Protective Role of Natural Compounds under Radiation-Induced Injury
Abstract
:1. Introduction
2. Radiation-Induced Injury
3. Radiation-Induced Mucositis
4. From Pathogenesis to the Clinic of Mucositis
4.1. Clinical Presentation of Mucositis of upper Gastrointestinal Tract: Oral Cavity, Esophagus, Stomach
4.2. Clinical Presentation of Mucositis of Lower Gastrointestinal Tract: Small Bowel, Rectum
5. Preventive Measures and Treatment Modalities
6. The Emerging Protective Role of Natural Compounds on Radiation Injuries due to Antioxidant Activity
6.1. Carotenoids
6.1.1. Beta-Carotene
6.1.2. Lutein
6.1.3. Lycopene
6.2. Polyphenols
6.2.1. Caffeic Acid
6.2.2. Gallic Acid
6.2.3. Ferulic Acid
6.2.4. Chlorogenic Acid
6.2.5. Cinnamic Acid
6.2.6. Epigallocatechin Gallate
6.2.7. Resveratrol
6.2.8. Rosmarinic Acid
6.2.9. Quercetin
6.2.10. Curcumin
6.3. Vitamins
6.4. Compounds of a Terpenic Nature
Sources | Properties | Direct and Indirect Effects on Irradiation | |
---|---|---|---|
Beta-carotene | Red, orange and yellow fruits and vegetables [45]. | Beta-carotene is a natural precursor of retinol (vitamin A) [45]. | It scavenges free radicals, which belong to the interaction between irradiation, and it significantly reduces the number of double-strand breaks in peripheral blood mononuclear cells of patients undergoing 99mTc methylene diphosphonate bone scans compared to the control group [47]. |
Lutein | Dark green leafy vegetables such as spinach and kale [50]. | Lutein is the second most prevalent carotenoid in human serum [49], has two hydroxyl groups, one on each side of the molecule, and is the dihydroxy form of α-carotene [49]. | It protects against cumulative DNA damage in IR-exposed persons [52]. |
Lycopene | The main red pigment of fruits, such as tomatoes, pink grapefruit, apricots, blood oranges and watermelon [48]. | Lycopene is a linear, unsaturated hydrocarbon carotenoid first discovered in tomatoes by Millardet in 1876. It is an acyclic carotene with 11 conjugated double bonds [48]. | Reduces the severity of mucositis and can be used to prevent RIOM, especially in the treatment of head and neck cancers [59]. |
Caffeic Acid | Ilex paraguariensis, Melissa officinalis, Baccharis genistelloides and Achyrocline satureioides. It is present in wine, tea, coffee and apple juice [89]. | It belongs to the class of organic compounds known as hydroxycinnamic acids [89]. | Radioprotective effects against X-ray irradiation-induced intestinal damage in rats [94]. It also reversed the activation of p38MAPK and the increased expression of inter-cellular cell adhesion molecule-1 induced by radiation in the intestinal mucosa [95]. |
Gallic Acid | Mangos (Mangifera indica), pomegranates (Punica granatum), blueberries and strawberries, grape seeds and cloves [96,98,99]. | It belongs to the class of organic compounds known as gallic acids [98]. | GA has an antioxidant and pro-oxidant activity. GA is able to chelate transition metal ions that are promoters of free radical damage in the human body [101]. |
Ferulic Acid | Fruits and vegetables [102]. | It belongs to the phenolic acid group commonly found in plant tissue [139] that arises from the metabolism of phenylalanine and tyrosine [102]. | Is a potent antioxidant and terminates free-radical chains [102]. It has a protective action in preventing intestinal injury due to γ-radiation [103]. |
Chlorogenic Acid | Coffee, leaves and fruits of dicotyledonous plants [104]. | It is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid [104]. | Anti-inflammatory and antioxidant [103], anti-mutagenic, DNA damage inhibition and antioxidation properties [105]. |
Cinnamic Acid | It is present in fruits, whole grains, vegetables and honey [108]. | It belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene group and a carboxylic acid forming 3-phenylprop-2-enoic acid [108]. | Antioxidant, antimicrobial [109], anticancer [110] and anti-inflammatory [111]. Cinnamic acid terminates radical chain reactions by donating electrons that react with radicals to form stable products [112]. |
Epigallocatechin gallate | Several plants such as green tea and in Vitis vinifera grape seeds [113]. | EGCG, with 8 hydroxyl groups, notably in 3′, 4′ and 5′ positions and with a gallate moiety in C-3, is a better electron donor than the other catechins and thus the best scavenger of free radicals species [148,149]. | Relief of the mucositis symptoms [113]. |
