Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometric Measurements
2.3. Biochemical Measurements
2.4. Definition of Metabolically Healthy Obesity
2.5. Ethical Clearance
2.6. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 December 2021).
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.A. Are there persons who are obese, but metabolically healthy? Metab. Clin. Exp. 2001, 50, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Kissebah, A.H.; Vydelingum, N.; Murray, R.; Evans, D.J.; Hartz, A.J.; Kalkhoff, R.K.; Adams, P.W. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 1982, 54, 254–260. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J.; Group IDFETFC. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Grundy, S.M. Metabolic syndrome: Connecting and reconciling cardiovascular and diabetes worlds. J. Am. Coll. Cardiol. 2006, 47, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering-Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch. Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Karelis, A.; Brochu, M.; Rabasa-Lhoret, R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004, 30, 569–572. [Google Scholar] [CrossRef]
- Bekkelund, S.I.; Jorde, R. Alanine Aminotransferase and Body Composition in Obese Men and Women. Dis. Markers 2019, 2019, 1695874. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.A.; Knuiman, M.W.; Divitini, M.L.; Olynyk, J.K. Body mass index is a stronger predictor of alanine aminotransaminase levels than alcohol consumption. J. Gastroenterol. Hepatol. 2008, 23, 1089–1093. [Google Scholar] [CrossRef]
- Vozarova, B.; Stefan, N.; Lindsay, R.S.; Saremi, A.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 1889–1895. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.; van Greevenbroek, M.M.; van der Kallen, C.J.; Ferreira, I.; Feskens, E.J.; Jansen, E.H.; Schalkwijk, C.G.; Stehouwer, C. The association between the metabolic syndrome and alanine amino transferase is mediated by insulin resistance via related metabolic intermediates (the Cohort on Diabetes and Atherosclerosis Maastricht [CODAM] study). Metabolism 2011, 60, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [PubMed] [Green Version]
- Ferrannini, E.; Haffner, S.M.; Mitchell, B.D.; Stern, M.P. Hyperinsulinaemia: The key feature of a cardiovascular and metabolic syndrome. Diabetologia 1991, 34, 416–422. [Google Scholar] [CrossRef]
- Den Engelsen, C.; Koekkoek, P.S.; Gorter, K.J.; van den Donk, M.; Salome, P.L.; Rutten, G.E. High-sensitivity C-reactive protein to detect metabolic syndrome in a centrally obese population: A cross-sectional analysis. Cardiovasc. Diabetol. 2012, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Mesgari-Abbasi, M.; Abbasalizad Farhangi, M. Serum concentrations of cholecystokinin, peptide YY, ghrelin and high sensitive C-reactive protein in association with metabolic syndrome ingredients in obese individuals. Acta Endocrinol. 2020, 16, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Oguoma, V.M.; Coffee, N.T.; Alsharrah, S.; Abu-Farha, M.; Al-Refaei, F.H.; Al-Mulla, F.; Daniel, M. Prevalence of overweight and obesity, and associations with socio-demographic factors in Kuwait. BMC Public Health 2021, 21, 667. [Google Scholar] [CrossRef] [PubMed]
- Recio-Rodriguez, J.I.; Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Garcia-Ortiz, L.; Vasorisk, G. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc. Disord. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, C.; Pérez, C.M.; Guzmán, M.; Ortiz, A.P.; Ayala, A.; Suárez, E. Association between adiposity indices and cardiometabolic risk factors among adults living in Puerto Rico. Public Health Nutr. 2011, 14, 1714–1723. [Google Scholar] [CrossRef]
