Social Factors of Dietary Risk Behavior in Older German Adults: Results of a Multivariable Analysis
Abstract
:1. Introduction
- (1)
- how many older adults are affected by dietary risk behavior related to low consumption frequencies of vegetables/fruit, whole grains, and dairy products;
- (2)
- differences in dietary risk behavior in older age, stratified by gender, age, and socioeconomic status groups;
- (3)
- differences in consumption frequencies of vegetables/fruit, whole grains, and dairy products among older adults stratified by gender, age, and socioeconomic status groups;
- (4)
- associations between sociodemographic, socioeconomic, psychosocial, and behavioral factors and dietary risk behavior in older age; and
- (5)
- differences in the statistical model stratified by gender, age, and socioeconomic status groups.
2. Materials and Methods
2.1. Data and Sample
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Frequencies of Consumption and Dietary Risk Behavior
3.3. Sociodemographic and Socioeconomic Differences in Dietary Risk Behavior
3.4. Sociodemographic and Socioeconomic Differences in Consumption Frequencies
3.5. Dietary Risk Behavior Index
3.6. Associations between Social Factors and Dietary Risk Behavior
4. Discussion
4.1. Principal Results of the Analysis
4.2. Strengths and Limitations
4.3. Comparison with Other Studies
4.4. Implications for Policy and Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iriti, M.; Varoni, E.M.; Vitalini, S. Healthy diets and modifiable risk factors for non-communicable diseases—The European Perspective. Foods 2020, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The world cancer research fund/American Institute for Cancer Research Third Expert Report on diet, nutrition, physical activity, and cancer: Impact and future directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Jacobsen, K.H.; Deshmukh, A.A.; Cantor, S.B. The evolution of the disability-adjusted life year (DALY). Soc.-Econ. Plan. Sci. 2015, 49, 10–15. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Lin, X.; Wu, Y.; Huang, X.; Pan, X.; Xu, J.; Wu, J.; Ren, Y.; Shan, P.-F. Global burden of non-communicable diseases attributable to dietary risks in 1990–2019. J. Hum. Nutr. Diet. 2021, 35, 202–213. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing 2020: Highlights; United Nations, Department of Economic and Social Afiairs, Population Division: New York, NY, USA, 2020; ISBN 978-92-1-148347-5. [Google Scholar]
- Afshar, S.; Roderick, P.J.; Kowal, P.; Dimitrov, B.D.; Hill, A.G. Multimorbidity and the inequalities of global ageing: A cross-sectional study of 28 countries using the World Health Surveys. BMC Public Health 2015, 15, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The burden of disease in older people and implications for health policy and practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-002705-3.
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research an Experimental Biology workshop, April 1, 2006. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef]
- Schulz, C.-A.; Oluwagbemigun, K.; Nöthlings, U. Advances in dietary pattern analysis in nutritional epidemiology. Eur. J. Nutr. 2021, 60, 4115–4130. [Google Scholar] [CrossRef] [PubMed]
- Mumme, K.; Conlon, C.; von Hurst, P.; Jones, B.; Stonehouse, W.; Heath, A.-L.M.; Coad, J.; Haskell-Ramsay, C.; de Seymour, J.; Beck, K. Dietary patterns, their nutrients, and associations with socio-demographic and lifestyle factors in older New Zealand adults. Nutrients 2020, 12, 3425. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R. Social determinants of food choice. Proc. Nutr. Soc. 1999, 58, 807–812. [Google Scholar] [CrossRef]
