The Mediterranean Diet Protects Renal Function in Older Adults: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Study Variables
2.2.1. Diet
2.2.2. Serum Creatinine and Estimated Glomerular Filtration Rate
2.2.3. Other Variables
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gorostidi, M.; Sánchez-Martínez, M.; Ruilope, L.M.; Graciani, A.; de la Cruz, J.J.; Santamaria, R.; del Pino, M.D.; Guallar-Castillón, P.; de Álvaro, F.; Rodríguez-Artalejo, F.; et al. Chronic kidney disease in Spain: Prevalence and impact of accumulation of cardiovascular risk factors. Nefrol. Engl. Ed. 2018, 38, 606–615. [Google Scholar] [CrossRef]
- Mitch, W.E.; Remuzzi, G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol. 2016, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Bach, K.E.; Kelly, J.T.; Palmer, S.C.; Khalesi, S.; Strippoli, G.F.M.; Campbell, K.L. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2019, 14, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.-J.; Campbell, K.; Strippoli, G.F.M. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017, 12, 272–279. [Google Scholar] [CrossRef]
- Lin, J.; Fung, T.T.; Hu, F.B.; Curhan, G.C. Association of Dietary Patterns With Albuminuria and Kidney Function Decline in Older White Women: A Subgroup Analysis From the Nurses’ Health Study. Am. J. Kidney Dis. 2011, 57, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Jiménez-Moleón, J.J.; Lindholm, B.; Cederholm, T.; Ärnlöv, J.; Risérus, U.; Sjögren, P.; Carrero, J.J. Mediterranean Diet, Kidney Function, and Mortality in Men with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Khatri, M.; Moon, Y.P.; Scarmeas, N.; Gu, Y.; Gardener, H.; Cheung, K.; Wright, C.B.; Sacco, R.L.; Nickolas, T.L.; Elkind, M.S. The Association between a Mediterranean-Style Diet and Kidney Function in the Northern Manhattan Study Cohort. Clin. J. Am. Soc. Nephrol. 2014, 9, 1868–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, E.A.; Steffen, L.M.; Grams, M.E.; Crews, D.C.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Dietary patterns and risk of incident chronic kidney disease: The Atherosclerosis Risk in Communities study. Am. J. Clin. Nutr. 2019, 110, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Díaz-López, A.; Bulló, M.; Martínez-González, M.Á.; Guasch-Ferré, M.; Ros, E.; Basora, J.; Covas, M.-I.; López-Sabater, M.D.C.; Salas-Salvadó, J. Effects of Mediterranean Diets on Kidney Function: A Report From the PREDIMED Trial. Am. J. Kidney Dis. 2012, 60, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Artalejo, F.; Graciani, A.; Guallar-Castillón, P.; León-Muñoz, L.M.; Zuluaga, M.C.; López-García, E.; Gutiérrez-Fisac, J.L.; Taboada, J.M.; Aguilera, M.T.; Regidor, E.; et al. Rationale and Methods of the Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Rev. Española Cardiol. Engl. Ed. 2011, 64, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Balboa-Castillo, T.; Sala-Vila, A.; Astolfi, M.J.A.; Pelous, M.D.S.; León-Muñoz, L.M.; Graciani, A.; Laclaustra, M.; Benito, C.; et al. Validity and Reproducibility of a Spanish Dietary History. PLoS ONE 2014, 9, e86074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreiras, O.; Carvajal, A.; Cabrera, L. Tabla de Composición de Alimentos, 11th ed.; Pirámide: Madrid, Spain, 2007. [Google Scholar]
- Ferrán, A.; Zamora, R.; Cervera, P. Tabla de Composición de Alimentos del CESNID; Edicions Universitat de Barcelona: Barcelona, Spain, 2004. [Google Scholar]
- Kleinbaum, D.G.; Muller, K.E. Variable reduction and factor analysis. In Applied Regression Analysis and Other Multivariable Methods; PWS-Kent Publishing Company: Boston, MA, USA, 1988. [Google Scholar]
