M.; Paradowski, P.T.; Sypniewska, G. Relationships between Bone Turnover Markers and Factors Associated with Metabolic Syndrome in Prepubertal Girls and Boys. Nutrients 2022, 14, 1205. https://doi.org/10.3390/nu14061205
Bilinski WJ, Stefanska A, Szternel L, Bergmann K, Siodmiak J, Krintus M, Paradowski PT, Sypniewska G. Relationships between Bone Turnover Markers and Factors Associated with Metabolic Syndrome in Prepubertal Girls and Boys. Nutrients. 2022; 14(6):1205. https://doi.org/10.3390/nu14061205
Chicago/Turabian StyleBilinski, Wojciech J., Anna Stefanska, Lukasz Szternel, Katarzyna Bergmann, Joanna Siodmiak, Magdalena Krintus, Przemyslaw T. Paradowski, and Grazyna Sypniewska. 2022. "Relationships between Bone Turnover Markers and Factors Associated with Metabolic Syndrome in Prepubertal Girls and Boys" Nutrients 14, no. 6: 1205. https://doi.org/10.3390/nu14061205
APA StyleBilinski, W. J., Stefanska, A., Szternel, L., Bergmann, K., Siodmiak, J., Krintus, M., Paradowski, P. T., & Sypniewska, G. (2022). Relationships between Bone Turnover Markers and Factors Associated with Metabolic Syndrome in Prepubertal Girls and Boys. Nutrients, 14(6), 1205. https://doi.org/10.3390/nu14061205