Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Ethical Statement
2.2. Demographic and Neurobehavioral Assessments
2.3. Definition of Cognitive Decline
2.4. Blood Collection and Analysis of the Circulating Biochemical Data
2.5. Dietary Assessments
2.6. Data Analysis
3. Results
3.1. Demographic Characteristics of Patients with AD Receiving AChEIs in Two Groups
3.2. Laboratory Data of Patients with AD Receiving AChEIs in Two Groups
3.3. Association Factors Influencing Cognitive Decline vs. Cognitive Stability in Patients with AD Receiving AChEIs during the Two-Year Follow-Up Period
3.4. Association Factors Influencing Trajectory of Cognitive Change in Patients with AD Receiving AChEIs during the Two-Year Follow-Up Period
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Fink, H.A.; Hemmy, L.S.; Linskens, E.J.; Silverman, P.C.; MacDonald, R.; McCarten, J.R.; Talley, K.M.C.; Desai, P.J.; Forte, M.L.; Miller, M.A.; et al. Diagnosis and Treatment of Clinical Alzheimer’s-Type Dementia: A Systematic Review [Internet]; Apr. Report; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2020. [Google Scholar]
- Simonetto, M.; Infante, M.; Sacco, R.L.; Rundek, T.; Della-Morte, D. A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients 2019, 11, 2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Thomas, C.J.; Radcliffe, J.; Itsiopoulos, C. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. Biomed. Res. Int. 2015, 2015, 172801. [Google Scholar] [CrossRef] [Green Version]
- Arellanes, I.C.; Choe, N.; Solomon, V.; He, X.; Kavin, B.; Martinez, A.E.; Kono, N.; Buennagel, D.P.; Hazra, N.; Kim, G.; et al. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine 2020, 59, 102883. [Google Scholar] [CrossRef]
- Albanese, E.; Dangour, A.D.; Uauy, R.; Acosta, D.; Guerra, M.; Guerra, S.S.; Huang, Y.; Jacob, K.S.; de Rodriguez, J.L.; Noriega, L.H.; et al. Dietary fish and meat intake and dementia in Latin America, China, and India: A 10/66 Dementia Research Group population-based study. Am. J. Clin. Nutr. 2009, 90, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.L.; Zandi, P.P.; Tucker, K.L.; Fitzpatrick, A.L.; Kuller, L.H.; Fried, L.P.; Burke, G.L.; Carlson, M.C. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 2005, 65, 1409–1414. [Google Scholar] [CrossRef]
- Melo van Lent, D.; Egert, S.; Wolfsgruber, S.; Kleineidam, L.; Weinhold, L.; Wagner-Thelen, H.; Maier, W.; Jessen, F.; Ramirez, A.; Schmid, M.; et al. Eicosapentaenoic Acid Is Associated with Decreased Incidence of Alzheimer’s Dementia in the Oldest Old. Nutrients 2021, 13, 461. [Google Scholar] [CrossRef]
- Thomas, A.; Baillet, M.; Proust-Lima, C.; Feart, C.; Foubert-Samier, A.; Helmer, C.; Catheline, G.; Samieri, C. Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk. Alzheimers Dement. 2020, 17, 407–416. [Google Scholar] [CrossRef]
- van der Lee, S.J.; Teunissen, C.E.; Pool, R.; Shipley, M.J.; Teumer, A.; Chouraki, V.; Melo van Lent, D.; Tynkkynen, J.; Fischer, K.; Hernesniemi, J.; et al. Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. Alzheimers Dement. 2018, 14, 707–722. [Google Scholar] [CrossRef]
- Lin, P.Y.; Cheng, C.; Satyanarayanan, S.K.; Chiu, L.T.; Chien, Y.C.; Chuu, C.P.; Lan, T.H.; Su, K.P. Omega-3 fatty acids and blood-based biomarkers in Alzheimer’s disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav. Immun. 2022, 99, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Shinto, L.; Quinn, J.; Montine, T.; Dodge, H.H.; Woodward, W.; Baldauf-Wagner, S.; Waichunas, D.; Bumgarner, L.; Bourdette, D.; Silbert, L.; et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J. Alzheimers Dis. 2014, 38, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, J.F.; Raman, R.; Thomas, R.G.; Yurko-Mauro, K.; Nelson, E.B.; Van Dyck, C.; Galvin, J.E.; Emond, J.; Jack, C.R., Jr.; Weiner, M.; et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial. JAMA 2010, 304, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Freund-Levi, Y.; Eriksdotter-Jonhagen, M.; Cederholm, T.; Basun, H.; Faxen-Irving, G.; Garlind, A.; Vedin, I.; Vessby, B.; Wahlund, L.O.; Palmblad, J. