Association between Free Sugars Intake and Risk of Metabolic Syndrome in Chinese Adults: Results from the China Health and Nutrition Survey, 2000–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Metabolic Syndrome
2.3. Measurement of Indicators
2.4. Assessment of Dietary Free Sugars
2.5. Definition of Covariates
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics of Participants
3.2. Association between Free Sugars Intake and the Risk of MetS
3.3. Nonlinear Associations between Free Sugars Intake and the Risk of MetS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Bo, Y.; Zhao, L.; Li, Y.; Ju, L.; Fang, H.; Piao, W.; Yu, D.; Lao, X. Prevalence and Influencing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017. Nutrients 2021, 13, 4475. [Google Scholar] [CrossRef] [PubMed]
- Elia, M.; Cummings, J.H. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur. J. Clin. Nutr. 2007, 61, S40–S74. [Google Scholar] [CrossRef] [Green Version]
- Vos, M.B.; Kaar, J.L.; Welsh, J.A.; Van Horn, L.V.; Feig, D.I.; Anderson, C.A.M.; Patel, M.J.; Cruz Munos, J.; Krebs, N.F.; Xanthakos, S.A.; et al. Added Sugars and Cardiovascular Disease Risk in Children: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1017–e1034. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.K.; Teymourian, Y.; Tursini, M.S. The effect of sugar and processed food imports on the prevalence of overweight and obesity in 172 countries. Glob. Health 2018, 14, 35. [Google Scholar] [CrossRef]
- de Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012, 125, 1735–1741. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taskinen, M.R.; Packard, C.J.; Boren, J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019, 11, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, M.; Fujiwara, A.; Sasaki, S. Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents. Nutrients 2020, 12, 2046. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M.; Angelopoulos, T.J. Sugars, obesity, and cardiovascular disease: Results from recent randomized control trials. Eur. J. Nutr. 2016, 55, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2014, 15, 2–7. [Google Scholar] [CrossRef] [Green Version]
- University of North Carolina; Chinese Center for Disease Control and Prevention. Available online: https://www.cpc.unc.edu/projects/china (accessed on 27 June 2015).
- Heng, D.; Ma, S.; Lee, J.J.; Tai, B.C.; Mak, K.H.; Hughes, K.; Chew, S.K.; Chia, K.S.; Tan, C.E.; Tai, E.S. Modification of the NCEP ATP III definitions of the metabolic syndrome for use in Asians identifies individuals at risk of ischemic heart disease. Atherosclerosis 2006, 186, 367–373. [Google Scholar] [CrossRef]
- Yang, Y. China Food Composition 2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Yang, Y.; Wang, Y.; Pan, X. China Food Composition 2009; Peking University Medical Press: Beijing, China, 2010. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport. Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Mok, A.; Rangan, A.M.; Louie, J.C.Y. Association of free sugar intake with blood pressure and obesity measures in Australian adults. Eur. J. Nutr. 2020, 59, 651–659. [Google Scholar] [CrossRef]
- de Ruyter, J.C.; Olthof, M.R.; Seidell, J.C.; Katan, M.B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.J.; Sanchez-Lozada, L.G.; Andrews, P.; Lanaspa, M.A. Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Adv. Nutr. 2017, 8, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of the National Health and Nutrition Examination Survey 2005–2012. Public Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, E.H.; Kim, H.; Kwon, O. Association between Total Sugar Intake and Metabolic Syndrome in Middle-Aged Korean Men and Women. Nutrients 2019, 11, 2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Hu, F.B. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence. Nutrients 2019, 11, 1840. [Google Scholar] [CrossRef] [Green Version]
- Azais-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef]
- Das, U.N. Sucrose, fructose, glucose, and their link to metabolic syndrome and cancer. Nutrition 2015, 31, 249–257. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025; US Government Publishing Office: Washington, DC, USA, 2020.
