Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Population and Clinical Parameters
2.2. Dietary and Physical Activity Assessment
2.3. Biochemical Evaluation and Glucose Monitoring Parameters
2.4. Statistical Analysis
3. Results
3.1. Correlations and Regressions
3.1.1. Weight and BMI
3.1.2. Glucose Control
3.1.3. Blood Pressure and Others
4. Discussion
4.1. Dietary Factors Associated with the Risk of Obesity
4.2. Dietary Factors Associated with the Glucose Control
4.3. Dietary Factors Associated with Blood Pressure
4.4. Family, Social Factors and Physical Activity
4.5. Study Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabelea, D. The accelerating epidemic of childhood diabetes. Lancet 2009, 373, 1999–2000. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html (accessed on 17 December 2021).
- American Diabetes Association. Standards of medical care in diabetes, 2021. Diabetes Care 2020, 44 (Suppl. 1), S1–S2. [Google Scholar]
- Società Italiana di Diabetologia (SID). Standard Italiani per la Cura del Diabete Mellito. Available online: https://www.siditalia.it/pdf/StandarddiCuraAMD-SID2018_protetto2.pdf (accessed on 14 December 2021).
- Smart, C.E.; Annan, F.; Higgins, L.A.; Jelleryd, E.; Lopez, M.; Acerini, C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes. Pediatr. Diabetes 2018, 19, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.N.; Volkening, L.K.; Anderson, B.J.; Nansel, T.; Weissberg-Benchell, J.; Wysocki, T.; Laffel, L.M.B.; Steering Committee for the Family Management of Childhood Diabetes Study. Dietary Behaviors Predict Glycemic Control in Youth With Type 1 Diabetes. Diabetes Care 2008, 31, 1318–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovner, A.J.; Nansel, T.R.; Mehta, S.N.; Higgins, L.A.; Haynie, L.D.; Laffel, L.M. Development and Validation of the Type 1 Diabetes Nutrition Knowledge Survey. Diabetes Care 2012, 35, 1643–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, M.J.; MacLeod, J.; Evert, A.; Brown, C.; Gradwell, E.; Handu, D.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J. Acad. Nutr. Diet. 2017, 117, 1659–1679. [Google Scholar] [CrossRef]
- Ranjan, A.; Schmidt, S.; Damm-Frydenberg, C.; Steineck, I.; Clausen, T.R.; Holst, J.J.; Madsbad, S.; Nørgaard, K. Low-Carbohydrate Diet Impairs the Effect of Glucagon in the Treatment of Insulin-Induced Mild Hypoglycemia: A Randomized Crossover Study. Diabetes Care 2017, 40, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Cadario, F.; Prodam, F.; Pasqualicchio, S.; Bellone, S.; Bonsignori, I.; Demarchi, I.; Monzani, A.; Bona, G. Lipid profile and nutritional intake in children and adolescents with Type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J. Endocrinol. Investig. 2012, 35, 160–168. [Google Scholar] [CrossRef]
- Toobert, D.J.; Glasgow, R.E.; Strycker, L.A.; Barrera, M.; Radcliffe, J.L.; Wander, R.C.; Bagdade, J.D. Biologic and quality-of-life outcomes from the Mediterranean Lifestyle Program: A randomized clinical trial. Diabetes Care 2003, 26, 2288–2293. [Google Scholar] [CrossRef] [Green Version]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Di Palo, C.; Giugliano, D.; Group for the Campanian Postprandial Hyperglycemia Study. Adherence to a Mediterranean diet and glycaemic control in Type 2 diabetes mellitus. Diabet. Med. 2009, 26, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, B.; Thanopoulou, A.; Anastasiou, E.; Assaad-Khalil, S.; Albache, N.; Bachaoui, M.; Slama, C.B.; El Ghomari, H.; Jotic, A.; Lalic, N.; et al. Relation of the Mediterranean diet with the incidence of gestational diabetes. Eur. J. Clin. Nutr. 2014, 68, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenaker, D.A.J.M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Soedamah-Muthu, S.S.; EURODIAB Prospective Complications Study Group. Dietary saturated fat and fibre and risk of cardiovascular disease and all-cause mortality among type 1 diabetic patients: The EURODIAB Prospective Complications Study. Diabetologia 2012, 55, 2132–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, V.W.; Lamichhane, A.P.; Crandell, J.L.; Couch, S.C.; Liese, A.D.; The, N.S.; Tzeel, B.A.; Dabelea, D.; Lawrence, J.M.; Marcovina, S.M.; et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: The SEARCH Nutrition Ancillary Study. Eur. J. Clin. Nutr. 2016, 70, 802–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, T.L.; Crandell, J.L.; Bell, R.A.; Mayer-Davis, E.J.; Dabelea, D.; Liese, A.D. Study Group for the SEARCH for Diabetes in Youth. Change in DASH diet score and cardiovascular risk factors in youth with type 1 and type 2 diabetes mellitus: The SEARCH for Diabetes in Youth Study. Nutr. Diabetes 2013, 3, e91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Hagströmer, M.; Bergman, P.; De Bourdeaudhuij, I.; Ortega, F.B.; Ruiz, J.R.; Manios, Y.; Rey-López, J.P.; Phillipp, K.; von Berlepsch, J.; Sjöström, M.; et al. Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: The HELENA Study. Int. J. Obes. 2008, 32, S42–S48. [Google Scholar] [CrossRef] [Green Version]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadrone, P.; Spinelli, A.; Buoncristiano, M.; Lauria, L.; Pierannunzio, D.; Galeone, D. Centro Nazionale per la Prevenzione delle Malattie e la Promozione della Salute. Okkio alla Salute: I Dati Nazionali 2016. Available online: https://www.epicentro.iss.it/okkioallasalute/Dati2016 (accessed on 30 July 2018).