Resveratrol | Mulberries, peanuts and grapes [114]. | It is a phytoalexin, a polyphenolic compound produced by plants in response to environmental stress, UV radiation, etc. [115]. Resveratrol exists as two geometric isomers, trans- and cis-, and their glucosides, trans- and cis-piceids [115]. | It is a promising natural product in treating cell cycle or ROS-mediated diseases, including radiation-induced cellular damage [115,116,117,118]. |
Rosmarinic Acid | Rosmarinus officinalis, Boraginaceae family, subfamily Nepetoideae [119]. | It is an ester of caffeic acid and 3,4-dihydroxyphenylactic acid [119]. | It increases the expression and activity of antioxidant enzymes in human keratinocytes [120]. It is a cyto-protector against the adverse effects of UVB radiation by modulating cellular antioxidant systems [120]. |
Quercetin | Apples, berries, brassica vegetables, capers, grapes, onions, spring onions, tea, tomatoes, seeds, nuts, bark and leaves [121]. | Its molecular formula is C15H10O7. It’s a naturally occurring polar auxin transport inhibitor. It has a ketocarbonyl group in its molecules, and the oxygen atom on the first carbon is basic and can generate salts with strong acids. Its molecular structure contains five active groups, namely a dihydroxy group between the A ring, o-dihydroxy group B, C ring C2, C3 double bond and 4-carbonyl [126]. | Significant superoxide radical scavenging capabilities [128,129]. It could be effective on the decreasing the intensity of RIOM [130]. |
Curcumin | Rhizomes of plants of Curcuma longa Linn (Zingiberaceae family) [131]. | It’s also known as diferuloylmethane. It’s a polyphenolic yellow substance. It has a structure similar to other bioactive non-volatile curcuminoids, such as dimethoxy-curcumin and bisdemethoxy-curcumin, differing only for the number of methoxy groups on their aromatic rings [132]. | It protects normal cells from radiation-induced damage [133]. It has anti-inflammatory effects [132], useful in the treatment of oral mucosal ulceration [135]. |
Vitamins | Vegetables and fruits, as well as dairy, meat, legumes, peas, liver, eggs and fortified grains and cereals [138]. | There are two main groups of vitamins—fat-soluble (easily stored in fat upon absorption) and water-soluble (washed out and not easily stored). Although adequate intake of all vitamins is important, regular intake is required to avoid deficiency due to the transient nature of water-soluble vitamins [138]. | Vitamins E, A, C and B are gastro-intestinal radioprotectors [138]. They confer protection against radiation-induced intestinal damage in vitro [138]. Pentoxifylline/vitamin E combination reduced the severity and duration of acute radiotherapy-induced oral mucositis [142]. |
Terpenes | Flowers, roots (i.e., licorice), fruits and leaves [144]. | Are characterized by at least one isoprene unit. They are differentiated by molecular weight and by multiples of their constituent isoprene units: monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40) [143]. | Antioxidant and gastroprotective activities [146]. Their application decreases pain and the level of radiation injuries [147]. |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Caballero, A.; Torres-Lagares, D.; Robles-García, M.; Pachón-Ibánez, J.; González-Padilla, D.; Gutiérrez-Pérez, J.L. Cancer treatment-induced oral mucositis: A critical review. Int. J. Oral Maxillofac. Surg. 2012, 41, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-R.; Mahmood, J.; Zhang, Q.-R.; Vedadi, A.; Warrington, J.; Ou, N.; Robert, G.; Bristow, R.G.; Jaffray, D.A.; Lu, Q.B. In Vitro and In Vivo Studies of a New Class of Anticancer Molecules for Targeted Radiotherapy of Cancer. Am. Assoc. Cancer Res. 2016; published online. [Google Scholar]
- Lauren, J.; Radvansky, L.J.; Pace, M.B.; Siddiqui, A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am. J. Health-Syst. Pharm. 2013, 70, 1025–1032. [Google Scholar]
- Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.M.; Anoopkumar-Dukie, S. Protection against Radiotherapy-Induced Toxicity. Antioxidants 2016, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front. Pharmacol. 2018, 9, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The Role of Radiotherapy in Cancer Treatment. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Borras, J.M.; Lievens, Y.; Barton, M.; Corral, J.; Ferlay, J.; Bray, F.; Grau, C. How Many New Cancer Patients in EuropeWill Require Radiotherapy by 2025? An ESTRO-HERO Analysis. Radiother. Oncol. 2016, 119, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Seibold, P.; Auvinen, A.; Averbeck, D.; Bourguignon, M.; Hartikainen, J.M.; Hoeschen, C.; Laurent, O.; Noël, G.; Sabatier, L.; Salomaa, S.; et al. Clinical and Epidemiological Observations on Individual Radiation Sensitivity and Susceptibility. Int. J. Radiat. Biol. 2020, 96, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Dörr, W. Pathogenesis of Normal-Tissue Side-Effects. In Basic Clinical Radiobiology, 4th ed.; Joiner, M.C., van der Kogel, A.J., Eds.; Hodder Arnold: London, UK, 2009; pp. 169–189. [Google Scholar]