- Chinese Nutrition Society. Chinese Dietary Guidelines; People’s Medical Publishing House Press: Beijing, China, 2022. [Google Scholar]
- Ma, Y.; He, F.J.; Yin, Y.; Hashem, K.M.; MacGregor, G.A. Gradual reduction of sugar in soft drinks without substitution as a strategy to reduce overweight, obesity, and type 2 diabetes: A modelling study. Lancet Diabetes Endocrinol. 2016, 4, 105–114. [Google Scholar] [CrossRef]
- Liu, S.; Munasinghe, L.L.; Ohinmaa, A.; Veugelers, P.J. Added, free and total sugar content and consumption of foods and beverages in Canada. Health Rep. 2020, 31, 14–24. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Du, W.; Huang, F.; Jiang, H.; Bai, J.; Zhang, X.; Zhang, B.; Wang, H. Twenty-Five-Year Trends in Dietary Patterns among Chinese Adults from 1991 to 2015. Nutrients 2021, 13, 1327. [Google Scholar] [CrossRef]
- Mullee, A.; Romaguera, D.; Pearson-Stuttard, J.; Viallon, V.; Stepien, M.; Freisling, H.; Fagherazzi, G.; Mancini, F.R.; Boutron-Ruault, M.C.; Kuhn, T.; et al. Association Between Soft Drink Consumption and Mortality in 10 European Countries. JAMA Intern. Med. 2019, 179, 1479–1490. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, T.; Dong, W.; Chu, C.; Zhou, M. Study on the death and disease burden caused by high sugar-sweetened beverages intake in China from 1990 to 2019. Eur. J. Public Health 2022, 32, 773–778. [Google Scholar] [CrossRef] [PubMed]
Overall Participants | |||||
---|---|---|---|---|---|
<5 g/Day | 5–20 g/day | >20 g/day | χ2 | p | |
Number of subjects | 9056 (75.2) | 2645 (22.0) | 347(2.9) | ||
Age | |||||
18–44 | 4872 (76.5) | 1326 (20.8) | 172 (2.7) | 12.61 | <0.001 |
≥45 | 4184 (73.7) | 1319 (23.2) | 175 (3.1) | ||
Education level | |||||
Junior high school or below | 6333 (81.4) | 1322 (17.0) | 128 (1.6) | 476.28 | <0.001 |
Senior high school or above | 2723 (63.9) | 1323 (31.0) | 219 (5.1) | ||
Place of residence | |||||
Urban area | 2573 (60.1) | 1451 (33.9) | 260 (6.1) | 866.51 | <0.001 |
Rural area | 6483 (83.5) | 1194 (15.4) | 87 (1.1) | ||
Region of residence | |||||
Northern region | 3741 (74.8) | 1127 (22.5) | 131 (2.6) | 3.48 | 0.175 |
Southern region | 5315 (75.4) | 1518 (21.5) | 216 (3.1) | ||
Individual annual income | |||||
Low | 3575 (89.1) | 417 (10.4) | 20 (0.5) | 1199.90 | <0.001 |
Medium | 3191 (79.3) | 763 (19.0) | 72 (1.8) | ||
High | 2290 (57.1) | 1465 (36.5) | 255 (6.4) | ||
Drinking history | |||||
Yes | 4762 (75.8) | 1363 (21.7) | 160 (2.6) | 6.16 | 0.046 |
No | 4294 (74.5) | 1282 (22.3) | 187 (3.2) | ||
Smoking history | |||||
Yes | 3930 (77.6) | 1018 (20.1) | 118 (2.3) | 29.73 | <0.001 |
No | 5126 (73.4) | 1627 (23.3) | 229 (3.3) | ||
Physical activity | |||||
Low | 2767 (69.0) | 1070 (26.7) | 175 (4.4) | 254.37 | <0.001 |
Medium | 2942 (73.1) | 964 (24.0) | 119 (3.0) | ||