- Spinelli, A.; Nardone, P. Centro Nazionale per la Prevenzione delle Malattie e la Promozione della Salute. Okkio alla Salute: I Risultati dell’Indagine 2019 in Liguria. Available online: https://www.epicentro.iss.it/okkioallasalute/indagine-2019-report-liguria (accessed on 30 July 2018).
- Roser, M.; Ritchie, H. Burden of Disease. 2016. Available online: https://ourworldindata.org/burden-of-disease (accessed on 12 December 2021).
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean Diet in children and adolescents: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Archero, F.; Ricotti, R.; Solito, A.; Carrera, D.; Civello, F.; Di Bella, R.; Bellone, S.; Prodam, F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients 2018, 10, 1322. [Google Scholar] [CrossRef] [Green Version]
- Oza, C.; Khadilkar, V.; Karguppikar, M.; Ladkat, D.; Gondhalekar, K.; Shah, N.; Khadilkar, A. Prevalence of metabolic syndrome and predictors of metabolic risk in Indian children, adolescents and youth with type 1 diabetes mellitus. Endocrine 2021, 5. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, E.S.; Rigby, A.S.; Atkin, S.L. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care 2007, 30, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Reinehr, T.; Holl, R.W.; Roth, C.L.; Wiesel, T.; Stachow, R.; Wabitsch, M.; Andler, W.; DPV-Wiss Study Group. Insulin resistance in children and adolescents with type 1 diabetes mellitus: Relation to obesity. Pediatr. Diabetes 2005, 6, 5–12. [Google Scholar] [CrossRef]
- Fröhlich-Reiterer, E.E.; Rosenbauer, J.; Bechtold-Dalla Pozza, S.; Hofer, S.E.; Schober, E.; Holl, R.W.; DPV-Wiss Study Group; German BMBF Competence Networks Diabetes Mellitus and Obesity. Predictors of increasing BMI during the course of diabetes in children and adolescents with type 1 diabetes: Data from the German/Austrian DPV multicentre survey. Arch. Dis. Child. 2014, 99, 738–743. [Google Scholar] [CrossRef] [Green Version]
- da Costa, V.M.; de Carvalho Padilha, P.; de Lima, G.C.; Ferreira, A.A.; Luescher, J.L.; Porto, L.; Peres, W.A. Overweight among children and adolescent with type I diabetes mellitus: Prevalence and associated factors. Diabetol. Metab. Syndr. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, M.; Ito, Y.; Yokomichi, H.; Kikuchi, T.; Soneda, S.; Musha, I.; Anzou, M.; Kobayashi, K.; Matsuo, K.; Sugihara, S.; et al. Increasing secular trends in height and obesity in children with type 1 diabetes: JSGIT cohort. PLoS ONE 2020, 15, e0242259. [Google Scholar] [CrossRef]
- Gilbertson, H.R.; Reed, K.; Clark, S.; Francis, K.L.; Cameron, F.J. An audit of the dietary intake of Australian children with type 1 diabetes. Nutr. Diabetes 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Van der Schueren, B.; Ellis, D.; Faradji, R.N.; Al-Ozairi, E.; Rosen, J.; Mathieu, C. Obesity in people living with type 1 diabetes. Lancet Diabetes Endocrinol. 2021, 9, 776–785. [Google Scholar] [CrossRef]