- Sonis, S.T. The pathobiology of mucositis. Nat. Rev. Cancer 2004, 4, 277–284. [Google Scholar] [CrossRef]
- Maria, O.M.; Eliopoulos, N.; Muanza, T. Radiation-Induced Oral Mucositis. Front. Oncol. 2017, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joiner, M.C.E.; Van der Kogel, A.E. Basic Clinical Radiobiology, 4th ed.; Routledge: London, UK, 2009. [Google Scholar]
- Hall, E.J. Radiobiology for the Radiobiologist, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Montay-Gruel, P.; Meziani, L.; Yakkala, C.; Vozenin, M.-C. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br. J. Radiol. 2019, 92, 20180008. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Constine, L.S.; Deasy, J.O.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Haken, R.K.T.; Yorke, E.D. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76 (Suppl. 3), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Brunner, T.B.; Seufferlein, T. Chemoradiotherapy, the backbone of radiotherapy in gastrointestinal oncology. Best Pr. Res. Clin. Gastroenterol. 2016, 30, 511–513. [Google Scholar] [CrossRef]
- Mallick, S.; Benson, R.; Rath, G.K. Radiation induced oral mucositis: A review of current literature on prevention and management. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Antonadou, D.; Coliarakis, N.; Synodinou, M.; Athanassiou, H.; Kouveli, A.; Verigos, C.; Georgakopoulos, G.; Panoussaki, K.; Karageorgis, P.; Throuvalas, N.; et al. Randomized phase III trial of radiation treatment þ/-amifostine in patients with advanced-stage lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 915–922. [Google Scholar] [CrossRef]
- Denham, J.W.; Hauer-Jensen, M. The radiotherapeutic injury–a complex ’wound’. Radiother. Oncol. 2002, 63, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Yarnold, J.; Brotons, M.C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Afifi, A.N.; Powerski, M.; Jechorek, D.; Brunner, T.B.; Weigt, J.; Venerito, M. Radiation-induced damage in the upper gastrointestinal tract: Clinical presentation, diagnostic tests and treatment options. Best Pr. Res. Clin. Gastroenterol. 2020, 48–49, 101711. [Google Scholar] [CrossRef]
- Hale, M.F. Radiation enteritis. Curr. Opin. Gastroenterol. 2020, 36, 208–214. [Google Scholar] [CrossRef]
- Cotti, G.; Seid, V.; Araujo, S.; Souza, A.H., Jr.; Kiss, D.; Habr-Gama, A. Conservative therapies for hemorrhagic radiation proctitis: A review. Rev. Hosp. Clin. Fac. Med. Sao Paulo 2003, 58, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Porouhan, P.; Farshchian, N.; Dayani, M. Management of radiation-induced proctitis. J. Fam. Med. Prim. Care. 2019, 8, 2173–2178. [Google Scholar]
- Do, N.L.; Nagle, D.; Poylin, V.Y. Radiation proctitis: Current strategies in management. Gastroenterol. Res. Pr. 2011, 2011, 917941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.H.L.; Gueiros, L.A.; Fulton, J.S.; Cheng, K.K.F.; Kandwal, A.; Galiti, D.; Fall-Dickson, J.M.; Johansen, J.; Ameringer, S.; Kataoka, T.; et al. Systematic review of basic oral care for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 2019, 27, 3949–3967. [Google Scholar] [CrossRef] [PubMed]
- Yuce, U.O.; Yurtsever, S. Effect of education about oral mucositis given to the cancer patients having chemotherapy on life quality. J. Cancer Educ. 2019, 34, 35–40. [Google Scholar] [CrossRef]
- Huang, B.S.; Wu, S.C.; Lin, C.Y.; Fan, K.H.; Chang, J.T.C.; Chen, S.C. The effectiveness of a saline mouth rinse regimen and education programme on radiation-induced oral mucositis and quality of life in oral cavity cancer patients: A randomized controlled trial. Eur. J. Cancer Care 2018, 27, e12819. [Google Scholar] [CrossRef]
- Mcguire, D.B.; Fulton, J.S.; Park, J.; Brown, C.G.; Correa, M.E.; Eilers, J.; Elad, S. Systematic review of basic oral care for the management of oral mucositis in cancer patients. Support Care Cancer 2013, 21, 3165–3177. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-H.; Yao, N.; Wei, K.K.; Jiang, L.; Hanif, S.; Wang, Z.-X.; Pei, C.-X. The efficacy and safety of probiotics for prevention of chemoradiotherapy-induced diarrhea in people with abdominal and pelvic cancer: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-M.; Li, S.-T.; Shu, Y.; Zhan, H.-Q. Probiotics for prevention of radiation-induced diarrhea: A meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0178870. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, N.K.; Suppiah, S.; Veettil, S.K.; Ching, S.M.; Lee, K.W.; Menon, R.K.; Soo, M.J.; Deuraseh, I.; Hoo, F.K.; Sivaratnam, D. The effects of probiotic supplementation on the incidence of diarrhea in cancer patients receiving radiation therapy: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Nutrients 2019, 11, 2886. [Google Scholar] [CrossRef] [Green Version]