High | 3347 (83.5) | 611 (15.2) | 53 (1.3) | ||
Intake of total energy | |||||
Low | 3015 (75.2) | 910 (22.7) | 87 (2.2) | 27.68 | <0.001 |
Medium | 3036 (75.4) | 888 (22.1) | 101 (2.5) | ||
High | 3005 (74.9) | 847 (21.1) | 159 (4.0) |
Men | |||||
---|---|---|---|---|---|
<5 g/Day | 5–20 g/day | >20 g/day | χ2 | p | |
Number of subjects | 4407 (36.6) | 1236 (10.3) | 169 (1.4) | ||
Age | |||||
18–44 | 2386 (37.5) | 619 (9.7) | 85 (1.3) | 6.97 | <0.05 |
≥45 | 2021 (35.6) | 617 (10.9) | 84 (1.5) | ||
Education level | |||||
Junior high school or below | 2832 (36.4) | 567 (7.3) | 66 (0.9) | 166.14 | <0.001 |
Senior high school or above | 1575 (36.9) | 669 (15.7) | 103 (2.4) | ||
Place of residence | |||||
Urban area | 1240 (28.9) | 644 (15.0) | 126 (2.9) | 368.01 | <0.001 |
Rural area | 3167 (40.8) | 592 (7.6) | 43 (0.6) | ||
Region of residence | |||||
Northern region | 1801 (36.0) | 533 (10.7) | 67 (1.3) | 2.23 | 0.329 |
Southern region | 2606 (37.0) | 703 (10.0) | 102 (1.5) | ||
Individual annual income | |||||
Low | 1740 (43.4) | 205 (5.1) | 10 (0.3) | 520.94 | <0.001 |
Medium | 1543 (38.3) | 365 (9.1) | 38 (0.9) | ||
High | 1124 (28.0) | 666 (16.6) | 121 (3.0) | ||
Drinking history | |||||
Yes | 3719 (59.2) | 990 (15.8) | 122 (1.9) | 27.50 | <0.001 |
No | 688 (11.9) | 246 (4.3) | 47 (0.8) | ||
Smoking history | |||||
Yes | 3599 (71.0) | 939 (18.5) | 108 (2.1) | 47.42 | <0.001 |
No | 808 (11.6) | 297 (4.3) | 61 (0.9) | ||
Physical activity | |||||
Low | 1357 (33.8) | 513 (12.8) | 82 (2.0) | 104.11 | <0.001 |
Medium | 1417 (35.2) | 422 (10.5) | 56 (1.4) | ||
High | 1633 (40.7) | 301 (7.5) | 31 (0.8) | ||
Intake of total energy | |||||
Low | 745 (18.6) | 225 (5.6) | 17 (0.4) | 14.71 | <0.05 |
Medium | 1388 (34.5) | 400 (9.9) | 43 (1.1) | ||
High | 2274 (56.7) | 611 (15.2) | 109 (2.7) |
Women | |||||
---|---|---|---|---|---|
<5 g/Day | 5–20 g/day | >20 g/day | χ2 | p | |
Number of subjects | 4649 (38.6) | 1409 (11.7) | 178 (1.5) | ||
Age | |||||
18–44 | 2486 (39.0) | 707 (11.1) | 87 (1.4) | 5.73 | <0.057 |
≥45 | 2163 (38.1) | 702 (12.4) | 91 (1.6) | ||
Education level | |||||
Junior high school or below | 3501 (45.0) | 755 (9.7) | 62 (0.8) | 341.45 | <0.001 |
Senior high school or above | 1148 (26.9) | 654 (15.3) | 116 (2.7) | ||
Place of residence | |||||
Urban area | 1333 (31.1) | 807 (18.8) | 134 (3.1) | 500.95 | <0.001 |
Rural area | 3316 (42.7) | 602 (7.8) | 44 (0.6) | ||
Region of residence | |||||
Northern region | 1940 (38.8) | 594 (11.9) | 64 (1.3) | 2.54 | 0.281 |
Southern region | 2709 (38.4) | 815 (11.6) | 114 (1.6) | ||
Individual annual income | |||||
Low | 1835 (45.7) | 212 (8.3) | 10 (0.3) | 680.75 | <0.001 |
Medium | 1648 (40.9) | 398 (9.9) | 34 (0.8) | ||
High | 1166 (29.1) | 799 (19.9) | 134 (3.3) | ||
