Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets
Abstract
:1. Introduction
2. Hydrolyzed Proteins, Peptide Pool and Their Respective Anti-Inflammatory Mechanisms of Action
3. Anti-Inflammatory Mechanisms of Action of Purified Peptides Obtained from Hydrolyzed Proteins of Plant Origin
4. Metabolic Pathways of Inflammation in Obesity: Potential Therapeutic Targets for Hydrolyzed Proteins and Plant Peptides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandevijvere, S.; Kraak, V. Future directions to prevent obesity within the context of the Global Syndemic. Obes. Rev. 2019, 20, 3–5. [Google Scholar] [CrossRef]
- World Obesity Federation Global Obesity Observatory the Economic Impact of Overweight & Obesity. Available online: https://data.worldobesity.org/costs/#rlslider_2 (accessed on 15 January 2021).
- World Health Organization Obesity and Overweight: Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 14 January 2021).
- WHO. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 14 January 2021).
- Guillet, C.; Masgrau, A.; Walrand, S.; Boirie, Y. Impaired protein metabolism: Interlinks between obesity, insulin resistance and inflammation. Obes. Rev. 2012, 13, 51–57. [Google Scholar] [CrossRef]
- Pereira, S.S.; Alvarez-Leite, J.I. Low-Grade Inflammation, Obesity, and Diabetes. Curr. Obes. Rep. 2014, 3, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, P.; Wu, Y.; Wang, L. Metabolic tissue-resident CD8+ T cells: A key player in obesity-related diseases. Obes. Rev. 2020, 22, e13133. [Google Scholar] [CrossRef]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef] [PubMed]
- Tavernarakis, N. Inflammation brakes mitochondrial metabolism in obesity. Nat. Immunol. 2020, 21, 1143–1145. [Google Scholar] [CrossRef]
- De Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Chronic and degenerative diseases: Obesity, inflammation and the immune system. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, J.; Śledzińska, E.; Baturo, A.; Jończyk, I.; Maleszko, A.; Samborski, P.; Begier-Krasińska, B.; Dobrowolska, A. Obesity and inflammation. Eur. Cytokine Netw. 2018, 29, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Jack, B.U.; Malherbe, C.J.; Mamushi, M.; Muller, C.J.F.; Joubert, E.; Louw, J.; Pheiffer, C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed. Pharmacother. 2019, 120, 109439. [Google Scholar] [CrossRef]
- Nascimento, S.S.C. Mecanismos de Ação de Agentes Anti-Inflamatórios no Tecido Adiposo. Masters Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 30 March 2021. [Google Scholar]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Kopaei, M.R. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Nijhawan, P.; Behl, T. Nutraceuticals in the management of obesity. Obes. Med. 2020, 17, 100168. [Google Scholar] [CrossRef]
- Hardy, G. Nutraceuticals and functional foods: Introduction and meaning. Nutrition 2000, 16, 688–689. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Díaz, A.; Del-Toro-Sánchez, C.L.; Rodríguez-Figueroa, J.C.; Valdéz-Hurtado, S.; Wong-Corral, F.J.; Borboa-Flores, J.; González-Osuna, M.F.; Perez-Perez, L.M.; González-Vega, R.I. Legume Proteins as a Promising Source of Anti-Inflammatory Peptides. Curr. Protein Pept. Sci. 2019, 20, 1204–1217. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 2018, 245, 205–222. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karas, M.; Rybczynska-Tkaczyk, K.; Zielinska, E.; Zielinski, D. Current trends of bioactive peptides–New sources and therapeutic effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef]
- Zhu, W.; Ren, L.; Zhang, L.; Qiao, Q.; Farooq, M.Z.; Xu, Q. The Potential of Food Protein-Derived Bioactive Peptides against Chronic Intestinal Inflammation. Mediat. Inflamm. 2020, 2020, 6817156. [Google Scholar] [CrossRef]
- Matemu, A.; Nakamura, S.; Katayama, S. Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants 2021, 10, 316. [Google Scholar] [CrossRef]