- March, C.A.; Becker, D.J.; Libman, I.M. Nutrition and Obesity in the Pathogenesis of Youth-Onset Type 1 Diabetes and Its Complications. Front. Endocrinol. 2021, 12, 622901. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.N.; Haynie, D.L.; Higgins, L.A.; Bucey, N.N.; Rovner, A.J.; Volkening, L.K.; Nansel, T.R.; Laffel, L.M. Emphasis on carbohydrates may negatively influence dietary patterns in youth with type 1 diabetes. Diabetes Care 2009, 32, 2174–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nansel, T.R.; Haynie, D.L.; Lipsky, L.M.; Laffel, L.M.; Mehta, S.N. Multiple indicators of poor diet quality in children and adolescents with type 1 diabetes are associated with higher body mass index percentile but not glycemic control. J. Acad. Nutr. Diet. 2012, 112, 1728–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the Association of Skipping Breakfast with Weight and Cardiometabolic Risk Factors in Children and Adolescents. What Should We Better Investigate in the Future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricotti, R.; Caputo, M.; Monzani, A.; Pigni, S.; Antoniotti, V.; Bellone, S.; Prodam, F. Breakfast Skipping, Weight, Cardiometabolic Risk, and Nutrition Quality in Children and Adolescents: A Systematic Review of Randomized Controlled and Intervention Longitudinal Trials. Nutrients 2021, 13, 3331. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, R.; Caputo, M.; Prodam, F. Chapter 9. In The Mediterranean Diet, An Evidence-Based Approach, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Elsevier: London, UK, 2020; pp. 89–93. ISBN 978-0-12-818649-7. [Google Scholar]
- Jacob, R.; Bertrand, C.; Llewellyn, C.; Couture, C.; Labonté, M.È.; Tremblay, A.; Bouchard, C.; Drapeau, V.; Pérusse, L. Dietary Mediators of the Genetic Susceptibility to Obesity—Results from the Quebec Family Study. J. Nutr. 2021, 152, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Calleja, M.; Caetano Feitoza, N.; Falk, B.; Klentrou, P.; Ward, W.E.; Sullivan, P.J.; Josse, A.R. Increased dairy product consumption as part of a diet and exercise weight management program improves body composition in adolescent females with overweight and obesity—A randomized controlled trial. Pediatr. Obes. 2020, 15, e12690. [Google Scholar] [CrossRef]
- Dougkas, A.; Barr, S.; Reddy, S.; Summerbell, C.D. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr. Res. Rev. 2019, 32, 106–127. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, Y.; Zhang, D. Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Ann. Epidemiol. 2016, 26, 870–882.e2. [Google Scholar] [CrossRef]
- Lu, L.; Xun, P.; Wan, Y.; He, K.; Cai, W. Long-term association between dairy consumption and risk of childhood obesity: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2016, 70, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Ağagündüz, D.; Yılmaz, B.; Şahin, T.Ö.; Güneşliol, B.E.; Ayten, Ş.; Russo, P.; Spano, G.; Rocha, J.M.; Bartkiene, E.; Özogul, F. Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods 2021, 10, 3099. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Ludwig, D.S. Milk and Health. N. Engl. J. Med. 2020, 382, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Ahola, A.J.; Forsblom, C.M.; Harjutsalo, V.; Groop, P.H. Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes. Nutrients 2021, 13, 3909. [Google Scholar] [CrossRef] [PubMed]
- Toeller, M.; Buyken, A.E.; Heitkamp, G.; Cathelineau, G.; Ferriss, B.; Michel, G.; EURODIAB IDDM Complications Study Group. Nutrient intakes as predictors of body weight in European people with type 1 diabetes. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1815–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Rodríguez, R.; Mesas, A.E.; Garrido-Miguel, M.; Martínez-Ortega, I.A.; Jiménez-López, E.; Martínez-Vizcaíno, V. The Relationship of Tree Nuts and Peanuts with Adiposity Parameters: A Systematic Review and Network Meta-Analysis. Nutrients 2021, 13, 2251. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Cooper, J.A. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. Int. Rev. J. 2021, 12, 384–401. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Guasch-Ferré, M.; Willett, W.C.; Drouin-Chartier, J.P.; Bhupathiraju, S.N.; Tobias, D.K. Changes in nut consumption influence long-term weight change in US men and women. BMJ Nutr. Prev. Health 2019, 2, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Ros, E.; Singh, A.; O’Keefe, J.H. Nuts: Natural Pleiotropic Nutraceuticals. Nutrients 2021, 13, 3269. [Google Scholar] [CrossRef]
- Fortins, R.F.; Lacerda, E.M.A.; Silverio, R.N.C.; do Carmo, C.N.; Ferreira, A.A.; Felizardo, C.; do Nascimento, B.F.; Luescher, J.L.; Padilha, P.C. Predictor factors of glycemic control in children and adolescents with type 1 diabetes mellitus treated at a referral service in Rio de Janeiro, Brazil. Diabetes Res. Clin. Pract. 2019, 154, 138–145. [Google Scholar] [CrossRef]
- Wolever, T.M.; Hamad, S.; Chiasson, J.L.; Josse, R.G.; Leiter, L.A.; Rodger, N.W.; Ross, S.A.; Ryan, E.A. Day-to-day consistency in amount and source of carbohydrate intake associated with improved blood glucose control in type 1 diabetes. J. Am. Coll. Nutr. 1999, 18, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Jebraeili, H.; Shabbidar, S.; Sajjadpour, Z.; Aghdam, S.D.; Qorbani, M.; Rajab, A.; Sotoudeh, G. The association between carbohydrate quality index and anthropometry, blood glucose, lipid profile and blood pressure in people with type 1 diabetes mellitus: A cross-sectional study in Iran. J. Diabetes Metab. Disord. 2021, 20, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mejia, S.B.; Mirrahimi, A.; Jenkins, D.J.A.; Livesey, G.; et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ 2021, 374, 1651. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.S.; Vistisen, D.; Vilsbøll, T.; Bruun, J.M.; Ewers, B. The quality of dietary carbohydrate and fat is associated with better metabolic control in persons with type 1 and type 2 diabetes. Nutr. J. 2020, 19, 125. [Google Scholar] [CrossRef]
- Cherubini, V.; Marino, M.; Marigliano, M.; Maffeis, C.; Zanfardino, A.; Rabbone, I.; Giorda, S.; Schiaffini, R.; Lorubbio, A.; Rollato, S.; et al. Rethinking Carbohydrate Intake and Time in Range in Children and Adolescents with Type 1 Diabetes. Nutrients 2021, 13, 3869. [Google Scholar] [CrossRef]
- Möllsten, A.V.; Dahlquist, G.G.; Stattin, E.L.; Rudberg, S. Higher intakes of fish protein are related to a lower risk of microalbuminuria in young Swedish type 1 diabetic patients. Diabetes Care 2001, 24, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Mendivil, C.O. Fish Consumption: A Review of Its Effects on Metabolic and Hormonal Health. Nutr. Metab. Insights 2021, 14, 1–6. [Google Scholar] [CrossRef]
- Paterson, M.A.; King, B.R.; Smart, C.E.M.; Smith, T.; Rafferty, J.; Lopez, P.E. Impact of dietary protein on postprandial glycaemic control and insulin requirements in Type 1 diabetes: A systematic review. Diabet. Med. 2019, 36, 1585–1599. [Google Scholar] [CrossRef]
- Furthner, D.; Lukas, A.; Schneider, A.M.; Mörwald, K.; Maruszczak, K.; Gombos, P.; Gomahr, J.; Steigleder-Schweiger, C.; Weghuber, D.; Pixner, T. The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps. Nutrients 2021, 13, 3558. [Google Scholar] [CrossRef]