- Oguoma, V.M.; Coffee, N.T.; Alsharrah, S.; Abu-Farha, M.; Al-Refaei, F.H.; Alkandari, A.; Al-Mulla, F.; Daniel, M. Anthropometric cut-points for discriminating diabetes and the metabolic syndrome among Arabs and Asians: The Kuwait Diabetes Epidemiology Program. Br. J. Nutr. 2022, 127, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, L.; Tamim, H.; Mailhac, A.; AlBuhairan, F.S. Prevalence and predictors of metabolically healthy obesity in adolescents: Findings from the national “Jeeluna” study in Saudi-Arabia. BMC Pediatr. 2018, 18, 281. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Abu-Farha, M.; Abubaker, J.; Al-Khairi, I.; Cherian, P.; Noronha, F.; Hu, F.B.; Behbehani, K.; Elkum, N. Higher plasma betatrophin/ANGPTL8 level in Type 2 Diabetes subjects does not correlate with blood glucose or insulin resistance. Sci. Rep. 2015, 5, 10949. [Google Scholar] [CrossRef] [PubMed]
- Hausman, J.; McFadden, D. Specification tests for the multinomial logit model. Econom. J. Econom. Soc. 1984, 52, 1219–1240. [Google Scholar] [CrossRef] [Green Version]
- Alkandari, A.; Alarouj, M.; Elkum, N.; Sharma, P.; Devarajan, S.; Abu-Farha, M.; Al-Mulla, F.; Tuomilehto, J.; Bennakhi, A. Adult Diabetes and Prediabetes Prevalence in Kuwait: Data from the Cross-Sectional Kuwait Diabetes Epidemiology Program. J. Clin. Med. 2020, 9, 3420. [Google Scholar] [CrossRef] [PubMed]
- Alkandari, A.; Longenecker, J.C.; Barengo, N.C.; Alkhatib, A.; Weiderpass, E.; Al-Wotayan, R.; Al Duwairi, Q.; Tuomilehto, J. The prevalence of pre-diabetes and diabetes in the Kuwaiti adult population in 2014. Diabetes Res. Clin. Pract. 2018, 144, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Velho, S.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Metabolically healthy obesity: Different prevalences using different criteria. Eur. J. Clin. Nutr. 2010, 64, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Babusik, P.; Duris, I. Comparison of obesity and its relationship to some metabolic risk factors of atherosclerosis in Arabs and South Asians in Kuwait. Med. Princ. Pract. 2010, 19, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Chen, Z.; Yang, P.; Liu, L.; Liu, X.; Wu, L.; He, Q.; Li, Y. Natural histories of metabolite BMI phenotypes and their impacts on cardiovascular disease risk over a decade-long follow-up. Obes. Res. Clin. Pract. 2021, 15, 579–586. [Google Scholar] [CrossRef]
- Jackson, A.S.; Stanforth, P.R.; Gagnon, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C.; Wilmore, J.H. The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 789–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues-the biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanter, R.; Caballero, B. Global gender disparities in obesity: A review. Adv. Nutr. 2012, 3, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Oguoma, V.M.; Alsharrah, S.; Schroers, S.; Daniel, M.; Abu-Farha, M.; Al-Refaei, F.H.; Al-Mulla, F.; Coffee, N.T. Association between physical activity and built environmental indicators: The Kuwait Diabetes Epidemiology Program. Int. J. Obes. 2022. under review. [Google Scholar]
- Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. AMS 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jo, I. Relationship between body mass index and alanine aminotransferase concentration in non-diabetic Korean adults. Eur. J. Clin. Nutr. 2010, 64, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Trunk fat is associated with increased serum levels of alanine aminotransferase in the United States. Gastroenterology 2010, 138, 1346–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, Y.; Garg, M.K.; Tandon, N.; Marwaha, R.K. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. J. Clin. Res. Pediatric Endocrinol. 2013, 5, 245–251. [Google Scholar]