- Marcone, M.F.; Madan, P.; Grodzinski, B. An overview of the sociological and environmental factors influencing eating food behavior in Canada. Front. Nutr. 2020, 7, 77. [Google Scholar] [CrossRef]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.-T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Mosalmanzadeh, N.; Jandari, S.; Soleimani, D.; Shadmand Foumani Moghadam, M.R.; Khorramrouz, F.; Araste, A.; Molavi, S.F.; Fakhlaie, R.; Jokar, M.; Rezvani, R. Major dietary patterns and food groups in relation to rheumatoid arthritis in newly diagnosed patients. Food Sci. Nutr. 2020, 8, 6477–6486. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, V.A.; Allès, B.; Feron, G.; Gonzalez, R.; Sulmont-Rossé, C.; Galan, P.; Hercberg, S.; Méjean, C. Sex-specific sociodemographic correlates of dietary patterns in a large sample of French elderly individuals. Nutrients 2016, 8, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Kim, J.; Kim, J. Gender differences in the association between dietary pattern and the incidence of hypertension in middle-aged and older adults. Nutrients 2018, 10, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, I.; Edwards, M.; Jameson, K.A.; Syddall, H.E.; Dennison, E.; Gale, C.R.; Baird, J.; Cooper, C.; Aihie Sayer, A.; Robinson, S. Influences on diet quality in older age: The importance of social factors. Age Ageing 2017, 46, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, I.; Lawrence, W.; Barker, M.; Baird, J.; Dennison, E.; Sayer, A.A.; Cooper, C.; Robinson, S. What influences diet quality in older people? A qualitative study among community-dwelling older adults from the Hertfordshire Cohort Study, UK. Public Health Nutr. 2017, 20, 2685–2693. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Maguire, E.R.; Monsivais, P. Economic determinants of diet in older adults: Systematic review. J. Epidemiol. Commun. Health 2013, 67, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Bamia, C.; Orfanos, P.; Ferrari, P.; Overvad, K.; Hundborg, H.H.; Tjønneland, A.; Olsen, A.; Kesse, E.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F.; et al. Dietary patterns among older Europeans: The EPIC-Elderly study. Br. J. Nutr. 2005, 94, 100–113. [Google Scholar] [CrossRef]
- Bishop, N.J.; Zuniga, K.E.; Ramirez, C.M. Latent profile analysis of dietary intake in a community-dwelling sample of older Americans. Public Health Nutr. 2020, 23, 243–253. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Wilson, R.S. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology 2006, 67, 1370–1376. [Google Scholar] [CrossRef] [Green Version]
- Allès, B.; Samieri, C.; Lorrain, S.; Jutand, M.-A.; Carmichael, P.-H.; Shatenstein, B.; Gaudreau, P.; Payette, H.; Laurin, D.; Barberger-Gateau, P. Nutrient patterns and their food sources in older persons from France and quebec: Dietary and lifestyle characteristics. Nutrients 2016, 8, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbuSabha, R.; Achterberg, C. Review of self-efficacy and locus of control for nutrition- and health-related behavior. J. Am. Diet. Assoc. 1997, 97, 1122–1132. [Google Scholar] [CrossRef]