- Stellamans, K.; Lievens, Y.; Lambin, P.; Weyngaert, D.V.D.; Bogaert, W.V.D.; Scalliet, P.; Hutsebaut, L.; Haustermans, K. Does sucralfate reduce early side effects of pelvic radiation? A double-blind randomized trial. Radiother. Oncol. 2002, 65, 105–108. [Google Scholar] [CrossRef]
- Athanassiou, H.; Antonadou, D.; Coliarakis, N.; Kouveli, A.; Synodinou, M.; Paraskevaidis, M.; Sarris, G.; Georgakopoulos, G.R.; Panousaki, K.; Karageorgis, P.; et al. Protective effect of amifostine during fractionated radiotherapy in patients with pelvic carcinomas: Results of a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 1154–1160. [Google Scholar] [CrossRef]
- Pasqualetti, V.; Locato, V.; Fanali, C.; Mulinacci, N.; Cimini, S.; Morgia, A.M.; Pasqua, G.; De Gara, L. Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants 2021, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Hosseinimehr, S.J. Trends in the development of radioprotective agents. Drug Discov. Today 2007, 12, 794–805. [Google Scholar] [PubMed]
- Dutta, S.; Wadekar, R.R.; Roy, T. Radioprotective natural products as alternative complements in oncological radiotherapy. Bol. Latinoam. Caribe Plant. Med. Aromat. 2021, 20, 101–122. [Google Scholar] [CrossRef]
- Oh, J.Y.; Feranando, I.P.; Jeon, Y.J. Potential applications of radioprotective phytochemicals from marine algae. Korean Soc. Phycol. Algae 2016, 31, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.L.; Kolozsvary, A.; Liu, J.; Jenrow, K.A.; Ryu, S.; Kim, J.H. Antioxidant diet supplementation starting 24 hours after exposure reduces radiation lethality. Radiat. Res. 2010, 173, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, E.; Floreno, B.; Rinaldi, C.G.; Trodella, L.; Meroni, F.L.; Iurato, A.; D’Angelillo, R.M.; Ramella, S.; Fiore, M. Effica-cy of a Propolis-Based Syrup (FARINGEL) in Preventing Radiation-Induced Esophagitis in Locally Advanced Lung Cancer. Chemotherapy 2018, 63, 76–82. [Google Scholar] [CrossRef]
- Dastan, F.; Ameri, A.; Dodge, S.; Hamidi Shishvan, H.; Pirsalehi, A.; Abbasinazari, M. Efficacy and safety of propolis mouthwash in management of radiotherapy induced oral mucositis; A randomized, double blind clinical trial. Rep. Pr. Oncol. Radiother. 2020, 25, 969–973. [Google Scholar] [CrossRef]
- Münstedt, K.; Männle, H. Using Bee Products for the Prevention and Treatment of Oral Mucositis Induced by Cancer Treatment. Molecules 2019, 24, 3023. [Google Scholar] [CrossRef] [Green Version]
- Olaku, O.O.; Ojukwu, M.O.; Zia, F.Z.; White, J.D. The Role of Grape Seed Extract in the Treatment of Chemo/Radiotherapy Induced Toxicity: A Systematic Review of Preclinical Studies. Nutr. Cancer 2015, 67, 730–740. [Google Scholar] [CrossRef]
- Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S.; et al. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anticancer Agents Med. Chem. 2022, 22, 30–39. [Google Scholar]
- Mathews-Roth, M.M.; Pathak, M.A.; Parrish, J.; Fitzpatrick, T.B.; Kass, E.H.; Toda, K.; Clemens, W. A clinical trial of the effects of oral beta-carotene on the responses of human skin to solar radiation. J. Investig. Dermatol. 1972, 59, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, E.E. The modifying effect of beta-carotene on radiation and chemotherapy induced oral mucositis. Br. J. Cancer 1988, 57, 416–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, N.; Seo, E.J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine 2018, 47, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Alves-Rodrigues, A.; Shao, A. The science behind lutein. Toxicol. Lett. 2004, 150, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Faulhaber, D.; Hanson, K.M.; Ding, W.; Peters, S.; Kodali, S.; Granstein, R.D. Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression. J. Investig. Dermatol. 2004, 122, 510–517. [Google Scholar] [CrossRef]
- Sommerburg, O.; Keunen, J.E.; Bird, A.C.; van Kuijk, F.J. Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. Br. J. Ophthalmol. 1998, 82, 907–910. [Google Scholar] [CrossRef]
- Zhang, L.X.; Cooney, R.V.; Bertram, J.S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 1991, 12, 2109–2114. [Google Scholar] [CrossRef]