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Arch. Neurol. 2006, 63, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, D.S.; Adkins, Y. Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc. Nutr. Soc. 2012, 71, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Su, K.P. Biological mechanism of antidepressant effect of omega-3 fatty acids: How does fish oil act as a ’mind-body interface’? Neurosignals 2009, 17, 144–152. [Google Scholar] [CrossRef]
- Schaefer, E.J.; Bongard, V.; Beiser, A.S.; Lamon-Fava, S.; Robins, S.J.; Au, R.; Tucker, K.L.; Kyle, D.J.; Wilson, P.W.; Wolf, P.A. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: The Framingham Heart Study. Arch. Neurol. 2006, 63, 1545–1550. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chiu, C.C.; Huang, S.Y.; Su, K.P. A meta-analytic review of polyunsaturated fatty acid compositions in dementia. J. Clin. Psychiatry 2012, 73, 1245–1254. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Pasupuleti, R.R.; Tsai, P.C.; Ponnusamy, V.K.; Chen, N.C. Green sample pre-treatment technique coupled with UHPLC-MS/MS for the rapid biomonitoring of dietary poly-unsaturated (omega) fatty acids to predict health risks. Chemosphere 2022, 291, 132685. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Ammann, E.M.; Pottala, J.V.; Robinson, J.G.; Espeland, M.A.; Harris, W.S. Erythrocyte omega-3 fatty acids are inversely associated with incident dementia: Secondary analyses of longitudinal data from the Women’s Health Initiative Memory Study (WHIMS). Prostaglandins Leukot Essent Fat. Acids 2017, 121, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kroger, E.; Verreault, R.; Carmichael, P.H.; Lindsay, J.; Julien, P.; Dewailly, E.; Ayotte, P.; Laurin, D. Omega-3 fatty acids and risk of dementia: The Canadian Study of Health and Aging. Am. J. Clin. Nutr. 2009, 90, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.C.; Su, K.P.; Cheng, T.C.; Liu, H.C.; Chang, C.J.; Dewey, M.E.; Stewart, R.; Huang, S.Y. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: A preliminary randomized double-blind placebo-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. Am. J. Clin. Nutr. 2016, 103, 330–340. [Google Scholar] [CrossRef]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef]
- Fujita, S.; Ikegaya, Y.; Nishikawa, M.; Nishiyama, N.; Matsuki, N. Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A(2) inhibitor in rat hippocampal slices. Br. J. Pharmacol. 2001, 132, 1417–1422. [Google Scholar] [CrossRef] [Green Version]
- Martín, V.; Fabelo, N.; Santpere, G.; Puig, B.; Marín, R.; Ferrer, I.; Díaz, M. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J. Alzheimers Dis. 2010, 19, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Hooper, C.; De Souto Barreto, P.; Pahor, M.; Weiner, M.; Vellas, B. The Relationship of Omega 3 Polyunsaturated Fatty Acids in Red Blood Cell Membranes with Cognitive Function and Brain Structure: A Review Focussed on Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2018, 5, 78–84. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.Q.; Qin, S.X.; Wu, L.J.; Mackay, C.R.; Hyman, B.T. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am. J. Pathol. 1998, 153, 31–37. [Google Scholar] [CrossRef]
- Hjorth, E.; Zhu, M.; Toro, V.C.; Vedin, I.; Palmblad, J.; Cederholm, T.; Freund-Levi, Y.; Faxen-Irving, G.; Wahlund, L.O.; Basun, H.; et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis 2013, 35, 697–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Rest, O.; Wang, Y.; Barnes, L.L.; Tangney, C.; Bennett, D.A.; Morris, M.C. APOE epsilon4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 2016, 86, 2063–2070. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Li, K.; Asimi, S.; Chen, Q.; Li, D. Effect of vitamin B-12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, C-reaction protein, and other cardiovascular risk factors: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2015, 24, 403–411. [Google Scholar] [CrossRef]