- Jang, K.; Baek, Y.M. How to effectively design public health interventions: Implications from the interaction effects between socioeconomic status and health locus of control beliefs on healthy dietary behaviours among US adults. Health Soc. Care Commun. 2018, 26, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Cobb-Clark, D.A.; Kassenboehmer, S.C.; Schurer, S. Healthy habits: The connection between diet, exercise, and locus of control. SSRN J. 2012, 98, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Cheung, M.W.-L.; Lo, B.C.Y. Relationship of health locus of control with specific health behaviours and global health appraisal: A meta-analysis and effects of moderators. Health Psychol. Rev. 2016, 10, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, E.P.; Dunbar, S.B.; Higgins, M.; Dai, J.; Ziegler, T.R.; Frediani, J.K.; Reilly, C.; Brigham, K.L. Psychosocial factors associated with diet quality in a working adult population. Res. Nurs. Health 2013, 36, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Lindsay Smith, G.; Banting, L.; Eime, R.; O’Sullivan, G.; Van Uffelen, J.G.Z. The association between social support and physical activity in older adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 56. [Google Scholar] [CrossRef]
- Tachi, K.; Tetteh, J.; Yawson, A.E.; Agyei-Nkansah, A.; Archampong, T. Alcohol consumption and fruits and vegetable intake among older adults in Ghana: A cross-sectional survey based on WHO-SAGE Wave 2 data. BMJ Nutr. Prev. Health 2020, 3, 220–228. [Google Scholar] [CrossRef]
- Sluik, D.; Jankovic, N.; O’Doherty, M.G.; Geelen, A.; Schöttker, B.; Rolandsson, O.; Kiefte-de Jong, J.C.; Ferrieres, J.; Bamia, C.; Fransen, H.P.; et al. Alcoholic Beverage Preference and Dietary Habits in Elderly across Europe: Analyses within the Consortium on Health and Ageing: Network of Cohorts in Europe and the United States (CHANCES) Project. PLoS ONE 2016, 11, e0161603. [Google Scholar] [CrossRef] [Green Version]
- Fawehinmi, T.O.; Ilomäki, J.; Voutilainen, S.; Kauhanen, J. Alcohol consumption and dietary patterns: The FinDrink study. PLoS ONE 2012, 7, e38607. [Google Scholar] [CrossRef]
- Wohlrab, D. Schwerpunktbefragung der Münchner Bürgerinnen und Bürger zur Sozialen und Gesundheitlichen Lage 2016: Ausgewählte Aspekte zur Lage von Gesundheitlich Beeinträchtigten Zielgruppen; Münchner Statistik: Munich, Germany, 2018. [Google Scholar]
- Deutsche Gesellschaft für Ernährung. DGE-Qualitätsstandard für die Verpflegung mit „Essen auf Rädern” und in Stationären Senioreneinrichtungen. In Deutsche Gesellschaft für Ernährung, 1st ed.; Deutsche Gesellschaft für Ernährung: Bonn, Germany, 2020. [Google Scholar]
- Lampert, T.; Kroll, L.; Müters, S.; Stolzenberg, H. Measurement of socioeconomic status in the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsbl 2013, 56, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampert, T.; Hoebel, J.; Kuntz, B.; Müters, S.; Kroll, L.E. Socioeconomic status and subjective social status measurement in KiGGS Wave 2. J. Health Monit. 2018, 3, 108–125. [Google Scholar] [CrossRef]
- Lengerke, T.; von Janssen, C.; John, J. Sense of coherence, health locus of control, and quality of life in obese adults: Physical limitations and psychological normalcies. Int. J. Public Health 2007, 52, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Dalgard, O.S.; Bjørk, S.; Tambs, K. Social support, negative life events and mental health. Br. J. Psychiatry 1995, 166, 29–34. [Google Scholar] [CrossRef]
- Kilpeläinen, K.; Aromaa, A. European Health Indicators: Development and Initial Implementation: Final Report of the ECHIM Project; National Public Health Institute: Helsinki, Finland, 2008; ISBN 978-951-740-857-8. [Google Scholar]
- Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch. Intern. Med. 1998, 158, 1789–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiher, J.; Kuntz, B.; Lange, C. Rauchen bei Erwachsenen in Deutschland. J. Health Monit. 2017, 2, 59–64. [Google Scholar] [CrossRef]
- Lindqvist, A.; Sendén, M.G.; Renström, E.A. What is gender, anyway: A review of the options for operationalising gender. Psychol. Sex. 2021, 12, 332–344. [Google Scholar] [CrossRef]
- Eagly, A.H. Psychology of Gender, 2nd ed.; Guilford Press: New York, NY, USA, 2004; ISBN 9781593852443. [Google Scholar]
- Beckmann, K.; Glemser, A.; Heckel, C.; von der Heyde, C.; Hoffmeyer-Zlotnik, J.H.; Schneider, S.; Hanefeld, U.; Herter-Eschweiler, R.; Kühnen, C. Demographische Standards: Eine gemeinsame Empfehlung des ADM, Arbeitskreis Deutscher Markt- und Sozialforschungsinstitute e.V., der Arbeitsgemeinschaft Sozialwissenschaftlicher Institute e.V. (ASI) und des Statistischen Bundesamtes, 6th ed.; Statistisches Bundesamt: Wiesbaden, Germany, 2016. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Muga, M.A.; Owili, P.O.; Hsu, C.-Y.; Rau, H.-H.; Chao, J.C.-J. Dietary patterns, gender, and weight status among middle-aged and older adults in Taiwan: A cross-sectional study. BMC Geriatr. 2017, 17, 268. [Google Scholar] [CrossRef] [Green Version]
- Inelmen, E.M.; Toffanello, E.D.; Enzi, G.; Sergi, G.; Coin, A.; Busetto, L.; Manzato, E. Differences in dietary patterns between older and younger obese and overweight outpatients. J. Nutr. Health Aging 2008, 12, 3–8. [Google Scholar] [CrossRef]
- Giskes, K.; Avendano, M.; Brug, J.; Kunst, A.E. A systematic review of studies on socioeconomic inequalities in dietary intakes associated with weight gain and overweight/obesity conducted among European adults. Obes. Rev. 2010, 11, 413–429. [Google Scholar] [CrossRef]
- Hamulka, J.; Frackiewicz, J.; Stasiewicz, B.; Jeruszka-Bielak, M.; Piotrowska, A.; Leszczynska, T.; Niedzwiedzka, E.; Brzozowska, A.; Wadolowska, L. Socioeconomic, eating- and health-related limitations of food consumption among polish women 60+ years: The ’ABC of Healthy Eating’ Project. Nutrients 2021, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications: London, UK; Thousand Oaks, CA, USA, 2018; ISBN 9781526419514. [Google Scholar]
- Hayes, A.F.; Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav. Res. Methods 2007, 39, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar] [CrossRef]
- Gaertner, B.; Seitz, I.; Fuchs, J.; Busch, M.A.; Holzhausen, M.; Martus, P.; Scheidt-Nave, C. Baseline participation in a health examination survey of the population 65 years and older: Who is missed and why? BMC Geriatr. 2016, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Shatenstein, B. Impact of health conditions on food intakes among older adults. J. Nutr. Elder. 2008, 27, 333–361. [Google Scholar] [CrossRef]
- Larson, N.; Story, M. A review of environmental influences on food choices. Ann. Behav. Med. 2009, 38 (Suppl. 1), S56–S73. [Google Scholar] [CrossRef]
- Grønning, K.; Espnes, G.A.; Nguyen, C.; Rodrigues, A.M.F.; Gregorio, M.J.; Sousa, R.; Canhão, H.; André, B. Psychological distress in elderly people is associated with diet, wellbeing, health status, social support and physical functioning- a HUNT3 study. BMC Geriatr. 2018, 18, 205. [Google Scholar] [CrossRef]
- Liljas, A.E.M.; Walters, K.; Jovicic, A.; Iliffe, S.; Manthorpe, J.; Goodman, C.; Kharicha, K. Engaging ’hard to reach’ groups in health promotion: The views of older people and professionals from a qualitative study in England. BMC Public Health 2019, 19, 629. [Google Scholar] [CrossRef]