- Yong, L.C.; Petersen, M.R.; Sigurdson, A.J.; Sampson, L.A.; Ward, E.M. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. Am. J. Clin. Nutr. 2009, 90, 1402–1410. [Google Scholar] [CrossRef] [Green Version]
- Kong, K.W.; Khoo, H.E.; Prasad, K.N.; Ismail, A.; Tan, C.P.; Rajab, N.F. Revealing the power of the natural red pigment lycopene. Molecules 2010, 15, 959–987. [Google Scholar] [CrossRef] [Green Version]
- Holloway, D.E.; Yang, M.; Paganga, G.; Rice-Evans, C.A.; Bramley, P.M. Isomerization of dietary lycopene during assimilation and transport in plasma. Free Radic. Res. 2000, 32, 93–102. [Google Scholar] [CrossRef]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-Assisted Production of Tomato Seed Oil Enriched with Lycopene from Tomato Pomace. Food Bioprocess Technol. 2013, 6, 3499–3509. [Google Scholar] [CrossRef]
- Di Franco, R.; Calvanese, M.; Murino, P.; Manzo, R.; Guida, C.; Di Gennaro, D.; Anania, C.; Ravo, V. Skin toxicity from external beam radiation therapy in breast cancer patients: Protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®). Radiat. Oncol. 2012, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Sadic, M.; Aydinbelge, F.N.; Yumusak, N.; Karakok, E.; Akbulut, A.; Koca, G.; Korkmaz, M. Radioprotective effect of lycopene on the gastrointestinal tract after high-dose radioiodine administration in rat models. Nucl. Med. Commun. 2017, 38, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Motallebnejad, M.; Zahedpasha, S.; Moghadamnia, A.A.; Kazemi, S.; Moslemi, D.; Pouramir, M.; Asgharpour, F. Protective effect of lycopene on oral mucositis and antioxidant capacity of blood plasma in the rat exposed to gamma radiation. Caspian J. Intern. Med. 2020, 11, 419–425. [Google Scholar]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015, 124, 64–74. [Google Scholar] [CrossRef]
- Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin. Nutr. Exp. 2015, 3, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Lorigooini, Z. A review of significant molecular mechanisms of flavonoids in prevention of prostate cancer. J. Chem. Pharm. Sci. 2016, 9, 3388–3394. [Google Scholar]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plant. Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Williams, C.A.; Grayer, R.J. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2004, 21, 539–573. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Boojar, M.M.A. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull. 2020, 10, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Giannini, B.; Mulinacci, N.; Pasqua, G.; Innocenti, M.; Valletta, A.; Cecchini, F. Phenolics and antioxidant activity in different cultivars/clones of Vitis vinifera L. seeds over two years. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1408–1416. [Google Scholar] [CrossRef]
- Yang, R.Y.; Lin, S.; Kuo, G. Content and distribution of flavonoids among 91 edible plant species. Asia Pac. J. Clin. Nutr. 2008, 17, 275–279. [Google Scholar]
- Moga, M.A.; Dimienescu, O.G.; Arvatescu, C.A.; Mironescu, A.; Dracea, L.; Ples, L. The role of natural polyphenols in the prevention and treatment of cervical cancer-An overview. Molecules 2016, 21, 1055. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef]
- Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001, 41, 492–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Broges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014, 88, 1803–1853. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.B.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; De Gara, L.; Santino, A. Resveratrol biosynthesis: Plant metabolic engineering for nutritional improvement of food. Plant Foods Hum. Nutr. 2012, 67, 191–199. [Google Scholar] [CrossRef]
- Mulinacci, N.; Valletta, A.; Pasqualetti, V.; Innocenti, M.; Giuliani, C.; Bellumori, M.; De Angelis, G.; Carnevale, A.; Locato, V.; Di Venanzio, C.; et al. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat. Prod. Res. 2019, 33, 1106–1114. [Google Scholar] [CrossRef]
- Shin, Y.S.; Shin, H.A.; Kang, S.U.; Kim, J.-H.; Oh, Y.-T.; Park, K.H.; Kim, C.-H. Effect of Epicatechin against Radiation-Induced Oral Mucositis: In Vitro and In Vivo Study. PLoS ONE 2013, 8, e69151. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Ramirez-Mares, M.V.; Puangpraphant, S. Bioactive components of tea: Cancer, inflammation and behavior. Brain Behav. Immun. 2009, 23, 721–731. [Google Scholar] [CrossRef]