- León-Muñoz, L.M.; García-Esquinas, E.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Major dietary patterns and risk of frailty in older adults: A prospective cohort study. BMC Med. 2015, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.O.; Mueller, C.W. Factor Analysis: Statistical Methods and Practical Issues; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1978. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Pols, M.A.; Peeters, P.H.; Ocké, M.C.; Slimani, N.; Bueno-De-Mesquita, H.B.; Collette, H.J. Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S181–S189. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di, P.C.; Giugliano, F.; Giugliano, G.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Whalen, K.A.; McCullough, M.L.; Flanders, W.D.; Hartman, T.J.; Judd, S.; Bostick, R.M. Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with Biomarkers of Inflammation and Oxidative Balance in Adults. J. Nutr. 2016, 146, 1217–1226. [Google Scholar] [CrossRef]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the MOLI-SANI study. Br. J. Clin. Pharmacol. 2017, 83, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Akchurin, O.M.; Kaskel, F. Update on Inflammation in Chronic Kidney Disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Moens, S.J.B.; Verweij, S.L.; van der Valk, F.M.; van Capelleveen, J.C.; Kroon, J.; Versloot, M.; Stroes, E.S. Arterial and Cellular Inflammation in Patients with CKD. J. Am. Soc. Nephrol. 2017, 28, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, P.; Aparicio, M.; Bellizzi, V.; Campbell, K.; Hong, X.; Johansson, L.; Kolko, A.; Molina, P.; Sezer, S.; Wanner, C.; et al. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 725–735. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2019, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñalvo, J.L.; Oliva, B.; Sotos-Prieto, M.; Uzhova, I.; Moreno-Franco, B.; León-Latre, M.; Ordovás, J.M. Greater Adherence to a Mediterranean Dietary Pattern Is Associated With Improved Plasma Lipid Profile: The Aragon Health Workers Study Cohort. Rev. Española Cardiol. Engl. Ed. 2015, 68, 290–297. [Google Scholar] [CrossRef]
- Shannon, O.M.; Mendes, I.; Köchl, C.; Mazidi, M.; Ashor, A.W.; Rubele, S.; Minihane, A.-M.; Mathers, J.C.; Siervo, M. Mediterranean Diet Increases Endothelial Function in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2020, 150, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.-H.; Wesson, D.E. A Comparison of Treating Metabolic Acidosis in CKD Stage 4 Hypertensive Kidney Disease with Fruits and Vegetables or Sodium Bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.; Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012, 81, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Franczyk, B.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Jhee, J.H.; Kee, Y.K.; Park, J.T.; Chang, T.-I.; Kang, E.W.; Yoo, T.-H.; Kang, S.-W.; Han, S.H. A Diet Rich in Vegetables and Fruit and Incident CKD: A Community-Based Prospective Cohort Study. Am. J. Kidney Dis. 2019, 74, 491–500. [Google Scholar] [CrossRef]