- Bocquier, A.; Dubois, C.; Verger, P.; Darmon, N. Improving participation of hard-to-reach older people in diet interventions: The INVITE strategy. Eur. J. Public Health 2019, 29, ckz186–ckz474. [Google Scholar] [CrossRef]
- Mackenbach, J.P. The persistence of health inequalities in modern welfare states: The explanation of a paradox. Soc. Sci. Med. 2012, 75, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Neville, C.E.; McKinley, M.C.; Draffin, C.R.; Gallagher, N.E.; Appleton, K.M.; Young, I.S.; Edgar, J.D.; Woodside, J.V. Participating in a fruit and vegetable intervention trial improves longer term fruit and vegetable consumption and barriers to fruit and vegetable consumption: A follow-up of the ADIT study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, D.; Dickens, E.; Humphrey, A.; Stephenson, T. Increased fruit and vegetable intake among older adults participating in kentucky’s congregate meal site program. Educ. Gerontol. 2016, 42, 771–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yang, Y.; Hu, R.; Long, H.; Wang, N.; Wang, Q.; Mao, Z. Trends and associated factors of dietary knowledge among Chinese older residents: Results from the China Health and Nutrition Survey 2004–2015. Int. J. Environ. Res. Public Health 2020, 17, 8029. [Google Scholar] [CrossRef]
- Beasley, J.M.; Sevick, M.A.; Kirshner, L.; Mangold, M.; Chodosh, J. Congregate meals: Opportunities to help vulnerable older adults achieve diet and physical activity recommendations. J. Frailty Aging 2018, 7, 182–186. [Google Scholar] [CrossRef]
- McHugh Power, J.E.; Lee, O.; Aspell, N.; McCormack, E.; Loftus, M.; Connolly, L.; Lawlor, B.; Brennan, S. RelAte: Pilot study of the effects of a mealtime intervention on social cognitive factors and energy intake among older adults living alone. Br. J. Nutr. 2016, 116, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.A.; Prewitt, T.E.; Boté, E.; West, B.; Iber, F.L. Internal locus of control and social support associated with some dietary changes by elderly participants in a diet intervention trial. J. Am. Diet. Assoc. 2001, 101, 203–208. [Google Scholar] [CrossRef]
- Walton, K.; do Rosario, V.A.; Pettingill, H.; Cassimatis, E.; Charlton, K. The impact of home-delivered meal services on the nutritional intake of community living older adults: A systematic literature review. J. Hum. Nutr. Diet. 2020, 33, 38–47. [Google Scholar] [CrossRef]
- Zhu, H.; An, R. Impact of home-delivered meal programs on diet and nutrition among older adults: A review. Nutr Health 2013, 22, 89–103. [Google Scholar] [CrossRef]
- Burke, L.; Lee, A.H.; Jancey, J.; Xiang, L.; Kerr, D.A.; Howat, P.A.; Hills, A.P.; Anderson, A.S. Physical activity and nutrition behavioural outcomes of a home-based intervention program for seniors: A randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.G.; Rossi, J.S.; Greaney, M.L.; Riebe, D.A.; Greene, G.W.; Saunders, S.D.; Lees, F.D.; Nigg, C.R. Intervening on exercise and nutrition in older adults: The Rhode Island SENIOR Project. J. Aging Health 2005, 17, 753–778. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.H. Promoting food intake in older adults living in the community: A review. Appl. Physiol. Nutr. Metab. 2007, 32, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Loss, J.; Brew-Sam, N.; Metz, B.; Strobl, H.; Sauter, A.; Tittlbach, S. Capacity building in community stakeholder groups for increasing physical activity: Results of a qualitative study in two German communities. Int. J. Environ. Res. Public Health 2020, 17, 2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Valid Values | Missing Values (%) | Mn | Mx | M | SD |