- Chung, J.Y.; Park, J.O.; Phyu, H.; Dong, Z.; Yang, C.S. Mechanisms of inhibition of the Ras- MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-)-epigallocatechin-3-gallate and theaflavin-3,3’-digallate. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15, 2022–2024. [Google Scholar] [CrossRef] [PubMed]
- Stanely Mainzen Prince, P. (-) Epicatechin attenuates mitochondrial damage by enhancing mitochondrial multi-marker enzymes, adenosine triphosphate and lowering calcium in isoproterenol induced myocardial infarcted rats. Food Chem. Toxicol. 2013, 53, 409–416. [Google Scholar] [CrossRef] [PubMed]
- García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev. 2013, 22, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Serna-Thomé, G.; Castro-Eguiluz, D.; Fuchs-Tarlovsky, V.; Sánchez-López, M.; Delgado-Olivares, L.; Coronel-Martínez, J.; Molina-Trinidad, E.M.; De La Torre, M.; Cetina-Pérez, L. Use of functional foods and oral supplements as adjuvants in cancer treatment. Rev. Inves. Clin. 2018, 70, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Nardini, M.; Natella, F.; Gentili, V.; Di Felice, M.; Scaccini, C. Effect of caffeic acid dietary supplementation on the antioxidant defense system in rat: Anin VivoStudy. Arch. Biochem. Biophys. 1997, 342, 157–160. [Google Scholar] [CrossRef]
- Fesen, M.R.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, K.W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol. 1994, 48, 595–608. [Google Scholar] [CrossRef]
- Meyer, A.S.; Donovan, J.L.; Pearson, D.A.; Waterhouse, A.L.; Frankel, E.N. Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. J. Agric. Food Chem. 1998, 46, 1783–1787. [Google Scholar] [CrossRef]
- Aladedunye, F.; Catel, Y.; Przybylski, R. Novel caffeic acid amide antioxidants: Synthesis, radical scavenging activity and performance under storage and frying conditions. Food Chem. 2012, 130, 945–952. [Google Scholar] [CrossRef]
- Calikoglu, M.; Tamer, L.; Sucu, N.; Coskun, B.; Ercan, B.; Gul, A.; Calikoglu, I.; Kanik, A. The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion. Pharmacol. Res. 2003, 48, 397–403. [Google Scholar] [CrossRef]
- Jin, L.G.; Chu, J.J.; Pang, Q.F.; Zhang, F.Z.; Wu, G.; Zhou, L.Y.; Zhang, X.J.; Xing, C.G. Caffeic acid phenethyl ester attenuates ionize radiation-induced intestinal injury through modulation of oxidative stress, apoptosis and p38MAPK in rats. Environ. Toxicol. Pharmacol. 2015, 40, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.C.; Trevisan, M.T.S.; Hull, W.E.; de Brito, G.E.E.S.; Pfundstein, B.; Würtele, G.; Spiegelhalder, B.; Owen, R.W. Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J. Agric. Food Chem. 2008, 56, 5599–5610. [Google Scholar] [CrossRef] [PubMed]
- Santhini, E.; Ramji, B.; Viswanadha, V.P. Gallic acid isolated from pomegranate peel extract induces reactive oxygen species mediated apoptosis in A549 cell line. J. Cancer Ther. 2011, 2, 638–645. [Google Scholar]
- Cortés-Rojas, D.F.; De Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, I.M.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem. 1998, 46, 4107–4112. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef]
- Yen, G.-C.; Duh, P.-D.; Tsai, H.-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Prasad, N.R.; Srinivasan, M.; Pugalendi, K.V.; Menon, V.P. Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutat. Res. 2006, 603, 129–134. [Google Scholar] [CrossRef]
- Das, U.; Sengupta, A.; Biswas, S.; Adhikary, A.; Sharma, R.D.; Chakraborty, A.; Dey, S. Alteration of murine duodenal morphology and redox signalling events by reactive oxygen species generated after whole body γ-irradiation and its prevention by ferulic acid. Free. Radic. Res. 2017; published online. [Google Scholar]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Ansari, L.; Banaei, A.; Dastranj, L.; Majdaeen, M.; Vafapour, H.; Zamani, H.; Ataei, G.; Abedi-Firouzjah, R. Evaluating the radioprotective effect of single dose and daily oral consumption of green tea, grape seed, and coffee bean extracts against gamma irradiation. Appl. Radiat. Isot. 2021, 174, 109781. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J.; Zakaryaee, V.; Ahmadi, A.; Akhlaghpoor, S. Radioprotective effects of chlorogenic acid against mortality induced by gamma-irradiation in mice. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Cinkilic, N.; Cetintas, S.K.; Zorlu, T.; Vatan, O.; Yilmaz, D.; Cavas, T.; Tunc, S.; Ozkan, L.; Bilaloglu, R. Radioprotection by two phenolic compounds: Chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem. Toxicol. 2013, 53, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Roy, A.; Jana, M.; Pahan, K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol. Dis. 2019, 124, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Raouf, O.M.; El-Sayed, E.M.; Manie, M.F. Cinnamic Acid and Cinnamaldehyde Ameliorate Cisplatin-Induced Splenotoxicity in Rats. J. Biochem. Mol. Toxicol. 2015, 29, 426–431. [Google Scholar] [CrossRef]