- Yoon, H. Relationship between Metabolic Syndrome, Metabolic Syndrome Score, Insulin Resistance and Beta Cell Function in Korean Adults with Obesity. Korean J. Clin. Lab. Sci. 2020, 52, 327–334. [Google Scholar] [CrossRef]
- Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically healthy obesity: Facts and fantasies. J. Clin. Investig. 2019, 129, 3978–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.M. Metabolically healthy obesity: Definitions, determinants and clinical implications. Rev. Endocr. Metab. Disord. 2013, 14, 219–227. [Google Scholar] [CrossRef]
- Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch. Int. Med. 1998, 158, 1855–1867. [CrossRef] [PubMed]
S/No | Definition [5,22] | ||
---|---|---|---|
BMI-Based | WC-Based | ||
1 | Blood pressure | Systolic/diastolic blood pressure ≥ 130/85 mmHg or receiving treatment for hypertension | Systolic/diastolic blood pressure ≥ 130/85 mmHg or receiving treatment for hypertension |
2 | Blood triglyceride | ≥1.7 mmol/L | ≥1.7 mmol/L |
3 | HDL cholesterol | <1.0mmol/L in men or <1.3 mmol/L in women | <1.0mmol/L in men or <1.3 mmol/L in women |
4 | Elevated blood glucose | ≥5.6 mmol/L or receiving medication | ≥5.6 mmol/L or receiving medication |
5 | Elevated waist circumference or BMI | BMI ≥ 30 kg/m2 | Ethnic-specific WC thresholds † |
BMI-Based Obesity | WC-Based Obesity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MuHN | MuHO | MHN | MHO | p-Value | MuHN | MuHO | MHN | MHO | p-Value | |
N = 207 | N = 275 | N = 702 | N = 528 | N = 82 | N = 398 | N = 264 | N = 947 | |||
Age (years) | 48.8 (10.9) | 50.8 (9.8) | 42.5 (11.3) | 45.8 (10.9) | <0.001 | 45.9 (11.6) | 50.7 (9.9) | 40.5 (10.8) | 44.9 (11.1) | <0.001 |
Age group | ||||||||||
18–29 | 6 (2.9) | 3 (1.1) | 83 (11.8) | 35 (6.6) | <0.001 | 3 (3.7) | 6 (1.5) | 38 (14.4) | 78 (8.2) | <0.001 |
30–39 | 39 (18.8) | 39 (14.2) | 213 (30.3) | 112 (21.2) | 26 (31.7) | 52 (13.1) | 93 (35.2) | 224 (23.7) | ||
40–49 | 62 (30.0) | 73 (26.5) | 224 (31.9) | 198 (37.5) | 22 (26.8) | 113 (28.4) | 81 (30.7) | 337 (35.6) | ||
50–59 | 65 (31.4) | 104 (37.8) | 131 (18.7) | 118 (22.3) | 19 (23.2) | 149 (37.4) | 37 (14.0) | 209 (22.1) | ||
≥60 | 35 (16.9) | 56 (20.4) | 51 (7.3) | 65 (12.3) | 12 (14.6) | 78 (19.6) | 15 (5.7) | 99 (10.5) | ||
Gender | ||||||||||
Men | 157 (75.8) | 134 (48.7) | 372 (53.0) | 209 (39.6) | <0.001 | 77 (93.9) | 212 (53.3) | 211 (79.9) | 362 (38.2) | <0.001 |
Women | 50 (24.2) | 141 (51.3) | 330 (47.0) | 319 (60.4) | 5 (6.1) | 186 (46.7) | 53 (20.1) | 585 (61.8) | ||
Ethnic group | ||||||||||
Arab | 78 (37.7) | 147 (53.5) | 331 (47.2) | 351 (66.5) | <0.001 | 20 (24.4) | 205 (51.5) | 87 (33.0) | 588 (62.1) | <0.001 |
South Asian | 129 (62.3) | 128 (46.5) | 371 (52.8) | 177 (33.5) | 62 (75.6) | 193 (48.5) | 177 (67.0) | 359 (37.9) | ||
BMI (kg/m2) | 26.4 (2.2) | 35.7 (4.7) | 26.0 (2.6) | 35.1 (4.7) | <0.001 | 25.4 (3.0) | 33.0 (5.6) | 24.7 (2.9) | 31.4 (5.6) | <0.001 |
WC (cm) | 92.6 (7.0) | 109.7 (11.1) | 89.8 (9.3) | 105.2 (12.3) | <0.001 | 87.7 (4.8) | 105.3 (11.8) | 83.6 (8.7) | 100.0 (11.9) | <0.001 |
WHtR | 0.6 (0.0) | 0.7 (0.1) | 0.5 (0.1) | 0.6 (0.1) | <0.001 | 0.5 (0.0) | 0.6 (0.1) | 0.5 (0.0) | 0.6 (0.1) | <0.001 |
TSH (uIc/mL) | 2.3 (6.0) | 2.4 (6.1) | 2.3 (7.0) | 2.0 (3.8) | 0.78 | 1.8 (1.2) | 2.4 (6.6) | 2.5 (8.3) | 2.1 (4.9) | 0.59 |
FT3 (pmol/L) | 4.9 (0.6) | 4.8 (0.6) | 4.9 (1.5) | 4.8 (0.9) | 0.10 | 4.9 (0.5) | 4.8 (0.6) | 5.0 (0.8) | 4.9 (1.4) | 0.27 |