- Purdel, C.; Ungurianu, A.; Margina, D. Metabolic and Metabolomic Insights Regarding the Omega-3 PUFAs Intake in Type 1 Diabetes Mellitus. Front. Mol. Biosci. 2021, 8, 783065. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Veronesi, M.; Fogacci, F. Dietary Intervention to Improve Blood Pressure Control: Beyond Salt Restriction. High Blood Press. Cardiovasc. Prev. 2021, 28, 547–553. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; D’Alessandro, A. Influence of Mediterranean Diet on Blood Pressure. Nutrients 2018, 10, 1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günther, A.L.; Liese, A.D.; Bell, R.A.; Dabelea, D.; Lawrence, J.M.; Rodriguez, B.L.; Standiford, D.A.; Mayer-Davis, E.J. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension 2009, 53, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalji, R.; Tullus, K. What’s new in paediatric hypertension? Arch. Dis. Child. 2018, 103, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Curhan, G.; Forman, J. Association of Sweetened Beverage Intake with Incident Hypertension. J. Gen. Intern. Med. 2012, 27, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R., III; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 2455–2464. [Google Scholar] [CrossRef]
- Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Marventano, S.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Dairy foods and health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 138–151. [Google Scholar] [CrossRef]
- Katsiki, N.; Pérez-Martínez, P.; Lopez-Miranda, J. Olive Oil Intake and Cardiovascular Disease Prevention: “Seek and You Shall Find”. Curr. Cardiol. Rep. 2021, 23, 64. [Google Scholar] [CrossRef]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; Calabriso, N.; Santarpino, G.; Verri, T.; De Caterina, R. Effects of Olive Oil on Blood Pressure: Epidemiological, Clinical, and Mechanistic Evidence. Nutrients 2020, 12, 1548. [Google Scholar] [CrossRef]
- Cutruzzolà, A.; Parise, M.; Vallelunga, R.; Lamanna, F.; Gnasso, A.; Irace, C. Effect of Extra Virgin Olive Oil and Butter on Endothelial Function in Type 1 Diabetes. Nutrients 2021, 13, 2436. [Google Scholar] [CrossRef]
- Cameron, A.J.; Spence, A.C.; Laws, R.; Hesketh, K.D.; Lioret, S.; Campbell, K.J. A Review of the Relationship Between Socioeconomic Position and the Early-Life Predictors of Obesity. Curr. Obes. Rep. 2015, 4, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Patro, B.; Liber, A.; Zalewski, B.; Poston, L.; Szajewska, H.; Koletzko, B. Maternal and paternal body mass index and offspring obesity: A systematic review. Ann. Nutr. Metab. 2013, 63, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, L.A.; Nielsen, T.R.; Holm, J.C. The Impact of Familial Predisposition to Obesity and Cardiovascular Disease on Childhood Obesity. Obes. Facts 2015, 8, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Mazarello Paes, V.; Charalampopoulos, D.; Edge, J.; Taylor-Robinson, D.; Stephenson, T.; Amin, R. Predictors of glycemic control in the first year of diagnosis of childhood onset type 1 diabetes: A systematic review of quantitative evidence. Pediatr. Diabetes 2018, 19, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Hannonen, R.; Aunola, K.; Eklund, K.; Ahonen, T. Maternal Parenting Styles and Glycemic Control in Children with Type 1 Diabetes. Int. J. Environ. Res. Public Health 2019, 16, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahfouz, E.M.; Kamal, N.N.; Mohammed, E.S.; Refaei, S.A. Effects of Mothers’ Knowledge and Coping Strategies on the Glycemic Control of Their Diabetic Children in Egypt. Int. J. Prev. Med. 2018, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Bredin, S.S.D.; Jamnik, V.K.; Koehle, M.S.; Guan, Y.; Shellington, E.M.; Li, Y.; Li, J.; Warburton, D.E.R. Association between physical activity level and cardiovascular risk factors in adolescents living with type 1 diabetes mellitus: A cross-sectional study. Cardiovasc. Diabetol. 2021, 20, 62. [Google Scholar] [CrossRef] [PubMed]