Drinking history | |||||
Yes | 1043 (16.6) | 373 (5.9) | 38 (0.6) | 10.26 | <0.05 |
No | 3606 (62.6) | 1036 (18.0) | 140 (2.4) | ||
Smoking history | |||||
Yes | 331 (6.5) | 79 (1.6) | 10 (0.2) | 4.30 | 0.116 |
No | 4318 (61.8) | 1330 (19.1) | 168 (2.4) | ||
Physical activity | |||||
Low | 1410 (35.1) | 557 (13.9) | 93 (2.3) | 154.63 | <0.001 |
Medium | 1525 (37.9) | 542 (13.5) | 63 (1.6) | ||
High | 1714 (42.7) | 310 (7.7) | 22 (0.6) | ||
Intake of total energy | |||||
Low | 2270 (56.6) | 685 (17.1) | 70 (1.7) | 20.04 | <0.001 |
Medium | 1648 (40.9) | 488 (12.0) | 58 (1.4) | ||
High | 731 (18.2) | 236 (5.9) | 50 (1.3) |
<5 g/Day | 5–20 g/Day | >20 g/Day | |
---|---|---|---|
Overall Participants | |||
Model 1 | 1.00 (Reference) | 1.084 (0.999, 1.175) | 0.991 (0.783, 1.253) |
Model 2 | 1.00 (Reference) | 1.095 (1.009, 1.188) * | 0.966 (0.763, 1.224) |
Model 3 | 1.00 (Reference) | 1.094 (1.009, 1.186) * | 1.011 (0.800, 1.277) |
Men | |||
Model 1 | 1.00 (Reference) | 1.058 (0.940, 1.192) | 1.039 (0.757, 1.428) |
Model 2 | 1.00 (Reference) | 1.078 (0.958, 1.212) | 1.037 (0.756, 1.422) |
Model 3 | 1.00 (Reference) | 1.077 (0.957, 1.213) | 1.073 (0.782, 1.473) |
Women | |||
Model 1 | 1.00 (Reference) | 1.111 (0.995, 1.242) | 0.922 (0.651, 1.308) |
Model 2 | 1.00 (Reference) | 1.122 (1.003, 1.255) * | 0.895 (0.630, 1.272) |
Model 3 | 1.00 (Reference) | 1.105 (0.990, 1.232) | 0.918 (0.650, 1.298) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, F.; Wang, Z.; Wang, H.; Su, C.; Zhang, J.; Du, W.; Jia, X.; Wang, L.; Jiang, H.; Li, W.; et al. Association between Free Sugars Intake and Risk of Metabolic Syndrome in Chinese Adults: Results from the China Health and Nutrition Survey, 2000–2018. Nutrients 2022, 14, 5385. https://doi.org/10.3390/nu14245385
Pan F, Wang Z, Wang H, Su C, Zhang J, Du W, Jia X, Wang L, Jiang H, Li W, et al. Association between Free Sugars Intake and Risk of Metabolic Syndrome in Chinese Adults: Results from the China Health and Nutrition Survey, 2000–2018. Nutrients. 2022; 14(24):5385. https://doi.org/10.3390/nu14245385
Chicago/Turabian StylePan, Feng, Zhihong Wang, Huijun Wang, Chang Su, Jiguo Zhang, Wenwen Du, Xiaofang Jia, Liusen Wang, Hongru Jiang, Weiyi Li, and et al. 2022. "Association between Free Sugars Intake and Risk of Metabolic Syndrome in Chinese Adults: Results from the China Health and Nutrition Survey, 2000–2018" Nutrients 14, no. 24: 5385. https://doi.org/10.3390/nu14245385
APA StylePan, F., Wang, Z., Wang, H., Su, C., Zhang, J., Du, W., Jia, X., Wang, L., Jiang, H., Li, W., Zhang, B., & Ding, G. (2022). Association between Free Sugars Intake and Risk of Metabolic Syndrome in Chinese Adults: Results from the China Health and Nutrition Survey, 2000–2018. Nutrients, 14(24), 5385. https://doi.org/10.3390/nu14245385