- Modgil, R.; Tanwar, B.; Goyal, A.; Kumar, V. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2020; ISBN 978-981-15-4193-3. [Google Scholar]
- Yi, G.; Li, H.; Liu, M.; Ying, Z.; Zhang, J.; Liu, X. Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-kappa B activation. J. Food Biochem. 2020, 44, e13289. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Villaluenga, C.; Dia, V.P.; Berhow, M.; Bringe, N.A.; de Mejia, E.G. Protein hydrolysates from β-Conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol. Nutr. Food Res. 2009, 53, 1007–1018. [Google Scholar] [CrossRef]
- Oseguera-Toledo, M.E.; De Mejia, E.G.; Dia, V.P.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem. 2011, 127, 1175–1185. [Google Scholar] [CrossRef]
- Millán-Linares, M.D.C.; Yust, M.D.M.; Alcaide-Hidalgo, J.M.; Millán, F.; Pedroche, J. Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food Chem. 2014, 151, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 6th ed.; W.H.Freeman and Company, Ed.; Worth Publishers: New York, NY, USA, 2014; ISBN 9781429234146. [Google Scholar]
- Millán-Linares, M.d.C.; Bermúdez, B.; Yust, M.d.M.; Millán, F.; Pedroche, J. Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. J. Funct. Foods 2014, 8, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Millán-Linares, M.d.C.; Yust, M.d.M.; Pedroche, J.; Millán, F.; Lardone, P.J.; Carrera-Sánchez, C.; Guerrero, J.M.; Carrillo-Vico, A. Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Res. Int. 2019, 126, 108585. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci. 2017, 18, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobore, T.O. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav. Brain Res. 2020, 384, 112560. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Santos-Sánchez, G.; Pedroche, J.; Fernández-Pachón, M.S.; Millán, F.; Millán-Linares, M.C.; Lardone, P.J.; Bejarano, I.; Guerrero, J.M.; et al. Immunomodulatory and antioxidant properties of wheat gluten protein hydrolysates in human peripheral blood mononuclear cells. Nutrients 2020, 12, 1673. [Google Scholar] [CrossRef]
- Malalgoda, M.; Manthey, F.; Simsek, S. Reducing the celiac disease antigenicity of wheat. Cereal Chem. 2018, 95, 49–58. [Google Scholar] [CrossRef]
- Costa, I.S.; Medeiros, A.F.; Piuvezam, G.; Medeiros, G.C.; Maciel, B.L.; Morais, A.H.A.M. Insulin-Like Proteins in Plant Sources: A Systematic Review. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3421–3431. [Google Scholar] [CrossRef] [PubMed]
- Millán-Linares, M.d.C.; Millán, F.; Pedroche, J.; del Yust, M. GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. J. Funct. Foods 2015, 18, 358–367. [Google Scholar] [CrossRef] [Green Version]
- La Paz, S.M.-D.; Lemus-Conejo, A.; Toscano, R.; Pedroche, J.; Millan, F.; Millan-Linares, M.C. GPETAFLR, an octapeptide isolated from: Lupinus angustifolius L. Protein hydrolysate, promotes the skewing to the M2 phenotype in human primary monocytes. Food Funct. 2019, 10, 3303–3311. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, K.; Sommer, M.; Strobel, S.; Thrum, S.; Blüher, M.; Wagner, U.; Rossol, M. Perturbation of the monocyte compartment in human obesity. Front. Immunol. 2019, 10, 1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, S.J.; Kim, C.S.; Choi, M.S.; Park, T.; Sung, M.K.; Yun, J.W.; Yoo, H.; Mine, Y.; Yu, R. The Soy Peptide Phe-Leu-Val Reduces TNFα-Induced Inflammatory Response and Insulin Resistance in Adipocytes. J. Med. Food 2016, 19, 678–685. [Google Scholar] [CrossRef]
- Hashidume, T.; Sakano, T.; Mochizuki, A.; Ito, K.; Ito, S.; Kawarasaki, Y.; Miyoshi, N. Identification of soybean peptide leginsulin variants in different cultivars and their insulin-like activities. Sci. Rep. 2018, 8, 16847. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Hirano, H. Plant basic 7 S globulin-like proteins have insulin and insulin-like growth factor binding activity. FEBS Lett. 1991, 294, 210–212. [Google Scholar] [CrossRef] [Green Version]