Full Sample | Boys | Girls | p-Value | ||
---|---|---|---|---|---|
Age (years) | 15.07 ± 2.27 | 14.96 ± 2.07 | 15.18 ± 2.48 | 0.704 | |
Years since T1D diagnosis (y) | 6.15 ± 4.29 | 6.29 ± 4.64 | 6.03 ± 3.99 | 0.818 | |
Weight (kg) | 56.2 ± 13.22 | 56.71 ± 14.01 | 55.71 ± 12.61 | 0.762 | |
Weight z-score (sd) | −0.07 ± 1.16 | −0.37 ± 1.17 | 0.22 ± 1.08 | 0.038 | |
Height (m) | 1.63 ± 0.11 | 1.66 ± 0.11 | 1.60 ± 0.09 | 0.025 | |
Height z-score (ds) | −0.00 ± 0.95 | −0.12 ± 1.04 | 0.12 ± 0.85 | 0.319 | |
BMI (kg/m2) | 21.08 ± 3.85 | 20.37 ± 3.88 | 21.80 ± 3.74 | 0.140 | |
BMI-SDS (sd) | −0.13 ± 1.20 | −0.44 ± 1.23 | 0.18 ± 1.10 | 0.036 | |
BMI-IOTF | −2 (extremely underweight) | 1 (1.6%) | 1 (3.1%) | 0 | 0.060 1 |
−1 (underweight) | 2 (3.1%) | 2 (6.3%) | 0 | ||
0 (normal weight) | 46 (71.9%) | 24 (75%) | 22 (68.8%) | ||
1 (overweight) | 10 (15.6%) | 3 (9.4%) | 7 (21.9%) | ||
2 (obese) | 5 (7.8%) | 2 (6.3%) | 3 (9.4%) | ||
SBP (mmHg) | 110.97 ± 10.10 | 110.48 ± 9.37 | 111.45 ± 10.91 | 0.226 | |
DBP (mmHG) | 69.34 ± 9.01 | 67.97 ± 8.69 | 70.71 ± 9.25 | 0.192 | |
Mean Blood Glucose (mg/dL) | 178.03 ± 32.25 | 180.80 ± 37.98 | 175.44 ± 26.80 | 0.651 | |
HbA1c (%) | 8.04 ± 1.78 | 8.16 ± 1.79 | 7.93 ± 1.79 | 0.609 | |
TIR (%) | 55.16 ± 18.54 | 53.42 ± 21.15 | 56.89 ± 16.02 | 0.604 | |
UI insulin/kg/die | 0.64 ± 0.26 | 0.64 ± 0.30 | 0.64 ± 0.23 | 0.894 | |
Insulin treatment (1/2) 2 | 1 = 45 (69.2%) 2 = 20 (30.8%) | 1= 23 (71.9%) 2 = 9 (28.1%) | 1 = 22(66.6%) 2 = 11(33.3%) | 0.644 | |
Total Cholesterol (mg/dL) | 162.21 ± 28.89 | 159.13 ± 32.02 | 165.19 ± 25.69 | 0.417 | |
HDL Cholesterol (mg/dL) | 59.77 ± 15.23 | 59.73 ± 15.99 | 59.81 ± 14.74 | 0.984 | |
Triglycerides (mg/dL) | 71.03 ± 42.72 | 74.67 ± 50.54 | 67.62 ± 34.31 | 0.521 | |
KIDMED (pts) | 6 (−1/+12) | 6 (2/12) | 6 (−1/+11) | 0.082 1 |
Full Sample | Boys | Girls | p-Value | ||
---|---|---|---|---|---|
KIDMED class | 1 | 9 (13.8%) | 2 (6.3%) | 7 (21.2%) | 0.55 |
2 | 37 (56.9%) | 18 (56.3%) | 19 (57.6%) | ||
3 | 19 (29.2%) | 12 (37.5%) | 7 (21.2%) | ||
Celiac disease (Y/N) | Y = 14 (21.5%); N = 51 (78.5%) | Y = 7 (21.9%); N = 25 (78.1%) | Y = 7 (21.2%); N = 26 (78.8%) | 0.949 | |
CHO calculation (Y/N) | Y = 44 (67.7%); N = 21 (32.2%) | Y = 22 (68.8%); N = 10 (31.3%) | Y = 22 (66.7%); N = 11 (33.3%) | 0.859 | |
1 p. Fruit/day (0/+1) | 0 = 14 (21.5%); 1 = 51 (78.5%) | 0 = 2 (6.3%); 1 = 30 (93.8%) | 0 = 12 (36.4%); 1 = 21 (63.6%) | 0.003 | |
2 p. Fruit/day (0/+1) | 0 = 36 (55.4%); 1 = 29 (44.6%) | 0 = 15 (46.9%); 1 = 17 (53.1%) | 0 = 21 (63.6%); 1 = 12 (36.4%) | 0.177 | |
1 p. Vegetables/day (0/+1) | 0 = 10 (15.4%); 1 = 55 (84.6%) | 0 = 6 (18.8%); 1 = 26 (81.3%) | 0 = 4 (12.1%); 1 = 29 (87.9%) | 0.462 | |
2 p. Vegetables/day (0/+1) | 0 = 24 (36.9%); 1 = 41 (63.1%) | 0 = 12 (37.5%); 1 = 20 (62.5%) | 0 = 12 (36.4%); 1 = 21 (63.6%) | 0.925 | |
Fish/2 or 3 p. each week (0/+1) | 0 = 29 (44.6%); 1 = 36 (55.4%) | 0 = 14 (43.8%); 1 = 18 (56.3%) | 0 = 15 (45.5%); 1 = 18 (54.5%) | 0.891 | |