---|---|---|---|---|---|---|
Age (in years) | 1635 | 3.1 | 65 | 98 | 76.4 | 6.3 |
Gender b | 1661 | 1.5 | 0 | 1 | 0.52 a | 0.5 |
Partnership status c | 1661 | 1.5 | 0 | 1 | 0.72 a | 0.5 |
Educational level | 1666 | 1.2 | 1 | 7 | 4.1 | 3.3 |
Income | 1593 | 5.6 | 1 | 7 | 4.0 | 1.9 |
Health locus of control | 1624 | 3.7 | −3 | 3 | 0.2 | 0.8 |
Social support | 1647 | 2.4 | 3 | 14 | 9.7 | 2.0 |
Smoking status d | 1674 | 0.8 | 0 | 1 | 0.06 a | 0.2 |
Alcohol use | 1516 | 10.1 | 0 | 11 | 2.9 | 1.9 |
Physical activity | 1628 | 3.5 | 2 | 12 | 8.2 | 2.4 |
Dietary risk behavior | 1567 | 1.2 | −2 | 3 | 0.0 | 1.0 |
Food Groups | Valid | Several Times/Day | Once/Day | Several Times/Week | Once/Week | Rarely | Never |
---|---|---|---|---|---|---|---|
n | n | n | n | n | n | n | |
(%) | (%) | (%) | (%) | (%) | (%) | (%) | |
Vegetables/fruit | 1648 | 552 | 698 | 346 | 33 | 17 | 2 |
(98) | (34) | (42) | (21) | (2) | (1) | (0.1) | |
Whole grains | 1600 | 148 | 494 | 445 | 148 | 315 | 50 |
(95) | (9) | (31) | (28) | (9) | (20) | (3) | |
Dairy products | 1620 | 313 | 724 | 424 | 55 | 77 | 27 |
(96) | (19) | (45) | (26) | (3) | (4.8) | (2) |
Gender | Age | Socioeconomic Status | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | 65–79 | 80–98 | Low | Middle | High | ||||
n | n | p | n | n | p | n | n | n | p | |
(%) | (%) | (%) | (%) | (%) | (%) | (%) | ||||
Valid values | 785 | 860 | 1110 | 511 | 296 | 928 | 304 | |||
Dietary risk low in vegetables/fruit | 595 | 499 | <0.001 | 729 | 353 | 0.18 | 205 | 617 | 185 | 0.08 |
(76) | (58) | (66) | (69) | (69) | (67) | (61) | ||||
Valid values | 771 | 829 | 1086 | 490 | 285 | 901 | 304 | |||
Dietary risk low in whole grains | 712 | 740 | 0.03 | 985 | 446 | 0.84 | 266 | 812 | 275 | 0.26 |
(92) | (89) | (91) | (91) | (93) | (90) | (91) | ||||
Valid values | 775 | 845 | 1095 | 498 | 287 | 914 | 302 | |||
Dietary risk low in dairy products | 673 | 634 | <0.001 | 889 | 395 | 0.38 | 241 | 740 | 230 | 0.05 |
(87) | (75) | (81) | (79) | (84) | (81) | (76) |
Gender | Age | Socioeconomic Status | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | 65–79 | 80–98 | Low | Middle | High | ||||
M | M | p | M | M | p | M | M | M | p | |
(SD) | (SD) | (SD) | (SD) | (SD) | (SD) | (SD) | ||||
Vegetables/fruit | 4.9 | 5.2 | <0.001 | 5.1 | 5.0 | 0.27 | 4.9 | 5.1 | 5.2 | 0.001 |
(0.9) | (0.8) | (0.8) | (0.9) | (1.0) | (0.8) | (0.8) | ||||
Whole grain products | 3.8 | 4.0 | <0.001 | 3.9 | 3.9 | 0.80 | 3.8 | 4.0 | 4.0 | 0.24 |
(1.4) | (1.4) | (1.3) | (1.4) | (1.4) | (1.3) | (1.3) | ||||
Dairy products | 4.5 | 4.8 | <0.001 | 4.7 | 4.7 | 0.94 | 4.5 | 4.7 | 4.8 | 0.003 |
(1.1) | (1.1) | (1.1) | (1.1) | (1.1) | (1.1) | (1.0) | ||||
Valid values (n) | 791 | 870 | 1116 | 519 | 309 | 931 | 307 |
Components | Loadings |
---|---|
Vegetables/fruit | 0.70 |
Whole grain products | 0.74 |
Dairy products | 0.72 |
Model | M 1 | M 2 | M 3 | M 4 | ||||
---|---|---|---|---|---|---|---|---|
ß | p | ß | p | ß | p | ß | p | |
Sociodemographic factors | ||||||||
Age | −0.01 | 0.74 | −0.03 | 0.18 | −0.05 | 0.06 | −0.04 | 0.10 |
Gender a | −0.20 | <0.001 | −0.27 | <0.001 | −0.28 | <0.001 | −0.22 | <0.001 |
Partnership status b | −0.03 | 0.34 | −0.03 | 0.27 | −0.03 | 0.35 | −0.01 | 0.62 |
Socioeconomic factors | ||||||||
Educational level | −0.20 | <0.001 | −0.19 | <0.001 | −0.17 | <0.001 | ||
Income | −0.03 | 0.21 | −0.02 | 0.35 | −0.02 | 0.47 | ||
Psychosocial factors | ||||||||