Decline Group (n = 42) | Stable Group (n = 87) | p Value | |
---|---|---|---|
Age | 78.1 ± 7.4 | 75.7 ± 6.1 | 0.053 |
Gender | 0.367 | ||
Male, n (%) | 16 (38%) | 29 (33%) | |
Female, n (%) | 26 (62%) | 58 (67%) | |
Cognitive test | |||
MMSE | 15.8 ± 3.9 | 17.9 ± 6.6 | 0.358 |
CDR | 0.7 ± 0.4 | 0.8 ± 0.5 | 0.126 |
Nutritional status and dietary record | |||
Mini nutritional assessment | 20.59 ± 7.3 | 22.2 ± 7.1 | 0.098 |
Daily intake (diet analysis) | |||
Total calories (kcal) | 1451.3 ± 226.3 | 1498.7 ± 305.8 | 0.798 |
Protein (g) | 51.7 ± 9.9 | 54.7 ± 12.7 | 0.346 |
Carbohydrate (g) | 200.8 ± 37.9 | 192.9 ± 50.1 | 0.307 |
Total fat (g) | 49.4 ± 11.8 | 57.4 ± 11.9 | 0.042 * |
Calcium (mg) | 387.8 ± 157.1 | 462.5 ± 317.6 | 0.607 |
Omega-3 (mg) | 2044.9 ± 1658.5 | 2075.3 ± 802.3 | 0.375 |
Omega-6 (mg) | 11912.4 ± 4972.7 | 12112.1 ± 4895.9 | 0.901 |
EPA (mg) | 210.5 ± 244.5 | 231.7 ± 429.5 | 0.858 |
DHA (mg) | 465.3 ± 430.1 | 480.3 ± 698.7 | 0.981 |
Systemic diseases | |||
Hypertension | 13 (30.9%) | 22 (25.3%) | 0.240 |
T2DM | 20 (47.6%) | 44 (50.6%) | 0.557 |
Hyperlipidemia | 6 (14.3%) | 26 (29.9%) | 0.051 |
Coronary artery disease | 10 (23.8%) | 12 (13.8%) | 0.102 |
Chronic kidney disease | 1 (2.4%) | 6 (6.9%) | 0.284 |
Chronic obstructive pulmonary disease | 1 (2.4%) | 0 (0%) | 0.318 |
Decline Group (n = 42) | Stable Group (n = 87) | p Value | |
---|---|---|---|
WBC (1000/μL) | 6.3 ± 2.6 | 6.5 ± 2.8 | 0.725 |
Hgb (g/dL) | 12.3 ± 1.8 | 12.8 ± 1.8 | 0.166 |
Platelets (1000/μL) | 219.6 ± 50.7 | 222.9 ± 70.2 | 0.759 |
AST (U/L) | 26.2 ± 11.9 | 24.7 ± 10.1 | 0.459 |
ALT (U/L) | 23.4 ± 20.7 | 19.8 ± 10.9 | 0.283 |
BUN (mg/dL) | 18.0 ± 7.9 | 17.0 ± 5.8 | 0.452 |
Creatinine (mg/dL) | 1.1 ± 0.7 | 0.9 ± 0.3 | 0.087 |
T4 (ng/dL) | 1.2 ± 0.2 | 1.2 ± 0.3 | 0.663 |
TSH (μIU/mL) | 1.6 ± 1.1 | 2.3 ± 2.2 | 0.074 |
Folic acid (ng/mL) | 13.4 ± 10.7 | 11.0 ± 6.3 | 0.123 |
Vitamin B12 (pg/mL) | 749.4 ± 858.2 | 832.7 ± 736.2 | 0.057 |
Homocysteine (μmole/L) | 23.6 ± 85.2 | 15.4 ± 8.5 | 0.540 |
HbA1c % | 6.2 ± 0.8 | 6.2 ± 0.8 | 0.670 |
Triglyceride (mg/dL) | 142.2 ± 103.0 | 134.2 ± 68.2 | 0.609 |
Total cholesterol (mg/dL) | 184.6 ± 39.5 | 182.8 ± 37.4 | 0.800 |
Omega-3 a (mg/mL) | 3.6 ± 7.2 | 10.0 ± 13.8 | 0.028 * |
Omega-6 b (mg/mL) | 20.2 ± 39.1 | 43.6 ± 58.6 | 0.064 |
DHA (mg/mL) | 1.8 ± 3.6 | 5.2 ± 7.1 | 0.023 * |
EPA (mg/mL) | 0.4 ± 1.0 | 1.2 ± 0.9 | 0.049 * |
Odds Ratio | 95% Confidence Interval | p Value | |
---|---|---|---|
Model 1 | |||
Omega-3 | 1.067 | 1.012–1.125 | 0.016 * |
Constant | 0.199 | 0.000 | |
Model 2 | |||
Step 1 | |||
DHA | 1.131 | 1.020–1.254 | 0.020 * |
Constant | 0.202 | 0.000 |
Beta | 95% Confidence Interval | p Value | |
---|---|---|---|
Mini-nutritional assessment scores | −0.383 | −0.182–−0.048 | 0.001 * |
Total fat | −0.248 | −0.067–−0.003 | 0.031 * |
Constant | 3.663–8.212 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.-S.; Hung, C.-F.; Ponnusamy, V.K.; Chen, K.-C.; Chen, N.-C. Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up. Nutrients 2022, 14, 1159. https://doi.org/10.3390/nu14061159
Chu C-S, Hung C-F, Ponnusamy VK, Chen K-C, Chen N-C. Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up. Nutrients. 2022; 14(6):1159. https://doi.org/10.3390/nu14061159
Chicago/Turabian StyleChu, Che-Sheng, Chi-Fa Hung, Vinoth Kumar Ponnusamy, Kuan-Chieh Chen, and Nai-Ching Chen. 2022. "Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up" Nutrients 14, no. 6: 1159. https://doi.org/10.3390/nu14061159
APA StyleChu, C. -S., Hung, C. -F., Ponnusamy, V. K., Chen, K. -C., & Chen, N. -C. (2022). Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up. Nutrients, 14(6), 1159. https://doi.org/10.3390/nu14061159