Fast Food once a week (−1; 0) | −1 = 1 (1.5%); 0 = 64 (98.5%) | −1 = 1 (3.1%); 0 = 31 (96.9%) | 0 = 33 (100%) | 0.310 | |
Legumes at least 1 p. a week (0; +1) | 0 = 35 (53.8%); 1 = 30 (46.2%) | 0 = 19 (59.4%); 1 = 13 (40.6%) | 0 = 16 (48.5%); 1 = 17 (51.5%) | 0.382 | |
Cereals (pasta, rice…) at least 5 p. a week (0; +1) | 0 = 2 (3.1%); 1 = 63 (96.9%) | 1 = 32 (100%) | 0 = 2 (6.1%); 1 = 31 (93.9%) | 0.160 | |
Cereals at breakfast (0; +1) | 0 = 46 (70.8%); 1 = 19 (29.2%) | 0 = 20 (62.5%); 1 = 12 (37.5%) | 0 = 26 (78.8%); 1 = 7 (21.2%) | 0.152 | |
Nuts and similar foods 2 or 3 p. a week (0; +1) | 0 = 48 (73.8%); 1 = 17 (26.2%) | 0 = 21 (65.6%); 1 = 11 (34.4%) | 0 = 27 (81.8%); 1 = 6 (18.2%) | 0.141 | |
Olive Oil as preferred oil (0; +1) | 0 = 1 (1.5%); 1 = 64 (98.5%) | 1 = 32 (100%) | 0 = 1 (3%); 1 = 32 (97%) | 0.325 | |
Skip breakfast (−1; 0) | −1 = 7 (10.8%); 0 = 58 (89.2%) | −1 = 3 (9.4%); 0 = 29 (90.6%) | −1 = 4 (12.1%); 0 = 29 (87.9%) | 0.723 | |
Milk/yogurt or dairy food at breakfast (0; +1) | 0 = 18 (27.7%); 1 = 47 (72.3%) | 0 = 8 (25%); 1 = 24 (75%) | 0 = 10 (30.3%); 1 = 23 (69.7%) | 0.636 | |
Processed Food at breakfast (−1; 0) | −1 = 53 (81.5%); 0 = 12 (18.5%) | −1 = 22 (68.8%); 0 = 10 (31.3%) | −1 = 31 (93.9%); 0 = 2 (6.1%) | 0.034 | |
2 portions of milk/yogurt or dairy foods/day (0; +1) | 0 = 29 (44.6%); 1 = 36 (55.4%) | 0 = 10 (31.3%); 1 = 22 (68.8%) | 0 = 19 (57.6%); 1 = 14 (42.4%) | 0.034 | |
Sweets and/or candies every day (−1; 0) | −1 = 20 (30.8%); 0 = 45 (69.2%) | −1 = 11 (34.4%); 0 = 21 (65.6%) | −1 = 9 (27.3%); 0 = 24 (72.7%) | 0.538 |
Full Sample | Boys | Girls | p-Value | ||
---|---|---|---|---|---|
Family count | 2 | 2 (3.3%) | 1 (3.6%) | 1 (3%) | 0.138 |
3 | 13 (21.3%) | 9 (32.1%) | 4 (12.1%) | ||
4 | 28 (45.9%) | 11 (39.3%) | 17 (51.5%) | ||
5 | 12 (19.7%) | 5 (17.9%) | 7 (21.2%) | ||
6 | 6 (9.8%) | 2 (7.1%) | 4 (12.1%) | ||
SES mother * | 1 | 27 (42.2%) | 13 (40.6%) | 14 (43.8%) | 0.623 |
2 | 31 (48.4%) | 15 (46.9%) | 16 (50%) | ||
3 | 6 (9.4%) | 4 (12.5%) | 2 (6.3%) | ||
SES father * | 1 | 36 (56.3%) | 19 (59.4%) | 17 (53.1%) | 0.564 |
2 | 25 (39.1%) | 12 (37.5%) | 13 (40.6%) | ||
3 | 3 (4.7%) | 1 (3.1%) | 2 (6.3%) | ||
Mother smoke (Y/N) ** | Y = 9 (14.8%); N = 52 (85.2)% | Y = 5 (17.2%); N = 24 (82.9%) | Y = 4 (12.1%); N = 28 (84.8%) | 0.602 | |
Father smoke (Y/N) ** | Y = 18 (29.5%); N = 43 (70.5%) | Y = 8 (27.6%); N = 21 (72.4%) | Y = 10 (31.3%); N = 22 (68.8%) | 0.756 | |
3.3 MET (kcal/week) | 809.01 ± 844.37 | 687.33 ± 626.77 | 927.00 ± 1008.07 | 0.331 | |
4 MET (kcal/week) | 590.77 ± 760.65 | 654.38 ± 908.70 | 529.09 ± 591.00 | 0.535 | |
8 MET (kcal/week) | 817.23 ± 1045.97 | 975.00 ± 1105.19 | 664.24 ± 977.65 | 0.259 | |
Total kcal burnt/week | 2217.01 ± 1341.71 | 2316.70 ± 1272.58 | 2120.33 ± 1418.43 | 0.348 |
Dependent Variables | Significant Effects | B (95% CI) | β | p Value |
---|---|---|---|---|
BMI-SDS (sd): Model 1 | Skip breakfast (−1/0) | −1.829 (−2.746; −0.912) | −0.471 | <0.001 |
BMI-SDS (sd): Model 2 | Skip breakfast (−1/0) | −1.804 (−2.675; −0.932) | −0.464 | <0.001 |
Father’s BMI (kg/m2) | 0.074 (0.018; 0.129) | 0.299 | 0.01 | |
IOTF-BMI (pts) * | Nut consumption (0/1) | / | / | 0.001 |
8 MET | / | / | <0.05 | |
Boys: BMI-SDS (sd) | Minutes of sport at school (min) | −0.016 (−0.027; −0.006) | −0.549 | 0.003 |
Females: BMI-SDS (sd): Model 1 | Father’s weight (kg) | 0.033 (0.011; 0.054) | 0.507 | 0.004 |