- Velliquette, R.A.; Fast, D.J.; Maly, E.R.; Alashi, A.M.; Aluko, R.E. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem. 2020, 319, 126563. [Google Scholar] [CrossRef] [PubMed]
- Gualano, M.; Berti, F.; Stramentinoli, G. Anti-inflammatory activity of S-adenosyl-L-methionine in animal models: Possible interference with the eicosanoid system. Int. J. Tissue React. 1985, 7, 41–46. [Google Scholar]
- Ouyang, Y.; Wu, Q.; Li, J.; Sun, S.; Sun, S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif. 2020, 53, e12891. [Google Scholar] [CrossRef]
- Liang, Q.; Chalamaiah, M.; Liao, W.; Ren, X.; Ma, H.; Wu, J. Zein hydrolysate and its peptides exert anti-inflammatory activity on endothelial cells by preventing TNF-α-induced NF-κB activation. J. Funct. Foods 2020, 64, 103598. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose Tissue as an Endocrine Organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Jakab, J.; Miškić, B.; Mikšić, Š.; Juranić, B.; Ćosić, V.; Schwarz, D.; Včev, A. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 67–83. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Yu, M.; Schugar, R.C.; Qian, W.; Tang, F.; Liu, W.; Yang, H.; McDowell, R.E.; Zhao, J.; et al. IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nat. Immunol. 2020, 21, 1219–1231. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, H.; Zhao, J.; Xiao, N.; Roychowdhury, S.; Schmitt, D.; Hu, B.; Harding, C.V.; Hise, A.G.; Hazen, S.L.; et al. MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J. Exp. Med. 2014, 211, 887–907. [Google Scholar] [CrossRef] [Green Version]
- Mollaei, M.; Abbasi, A.; Hassan, Z.M.; Pakravan, N. The intrinsic and extrinsic elements regulating inflammation. Life Sci. 2020, 260, 118258. [Google Scholar] [CrossRef]
- McKernan, K.; Varghese, M.; Patel, R.; Singer, K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 2020, 9, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.; Eter, L.; Lanzetta, N.; Abrishami, S.; Varghese, M.; McKernan, K.; Muir, L.; Lane, J.; Lumeng, C.N.; Singer, K. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c adipose tissue macrophage production in obese mice. J. Biol. Chem. 2018, 293, 8775–8786. [Google Scholar] [CrossRef] [Green Version]
- Rogero, M.M.; Calder, P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Seong, J.; Kang, J.Y.; Sun, J.S.; Kim, K.W. Hypothalamic inflammation and obesity: A mechanistic review. Arch. Pharm. Res. 2019, 42, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa Laboratories. KEGG PATHWAY: Insulin Resistance. Available online: https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04931&keyword=stat3 (accessed on 4 February 2021).
- Gurzov, E.N.; Stanley, W.J.; Pappas, E.G.; Thomas, H.E.; Gough, D.J. The JAK/STAT pathway in obesity and diabetes. FEBS J. 2016, 283, 3002–3015. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018, 27, 1984–2009. [Google Scholar] [CrossRef] [Green Version]
- Muller, R. JAK inhibitors in 2019, synthetic review in 10 points. Eur. J. Intern. Med. 2019, 66, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kotyla, P.J.; Islam, M.A.; Engelmann, M. Clinical aspects ofJanuaryus Kinase (JAK) inhibitors in the cardiovascular system in patients with rheumatoid arthritis. Int. J. Mol. Sci. 2020, 21, 7390. [Google Scholar] [CrossRef]
- Bharadwaj, U.; Kasembeli, M.M.; Robinson, P.; Tweardy, D.J. TargetingJanuaryus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol. Rev. 2020, 72, 486–526. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Tzameli, I.; Bjørbæk, C.; Flier, J.S. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J. Biol. Chem. 2004, 279, 34733–34740. [Google Scholar] [CrossRef] [Green Version]
- Ying, W.; Fu, W.; Lee, Y.S.; Olefsky, J.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat. Rev. Endocrinol. 2020, 16, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa Laboratories KEGG. PATHWAY: Th17 Cell Differentiation-Homo Sapiens (Human). Available online: https://www.genome.jp/kegg-bin/show_pathway?hsa04659 (accessed on 4 February 2021).