Health locus of control | −0.05 | 0.049 | −0.01 | 0.67 | ||||
Social support | −0.07 | 0.007 | −0.06 | 0.01 | ||||
Behavioral factors | ||||||||
Smoking status c | 0.07 | 0.01 | ||||||
Alcohol use | 0.15 | <0.001 | ||||||
Physical activity | −0.24 | <0.001 | ||||||
R2 | 0.04 | 0.08 | 0.09 | 0.16 | ||||
Adj. R2 | 0.04 | 0.07 | 0.08 | 0.16 | ||||
ΔAdj. R2 | 0.04 | 0.03 | 0.01 | 0.08 | ||||
ΔF | 22.61 | <0.001 | 34.53 | <0.001 | 7.46 | <0.001 | 51.71 | <0.001 |
Gender | Male | Female | ||
---|---|---|---|---|
n | 802 | 885 | ||
ß | p | ß | p | |
Sociodemographic factors | ||||
Age | −0.09 | 0.02 | 0.00 | 0.90 |
Partnership status a | −0.07 | 0.11 | 0.02 | 0.44 |
Socioeconomic factors | ||||
Educational level | −0.17 | <0.001 | −0.16 | <0.001 |
Income | −0.04 | 0.25 | 0.01 | 0.89 |
Psychosocial factors | ||||
Health locus of control | −0.00 | 0.95 | −0.02 | 0.54 |
Social support | −0.03 | 0.46 | −0.09 | 0.003 |
Behavioral factors | ||||
Smoking status b | 0.06 | 0.09 | 0.07 | 0.08 |
Alcohol use | 0.15 | <0.001 | 0.16 | <0.001 |
Physical activity | −0.19 | <0.001 | −0.28 | <0.001 |
R2 | 0.13 | 0.15 | ||
Adj. R2 | 0.12 | 0.14 |
Age | 65–79 Years | 80–98 Years | ||
---|---|---|---|---|
n | 1141 | 546 | ||
ß | p | ß | p | |
Sociodemographic factors | ||||
Gender a | −0.24 | <0.001 | −0.17 | 0.002 |
Partnership status b | −0.02 | 0.57 | 0.01 | 0.78 |
Socioeconomic factors | ||||
Educational level | −0.19 | <0.001 | −0.12 | 0.01 |
Income | −0.01 | 0.79 | −0.04 | 0.42 |
Psychosocial factors | ||||
Health locus of control | 0.02 | 0.62 | −0.06 | 0.20 |
Social support | −0.08 | 0.007 | −0.03 | 0.53 |
Behavioral factors | ||||
Smoking status c | 0.07 | 0.01 | 0.06 | 0.55 |
Alcohol use | 0.16 | <0.001 | 0.13 | 0.01 |
Physical activity | −0.25 | <0.001 | −0.21 | <0.001 |
R2 | 0.18 | 0.12 | ||
Adj. R2 | 0.18 | 0.11 |
SES | Low | Middle | High | |||
---|---|---|---|---|---|---|
n | 348 | 966 | 373 | |||
ß | p | ß | p | ß | p | |
Sociodemographic factors | ||||||
Age | −0.07 | 0.29 | −0.00 | 0.99 | −0.08 | 0.25 |
Gender a | −0.17 | 0.03 | −0.21 | <0.001 | −0.13 | 0.14 |
Partnership status b | −0.01 | 0.91 | 0.00 | 0.95 | −0.03 | 0.58 |
Psychosocial factors | ||||||
Health locus of control | −0.02 | 0.76 | −0.01 | 0.79 | −0.04 | 0.47 |
Social support | −0.13 | 0.04 | −0.04 | 0.22 | −0.08 | 0.14 |
Behavioral factors | ||||||
Smoking status c | 0.11 | 0.06 | 0.05 | 0.17 | 0.07 | 0.34 |
Alcohol use | 0.25 | <0.001 | 0.12 | 0.001 | 0.09 | 0.09 |
Physical activity | −0.33 | <0.001 | −0.22 | <0.001 | −0.21 | <0.001 |
R2 | 0.25 | 0.13 | 0.11 | |||
Adj. R2 | 0.23 | 0.12 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geigl, C.; Loss, J.; Leitzmann, M.; Janssen, C. Social Factors of Dietary Risk Behavior in Older German Adults: Results of a Multivariable Analysis. Nutrients 2022, 14, 1057. https://doi.org/10.3390/nu14051057
Geigl C, Loss J, Leitzmann M, Janssen C. Social Factors of Dietary Risk Behavior in Older German Adults: Results of a Multivariable Analysis. Nutrients. 2022; 14(5):1057. https://doi.org/10.3390/nu14051057
Chicago/Turabian StyleGeigl, Christoph, Julika Loss, Michael Leitzmann, and Christian Janssen. 2022. "Social Factors of Dietary Risk Behavior in Older German Adults: Results of a Multivariable Analysis" Nutrients 14, no. 5: 1057. https://doi.org/10.3390/nu14051057
APA StyleGeigl, C., Loss, J., Leitzmann, M., & Janssen, C. (2022). Social Factors of Dietary Risk Behavior in Older German Adults: Results of a Multivariable Analysis. Nutrients, 14(5), 1057. https://doi.org/10.3390/nu14051057