Females: BMI-SDS (sd): Model 2 | Father’s weight (kg) | 0.027 (0.007; 0.047) | 0.424 | 0.007 |
Skip breakfast (−1/0) | −1.377 (−2.459; −0.295) | −0.396 | 0.015 |
Dependent Variables | Significant Effects | B (95% CI) | β | p Value |
---|---|---|---|---|
Mean blood glucose (mg/dL) Model 1 | Mother’s age (y) | −3.321 (−5.628; −1.015) | −0.480 | 0.006 |
Mean blood glucose (mg/dL) Model 2 | Mother’s age (y) | −2.851 (−4.976; −0.727) | −0.412 | 0.010 |
Father’s SES (1/2/3) | −20.834 (−36.655; −5.013) | −0.404 | 0.012 | |
HbA1c (%) Model 1 | Father’s SES (1/2/3) | −1.050 (−1.808; −0.291) | −0.345 | 0.008 |
HbA1c (%) Model 2 | Father’s SES (1/2/3) | −1.106 (−1.817; −0.395) | −0.363 | 0.003 |
Consumption of Sweets (−1/0) | −1.379 (−2.295; −0.464) | −0.352 | 0.004 | |
TIR (%) Model 1 | Father’s SES (1/2/3) | 15.718 (6.230; 25.206) | 0.564 | 0.002 |
TIR (%) Model 2 | Father’s SES (1/2/3) | 14.316 (5.403; 23.228) | 0.513 | 0.003 |
Fish consumption (0/1) | 12.327 (1.014; 23.640) | 0.348 | <0.05 |
Dependent Variables | Significant Effects | B (95% CI) | β | p Value |
---|---|---|---|---|
SBP (mmHg) Model 1 | Milk/Dairy food at breakfast (0/1) | −6.073 (−11.551; −0.595) | −0.275 | 0.030 |
SBP (mmHg) Model 2 | Milk/Dairy food at breakfast (0/1) | −6.557 (−11.884; −1.230) | −0.297 | 0.017 |
Olive oil (0/1) | −21.279 (−40.475; −2.083) | −0.268 | 0.030 | |
DBP (mmHg) Model 1 | Days to school with motorized transport (n) | 1.764 (0.538; 2.991) | 0.348 | 0.006 |
DBP (mmHg) Model 2 | Days to school with motorized transport (n) | 1.779 (0.601; 2.957) | 0.351 | 0.004 |
Cereals at breakfast (0/1) | −5.567 (−10.072; −1.061) | −0.287 | 0.016 | |
DBP (mmHg) Model 3 | Days to school with motorized transport (n) | 1.560 (0.396; 2.724) | 0.308 | 0.009 |
Cereals at breakfast (0/1) | −7.005 (−11.592; 2.418) | −0.361 | 0.003 | |
Processed Food at breakfast (0/1) | 5.738 (0.303; 11.173) | 0.254 | 0.039 | |
DBP (mmHg) Model 4 | Days to school with motorized transport (n) | 1.342 (0.194; 2.490) | 0.265 | 0.023 |
Cereals at breakfast (0/1) | −6.703 (−11.166; −2.241) | −0.346 | 0.004 | |
Processed Food at breakfast (0/1) | 6.144 (0.854; 11.434) | 0.272 | 0.024 | |
Olive oil (0/1) | −16.997 (−32.881; −1.114) | −0.240 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniotti, V.; Spadaccini, D.; Ricotti, R.; Carrera, D.; Savastio, S.; Goncalves Correia, F.P.; Caputo, M.; Pozzi, E.; Bellone, S.; Rabbone, I.; et al. Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes. Nutrients 2022, 14, 596. https://doi.org/10.3390/nu14030596
Antoniotti V, Spadaccini D, Ricotti R, Carrera D, Savastio S, Goncalves Correia FP, Caputo M, Pozzi E, Bellone S, Rabbone I, et al. Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes. Nutrients. 2022; 14(3):596. https://doi.org/10.3390/nu14030596
Chicago/Turabian StyleAntoniotti, Valentina, Daniele Spadaccini, Roberta Ricotti, Deborah Carrera, Silvia Savastio, Filipa Patricia Goncalves Correia, Marina Caputo, Erica Pozzi, Simonetta Bellone, Ivana Rabbone, and et al. 2022. "Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes" Nutrients 14, no. 3: 596. https://doi.org/10.3390/nu14030596
APA StyleAntoniotti, V., Spadaccini, D., Ricotti, R., Carrera, D., Savastio, S., Goncalves Correia, F. P., Caputo, M., Pozzi, E., Bellone, S., Rabbone, I., & Prodam, F. (2022). Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes. Nutrients, 14(3), 596. https://doi.org/10.3390/nu14030596