- Haring, B.; Selvin, E.; Liang, M.; Coresh, J.; Grams, M.E.; Petruski-Ivleva, N.; Steffen, L.M.; Rebholz, C.M. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study. J. Ren. Nutr. 2017, 27, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Morimoto, Y.; Cooney, R.V.; Franke, A.A.; Shvetsov, Y.B.; Le Marchand, L.; Haiman, C.A.; Kolonel, L.N.; Goodman, M.T.; Maskarinec, G. Dietary Red and Processed Meat Intake and Markers of Adiposity and Inflammation: The Multiethnic Cohort Study. J. Am. Coll. Nutr. 2017, 36, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A.; Mehta, O. Dietary Phosphorus Restriction in Dialysis Patients: Potential Impact of Processed Meat, Poultry, and Fish Products as Protein Sources. Am. J. Kidney Dis. 2009, 54, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Sayre, S.S.; Leon, J.B.; Machekano, R.; Love, T.E.; Porter, D.; Sehgal, A.R. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: A randomized controlled trial. JAMA 2009, 301, 629–635. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Mediterranean Diets: What Is So Special about the Diet of Greece? The Scientific Evidence. J. Nutr. 2001, 131 (Suppl. S11), 3065S–3073S. [Google Scholar] [CrossRef]
- Kushi, L.H.; Lenart, E.B.; Willett, W.C. Health implications of Mediterranean diets in light of contemporary knowledge. 2. Meat, wine, fats, and oils. Am. J. Clin. Nutr. 1995, 61, 1416S–1427S. [Google Scholar] [CrossRef]
- Mazza, A.; Pessina, A.C.; Tikhonoff, V.; Montemurro, D.; Casiglia, E. Serum creatinine and coronary mortality in the elderly with normal renal function: The CArdiovascular STudy in the ELderly (CASTEL). J. Nephrol. 2005, 18, 606–612. [Google Scholar]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; van Lente, F. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with Standardized Serum Creatinine Values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [Green Version]
Total | No Renal Function Decline | Renal Function Decline | p-Value | |
---|---|---|---|---|
N (%) | 975 (100) | 871 (89.3) | 104 (10.7) | |
Sex, women, % | 48.6 | 49.7 | 39.4 | 0.047 |
Age, in years, mean (SD) | 67.4 (5.43) | 67.2 (5.3) | 69.0 (6.1) | 0.014 |
eGFR (SD) | 77.9 (12.2) | 78.2 (12.0) | 76.5 (14.2) | 0.189 |
eGFR categories, % | ||||
Category 1 (≥90) | 18.2 | 18.4 | 16.4 | 0.027 |
Category 2 (≥60–89) | 74.2 | 74.4 | 72.1 | |
Category 3a (≥45–59) | 6.8 | 6.5 | 8.7 | |
Category 3b (≥30–44) | 0.8 | 0.7 | 1.9 | |
Category 4 (≥15–29) | 0.1 | 0.0 | 1.0 | |
Category 5 (<15) | 0 | 0 | 0 | |
Serum creatinine | 0.90 (0.18) | 0.89 (0.17) | 0.93 (0.20) | 0.048 |
Educational level, % | ||||
Primary | 48.0 | 47.3 | 53.9 | 0.339 |
Secondary | 26.7 | 27.3 | 21.1 | |
University | 25.3 | 25.4 | 25.0 | |
Energy intake in kcal, mean (SD) | 2046 (571) | 2054 (565) | 1974 (617) | 0.182 |
Smoking status, % | ||||
Never smoker | 56.6 | 57.2 | 51.9 | 0.032 |
Former smoker | 31.9 | 32.3 | 28.9 | |
Current smoker | 11.5 | 10.6 | 19.2 | |
Alcohol consumption, % | ||||
Habitual drinker | 47.5 | 48.5 | 39.4 | 0.244 |
Occasional drinker | 21.4 | 21.4 | 22.1 | |
Non-drinker | 23.6 | 22.7 | 30.8 | |
Ex-drinker | 7.5 | 7.5 | 7.7 | |
Leisure-time physical activity, MET-h/week, mean (SD) | 22.6 (15.7) | 22.9 (15.6) | 21.0 (16.2) | 0.075 |
Household physical activity, MET-h/week, mean (SD) | 36.8 (31.6) | 37.5 (31.4) | 31.0 (32.5) | 0.049 |
Time spent watching TV in h/week, mean (SD) | 17.4 (11.1) | 17.0 (10.8) | 20.1 (13.1) | 0.008 |
Night sleeping time in h/day, mean (SD) | 7.14 (1.43) | 7.13 (1.43) | 7.20 (1.49) | 0.664 |
Cardiovascular disease, % | 1.23 | 0.92 | 3.85 | 0.010 |
Bronchitis or asthma, % | 7.7 | 7.8 | 6.7 | 0.697 |
Cancer, % | 2.4 | 2.4 | 1.9 | 0.096 |
Osteo-muscular disease, % | 46.7 | 46.0 | 51.9 | 0.256 |
BMI at baseline in kg/m2, mean (SD) | 28.5 (4.16) | 28.5 (4.1) | 29.1 (4.6) | 0.119 |
Metabolic syndrome components at baseline | ||||
Glucose ≥ 100, % | 43.6 | 42.6 | 51.2 | 0.070 |
Blood pressure ≥ 130/85, % | 80.7 | 80.6 | 81.7 | 0.782 |
WC ≥ 102 men, ≥ 88 women, % | 56.3 | 55.3 | 64.4 | 0.078 |