- Wang, R.; Yang, W.; Fan, Y.; Dehaen, W.; Li, Y.; Li, H.; Wang, W.; Zheng, Q.; Huai, Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg. Chem. 2019, 88, 102951. [Google Scholar] [CrossRef]
- Guo, S.; Zhen, Y.; Zhu, Z.; Zhou, G.; Zheng, X. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2. Life Sci. 2019, 235, 116819. [Google Scholar] [CrossRef]
- Ugazio, E.; Carlotti, M.E.; Sapino, S.; Trotta, M.; Vione, D.; Minero, D. Photodegradation of cinnamic acid in different media. J. Dispers. Sci. Technol. 2008, 29, 641–652. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, J.; Ge, Y.; Cao, H.; Ge, X.; Luo, J.; Xue, J.; Yang, H.; Zhang, S.; Cao, J. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. J. Radiat. Res. 2014, 55, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]
- Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, F.; Khoei, S.; Mirzaei, H.R. Role of resveratrol on the cytotoxic effects and DNA damages of iododeoxyuridine and megavoltage radiation in spheroid culture of U87MG glioblastoma cell line. Gen. Physiol. Biophys. 2015, 34, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carsten, R.E.; Bachand, A.M.; Bailey, S.M.; Ullrich, R.L. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat. Res. 2008, 169, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Fernando, P.M.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.; Chae, S.W.; Hyun, J.W. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol. Ther. 2016, 24, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, A.V.; Arulmoli, D.R.; Parasuraman, S. Over-views of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar]
- Hakkinen, S.H.; Karenlampi, S.O.; Heinonen, I.M.; Mykkanen, H.M.; Torronen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar] [CrossRef] [Green Version]
- Wiczkowski, W.; Romaszko, J.; Bucinski, A.; Szawara-Nowak, D.; Honke, J.; Zielinski, H.; Piskula, M.K. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bio-available than its glucosides. J. Nutr. 2008, 138, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Speth, V.; Fleig-Eberenz, S.; Neuhaus, G. Induction of zygotic polyembryos in wheat: Influence of auxin polar transport. Plant Cell 1997, 9, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Heijnen, C.G.; Haenen, G.R.; Oostveen, R.M.; Stalpers, E.M.; Bast, A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free. Radic. Res. 2002, 36, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Arivalagan, S.; Thomas, N.S.; Kuppusamy, T.; Namashivayam, N. Radioprotective effect of carvacrol against X-radiation-induced cellular damage in cultured human peripheral blood lymphocytes. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 2015, 168, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Babaee, N.; Moslemi, D.; Khalilpour, M.; Vejdani, F.; Moghadamnia, Y.; Bijani, A.; Baradaran, M.; Taghi Kazemi, M.; Khalilpour, A.; Pouramir, M.; et al. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: A randomized controlled clinical study. DARU J. Pharm. Sci. 2013, 21, 18. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.A.; Li, F.; Chung, E.J.; Hudak, K.; White, A.; Krausz, K.; Gonzalez, F.; Citrin, D. Quercetin inhibits radiation-induced skin fibrosis. Radiat. Res. 2013, 180, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Tossetta, G.; Fantone, S.; Giannubilo, S.R.; Marzioni, D. The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants 2021, 10, 126. [Google Scholar] [CrossRef]
- Verma, V. Relationship and interactions of curcumin with radiation therapy. World J. Clin. Oncol. 2016, 7, 275–283. [Google Scholar] [CrossRef]
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018, 413, 122–134. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022, 10, 312. [Google Scholar] [CrossRef]
- Patil, K.; Guledgud, M.V.; Kulkarni, P.K.; Keshari, D.; Tayal, S. Use of Curcumin Mouthrinse in Radio-Chemotherapy Induced Oral Mucositis Patients: A Pilot Study. J. Clin. Diagn. Res. 2015, 9, ZC59–ZC62. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.K.; Sarma, L.; Kesavan, P.C. Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat. Res. 1993, 303, 109–112. [Google Scholar] [CrossRef]
- Lykstad, J.; Sharma, S. Biochemistry, Water Soluble Vitamins. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538510/ (accessed on 10 November 2022).