ALT (u/L) | 41.0 (20.3) | 45.3 (21.4) | 35.9 (17.3) | 40.1 (18.5) | <0.001 | 43.1 (22.4) | 43.6 (20.8) | 36.4 (19.7) | 38.2 (17.4) | <0.001 |
AST (u/L) | 23.2 (10.9) | 26.2 (13.7) | 21.9 (11.0) | 22.5 (10.8) | <0.001 | 24.1 (14.9) | 25.1 (12.2) | 22.8 (8.4) | 22.0 (11.6) | <0.001 |
Creatinine (umol/L) | 84.0 (20.4) | 79.1 (30.1) | 75.1 (18.5) | 73.2 (17.2) | <0.001 | 87.2 (18.3) | 79.2 (22.9) | 81.6 (18.8) | 72.5 (17.2) | <0.001 |
Hs-CRP (µg/mL) | 1.8 (1.0–3.6) | 4.7 (2.2–8.8) | 1.7 (0.6–3.3) | 3.9 (1.9–7.8) | <0.001 | 1.3 (0.8–2.8) | 3.8 (1.8–7.5) | 1.1 (0.4–2.4) | 2.8 (1.2–6.0) | <0.001 |
HOMA-IR | 2.4 (1.7–4.2) | 4.0 (2.5–6.8) | 1.4 (1.0–2.1) | 2.2 (1.5–3.4) | <0.001 | 2.5 (1.5–4.6) | 3.6 (2.1–6.0) | 1.4 (0.9–2.1) | 1.8 (1.2–2.9) | <0.001 |
BMI-Based Obese | MuHO (Reference Group) | MHN | MHO | MuHN | |||
---|---|---|---|---|---|---|---|
RRR (95% CI) | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | |
Hs-CRP (µg/mL) | 1.00 (1.00, 1.00) | 0.90 (0.87, 0.93) | <0.001 | 0.98 (0.96, 1.01) | 0.200 | 0.89 (0.84, 0.94) | <0.001 |
ALT (u/L) | 1.00 (1.00, 1.00) | 0.97 (0.97, 0.98) | <0.001 | 0.99 (0.98, 0.99) | <0.001 | 0.99 (0.98, 1.00) | 0.004 |
HOMA-IR | 1.00 (1.00, 1.00) | 0.63 (0.58, 0.69) | <0.001 | 0.91 (0.87, 0.94) | <0.001 | 0.92 (0.87, 0.96) | 0.001 |
Age | 1.00 (1.00, 1.00) | 0.94 (0.93, 0.96) | <0.001 | 0.96 (0.95, 0.98) | <0.001 | 0.99 (0.97, 1.01) | 0.160 |
Gender | |||||||
Men | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . |
Women | 1.00 (1.00, 1.00) | 0.59 (0.42, 0.84) | 0.003 | 1.13 (0.81, 1.58) | 0.486 | 0.34 (0.22, 0.52) | <0.001 |
Ethnic group | |||||||
Arab | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . |
South Asian | 1.00 (1.00, 1.00) | 0.80 (0.57, 1.13) | 0.204 | 0.44 (0.32, 0.62) | <0.001 | 1.34 (0.89, 2.01) | 0.167 |
WC-based obese | |||||||
Hs-CRP (µg/mL) | 1.00 (1.00, 1.00) | 0.84 (0.78, 0.89) | <0.001 | 0.98 (0.96, 1.01) | 0.159 | 0.84 (0.75, 0.93) | 0.001 |
ALT (u/L) | 1.00 (1.00, 1.00) | 0.97 (0.96, 0.98) | <0.001 | 0.99 (0.98, 0.99) | <0.001 | 0.99 (0.98, 1.00) | 0.131 |
HOMA-IR | 1.00 (1.00, 1.00) | 0.64 (0.56, 0.72) | <0.001 | 0.87 (0.84, 0.91) | <0.001 | 0.96 (0.89, 1.03) | 0.212 |
Age | 1.00 (1.00, 1.00) | 0.91 (0.90, 0.93) | <0.001 | 0.96 (0.95, 0.97) | <0.001 | 0.96 (0.94, 0.98) | 0.001 |
Gender | |||||||
Men | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . |
Women | 1.00 (1.00, 1.00) | 0.15 (0.10, 0.24) | <0.001 | 1.37 (1.04, 1.81) | 0.023 | 0.08 (0.03, 0.21) | <0.001 |
Ethnic group | |||||||
Arab | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . | 1.00 (1.00, 1.00) | . |
South Asian | 1.00 (1.00, 1.00) | 1.17 (0.79, 1.73) | 0.439 | 0.51 (0.39, 0.67) | <0.001 | 2.19 (1.22, 3.92) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguoma, V.M.; Abu-Farha, M.; Coffee, N.T.; Alsharrah, S.; Al-Refaei, F.H.; Abubaker, J.; Daniel, M.; Al-Mulla, F. Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators. Nutrients 2022, 14, 915. https://doi.org/10.3390/nu14050915
Oguoma VM, Abu-Farha M, Coffee NT, Alsharrah S, Al-Refaei FH, Abubaker J, Daniel M, Al-Mulla F. Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators. Nutrients. 2022; 14(5):915. https://doi.org/10.3390/nu14050915
Chicago/Turabian StyleOguoma, Victor M., Mohamed Abu-Farha, Neil T. Coffee, Saad Alsharrah, Faisal H. Al-Refaei, Jehad Abubaker, Mark Daniel, and Fahd Al-Mulla. 2022. "Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators" Nutrients 14, no. 5: 915. https://doi.org/10.3390/nu14050915
APA StyleOguoma, V. M., Abu-Farha, M., Coffee, N. T., Alsharrah, S., Al-Refaei, F. H., Abubaker, J., Daniel, M., & Al-Mulla, F. (2022). Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators. Nutrients, 14(5), 915. https://doi.org/10.3390/nu14050915