- Winer, S.; Chan, Y.; Paltser, G.; Truong, D.; Tsui, H.; Bahrami, J.; Dorfman, R.; Wang, Y.; Zielenski, J.; Mastronardi, F.; et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 2009, 15, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Dodington, D.W.; Desai, H.R.; Woo, M. JAK/STAT–Emerging Players in Metabolism. Trends Endocrinol. Metab. 2018, 29, 55–65. [Google Scholar] [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Boxi, A.; Parikh, I.; Sivaprasad, R.; Shreekar, S.K. Current Trends in Protein Purification: A Review. Int. J. Sci. Res. Sci. Technol. 2020, 7, 279–310. [Google Scholar] [CrossRef]
- Prashanth, G.; Vastrad, B.; Tengli, A.; Vastrad, C.; Kotturshetti, I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr. Disord. 2021, 21, 80. [Google Scholar] [CrossRef]
- Dong, Z.; Lei, X.; Kujawa, S.A.; Bolu, N.; Zhao, H.; Wang, C. Identification of core gene in obese type 2 diabetes patients using bioinformatics analysis. Adipocyte 2021, 10, 310–321. [Google Scholar] [CrossRef]
- Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; et al. Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform. 2021, 22, 642–663. [Google Scholar] [CrossRef] [PubMed]
- Sookaromdee, P.; Wiwanitkit, V. Bioinformatics Analysis for Screening of Therapeutic Drugs in COVID-19. Arch. Med. Res. 2021, 52, 572. [Google Scholar] [CrossRef]
- Morais, A.H.A.; Medeiros, A.F.; Medeiros, I.; Lima, V.C.O.; Luz, A.B.S.; Maciel, B.L.L.; Passos, T.S. Tamarind (Tamarindus indica L.) Seed a Candidate Protein Source with Potential for Combating SARS-CoV-2 Infection in Obesity. Drug Target Insights 2021, 15, 5–12. [Google Scholar] [CrossRef]
Vegetable Protein | Cell Culture/Enzyme Assay | Enzymes Used in Hydrolysis | Outcomes |
---|---|---|---|
Hydrolyzed soy protein (SPH) [25] | Macrophage cells, RAW 264.7 | Alcalase 2.4 L | ↓ Expression of LPL and FAS genes ↓ Production of NO and iNOS ↓ Production of PGE2 and COX-2 |
Common beans (Phaseolus vulgaris L.), varieties Negro 8025 (N) and Pinto Durango (P) [26] | Macrophage cells, RAW 264.7 | Alcalase 2.4 L | ↓ NO production ↓ Production PGE2 and COX-2 ↓ Nuclear translocation of NF-κB subunits, p50 and p65 ↓ NF-κB activation |
Seeds of lupine (Lupinus angustifolius L.) (LPH) [27] | In vitro inhibition of enzymes | Izyme AL and Alcalase 2.4 L | ↓ PLA2 and thrombin activity when LPH hydrolyzed with Izyme ↓ Transglutaminase activity when LPH hydrolyzed with Izyme and Alcalase ⊗ COX-2 activity by LPH without distinction of time or type of hydrolysis |
Seeds of lupine (Lupinus angustifolius L.) (LPH) [29] | THP-1 monocytes (human acute monocytic leukemia) (ATCC®-TIB-202™) | Izyme AL and Alcalase 2.4 L | ↑ CCL18 expression ↓ Expression of TNF, IL-6 and IL-1β ↓ NO production ↓ CCR2 expression |
Seeds of lupine (Lupinus angustifolius L.) (LPH) [30] | PBMCs of 53 healthy adult donors | Alcalase 2.4 L | ↓ Expression of IL-2, IL-12, IFN-γ, TNF, IL-17, IL-9 and IL-13 ↑ Gene expression and SOD and CAT activity ↑ TAC ↑ Protection against cell death mediated by oxidative stress induced by H2O2 |