HDL-c < 40 men, < 50 women, % | 22.8 | 21.8 | 30.8 | 0.040 |
Triglycerides ≥ 150, % | 20.9 | 19.9 | 29.8 | 0.018 |
BMI in 2015 in kg/m2, mean (SD) | 27.9 (4.3) | 27.9 (4.2) | 28.6 (4.6) | 0.073 |
Metabolic syndrome components in 2015 | ||||
Glucose ≥ 100, % | 41.0 | 40.0 | 50.0 | 0.049 |
Blood pressure ≥ 130/85, % | 66.7 | 65.8 | 74.0 | 0.092 |
WC ≥ 102 men, ≥ 88 women, % | 59.4 | 58.7 | 65.4 | 0.187 |
HDL-c < 40 men, < 50 women, % | 27.9 | 26.4 | 40.4 | 0.003 |
Triglycerides ≥ 150, % | 16.5 | 15.7 | 23.1 | 0.056 |
Muscle mass in kg, mean (SD) | 46.7 (9.4) | 46.6 (9.5) | 47.9 (9.1) | 0.197 |
Renal Function Decline | Low Adherence to MEDAS (0–5 Points) OR (95% CI) | Moderate Adherence to MEDAS (6–8 Points) OR (95% CI) | High Adherence to MEDAS (9–14 Points) OR (95% CI) | p Trend |
---|---|---|---|---|
Cases/total 104/975 | 54/414 | 33/314 | 17/247 | |
Model 1 | Ref. | 0.78 (0.49–1.26) | 0.46 (0.26–0.83) † | 0.009 |
Model 2 | Ref. | 0.67 (0.41–1.09) | 0.53 (0.29–0.95) * | 0.020 |
Model 3 | Ref. | 0.63 (0.38–1.03) | 0.52 (0.29–0.95) * | 0.015 |
Model 4 | Ref. | 0.61 (0.37–1.01) | 0.52 (0.28–0.94) * | 0.016 |
Western-Like Pattern | Mediterranean-Like Pattern | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Renal Function Decline | Q1 OR (95% CI) (Lowest) | Q2 OR (95% CI) | Q3 OR (95% CI) | Q4 OR (95% CI) (Highest) | p Linear Trend | Q1 OR (95% CI) (Lowest) | Q2 OR (95% CI) | Q3 OR (95% CI) | Q4 OR (95% CI) (Highest) | p Linear Trend |
Cases/total 104/975 | 20/244 | 31/244 | 29/244 | 24/243 | 37/244 | 27/243 | 23/244 | 17/244 | ||
Model 1 | 1 Ref. | 1.68 (0.91–3.09) | 1.61 (0.84–3.07) | 1.61 (0.76–3.42) | 0.235 | 1 Ref. | 0.68 (0.39–1.18) | 0.58 (0.32–1.04) | 0.40 (0.20–0.80) † | 0.008 |
Model 2 | 1 Ref. | 1.60 (0.85–3.00) | 1.58 (0.81–3.08) | 1.42 (0.65–3.09) | 0.381 | 1 Ref. | 0.67 (0.38–1.18) | 0.63 (0.34–1.17) | 0.45 (0.22–0.92) * | 0.030 |
Model 3 | 1 Ref. | 1.59 (0.85–2.98) | 1.50 (0.77–2.92) | 1.35 (0.61–2.97) | 0.474 | 1 Ref. | 0.67 (0.38–1.20) | 0.65 (0.35–1.19) | 0.47 (0.23–0.96) * | 0.042 |
Model 4 | 1 Ref. | 1.65 (0.87–3.12) | 1.54 (0.78–3.05) | 1.43 (0.64–3.18) | 0.411 | 1 Ref. | 0.70 (0.39–1.24) | 0.68 (0.36–1.26) | 0.47 (0.23–0.97) * | 0.049 |
Model 5 | 1 Ref. | 1.62 (0.86–3.07) | 1.37 (0.68–2.73) | 1.12 (0.49–2.57) | 0.798 | 1 Ref. | 0.68 (0.38–1.22) | 0.66 (0.35–1.25) | 0.45 (0.21–0.96) * | 0.070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayán-Bravo, A.; Banegas, J.R.; Donat-Vargas, C.; Sandoval-Insausti, H.; Gorostidi, M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. The Mediterranean Diet Protects Renal Function in Older Adults: A Prospective Cohort Study. Nutrients 2022, 14, 432. https://doi.org/10.3390/nu14030432
Bayán-Bravo A, Banegas JR, Donat-Vargas C, Sandoval-Insausti H, Gorostidi M, Rodríguez-Artalejo F, Guallar-Castillón P. The Mediterranean Diet Protects Renal Function in Older Adults: A Prospective Cohort Study. Nutrients. 2022; 14(3):432. https://doi.org/10.3390/nu14030432
Chicago/Turabian StyleBayán-Bravo, Ana, Jose Ramón Banegas, Carolina Donat-Vargas, Helena Sandoval-Insausti, Manuel Gorostidi, Fernando Rodríguez-Artalejo, and Pilar Guallar-Castillón. 2022. "The Mediterranean Diet Protects Renal Function in Older Adults: A Prospective Cohort Study" Nutrients 14, no. 3: 432. https://doi.org/10.3390/nu14030432
APA StyleBayán-Bravo, A., Banegas, J. R., Donat-Vargas, C., Sandoval-Insausti, H., Gorostidi, M., Rodríguez-Artalejo, F., & Guallar-Castillón, P. (2022). The Mediterranean Diet Protects Renal Function in Older Adults: A Prospective Cohort Study. Nutrients, 14(3), 432. https://doi.org/10.3390/nu14030432