- Khalife, R.; Grieco, A.; Khamisa, K.; Tinmouh, A.; McCudden, C.; Saidenberg, E. Scurvy, an old story in a new time: The hematologist’s experience. Blood Cells Mol. Dis. 2019, 76, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Nejatinamini, S.; Debenham, B.J.; Clugston, R.D.; Mawani, A.; Parliament, M.; Wismer, W.V.; Mazurak, V.C. Poor Vitamin Status is Associated with Skeletal Muscle Loss and Mucositis in Head and Neck Cancer Patients. Nutrients 2018, 10, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Li, W.; Chen, L.; Su, Q.; Wang, Y.; Guo, Z.; Lu, Y.; Liu, B.; Qin, S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019, 15, 4105–4118. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.; El Wakeel, L.; Saad, A.S.; Kelany, M.; El-Hamamsy, M. Pentoxifylline and vitamin E reduce the severity of radiotherapy-induced oral mucositis and dysphagia in head and neck cancer patients: A randomized, controlled study. Med. Oncol. 2019, 37, 8. [Google Scholar] [CrossRef]
- Kluger, R.H.; Eastman Richard, H. Isoprenoid; Encyclopedia Britannica: Chicago, IL, USA, 2018. [Google Scholar]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [Green Version]
- Cox-Georgian, D.; Ramados, N. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants; Joshee, N., Dhekney, S., Parajuli, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar]
- Rocha Caldas, G.F.; Oliveira, A.R.; Araújo, A.V.; Lafayette, S.S.; Albuquerque, G.S.; Silva-Neto Jda, C.; Costa-Silva, J.H.; Ferreira, F.; Costa, J.G.; Wanderley, A.G. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE 2015, 10, e0134558. [Google Scholar] [CrossRef] [Green Version]
- Pakravan, F.; Salehabad, N.H.; Karimi, F.; Isfahani, M.N. Comparative Study of the Effect of Licorice Muco-adhesive Film on Radiotherapy Induced Oral Mucositis, A Randomized Controlled Clinical Trial. Gulf J. Oncolog. 2021, 1, 42–44. [Google Scholar]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altomare, A.; Fiore, M.; D’Ercole, G.; Imperia, E.; Nicolosi, R.M.; Della Posta, S.; Pasqua, G.; Cicala, M.; De Gara, L.; Ramella, S.; et al. Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022, 14, 5374. https://doi.org/10.3390/nu14245374
Altomare A, Fiore M, D’Ercole G, Imperia E, Nicolosi RM, Della Posta S, Pasqua G, Cicala M, De Gara L, Ramella S, et al. Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients. 2022; 14(24):5374. https://doi.org/10.3390/nu14245374
Chicago/Turabian StyleAltomare, Annamaria, Michele Fiore, Gabriele D’Ercole, Elena Imperia, Roberta Maria Nicolosi, Susanna Della Posta, Gabriella Pasqua, Michele Cicala, Laura De Gara, Sara Ramella, and et al. 2022. "Protective Role of Natural Compounds under Radiation-Induced Injury" Nutrients 14, no. 24: 5374. https://doi.org/10.3390/nu14245374
APA StyleAltomare, A., Fiore, M., D’Ercole, G., Imperia, E., Nicolosi, R. M., Della Posta, S., Pasqua, G., Cicala, M., De Gara, L., Ramella, S., & Guarino, M. P. L. (2022). Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients, 14(24), 5374. https://doi.org/10.3390/nu14245374