Wheat gluten protein (WGPHs) [33] | PBMCs of 39 healthy adult donors | Alcalase 2.4 L | ↓ Production of IFN-γ and IL-17 ↓ iNOS gene expression and NO production ↓ Cell proliferation of Th1 and Th17 ↑ GR gene expression ↑ TAC, ORAC, FRAP e TEAC ↑ Th2/Th1 and Th2/Th17 Balance Sheet |
Pool of soy-derived peptides (Glycine max) (SBP) [24] | Macrophage cells, RAW 264.7 | The peptide pool was acquired commercially | ↓ Gene expression and activity of TNF-α, IL-1β and IL-6 ↓ LY96 gene expression ↓ TLR4 expression ↓ Phosphorylation of IκBα ↓ P-85, P-AKT and P-IKKe expression |
Vegetable Protein | Cell Culture | Peptide(s) | Outcomes |
---|---|---|---|
Seeds of lupine (Lupinus angustifolius L.) (LPH) [36] | Thp-1 monocytes (acute monocytic human leukemia) (ATCC®-TIB-202™). | GPETAFLR | ↓ Expression of TNF, IL-1β and CCL2. ↑ IL-10 expression. ↓ NO production
|
Soy (Glicine max) [39] | Macrophage cells, RAW 264.7 and adipocytes 3T3-L1 | FLV | ⊗ Release of TNF-α, MCP-1, IL-1β and IL-6 ↑ Increasing IL-10 production and gene expression ⊗ Signaling molecules JNK and IKK ⊗ IκBα degradation ↑ Insulin response and glucose uptake
|
Soja (Glycine max)–variant leginsulin (Leg_1_37 and Leg_1_36) [40] | Rat L6 and mouse C2C12 skeletal muscle cells. | ADCNGACSPFEVPPCRSRDCRCVPIGLFVGFCIHPTG and ADCNGACSPFEVPPCRSRDCRCVPIGLFVGFCIHPT | ◊ Akt ↑ GLUT4 translocations to the plasma membrane.
|
Seeds of lupine (Lupinus angustifolius L.) [37] | PBMCs from healthy adult donors | GPETAFLR | ↓ Population of classical monocytes (CD14++CD16−). ↓ Expression of CCR2 and CCL2. ↑ Production and expression of IL-10 genes. ↓ Gene expression and production of IL-1β, IL-6 and TNF-α. ↓ Pro-inflammatory activity of the M1-like phenotype. |
Sunflower seed (Helianthus annuus L.) [42] | Thp-1 monocytes (acute monocytic human leukemia) (ATCC®-TIB-202™) | YFVP, SGRDP, MVWGP and TGSYTEGWS |
↓ Expression of CD14 and CD86
|
Corn (Zein) [45] | Endothelial cells, EA.hy926 (CRL-2922™), and human monoblast cell lineage, U937 (ATCC® CRL-1593.2™) | PPYLSP, IIGGAL and FLPPVTSMG. | ↓ Expression of ICAM-1 and VCAM-1 induced by TNF-α. ↓ Monocyte stems from EA.hy926 cells. The peptide with Met had the best result. ↓ TNF-α-induced superoxide formation in various degrees in EA.hy926 cells. ↓ Expression of TNFR1 in EA.hy926 cells.
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Medeiros, A.F.; de Queiroz, J.L.C.; Maciel, B.L.L.; de Araújo Morais, A.H. Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients 2022, 14, 690. https://doi.org/10.3390/nu14030690
de Medeiros AF, de Queiroz JLC, Maciel BLL, de Araújo Morais AH. Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients. 2022; 14(3):690. https://doi.org/10.3390/nu14030690
Chicago/Turabian Stylede Medeiros, Amanda Fernandes, Jaluza Luana Carvalho de Queiroz, Bruna Leal Lima Maciel, and Ana Heloneida de Araújo Morais. 2022. "Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets" Nutrients 14, no. 3: 690. https://doi.org/10.3390/nu14030690
APA Stylede Medeiros, A. F., de Queiroz, J. L. C., Maciel, B. L. L., & de Araújo Morais, A. H. (2022). Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients, 14(3), 690. https://doi.org/10.3390/nu14030690