Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Dietary Inflammatory Index
Calculation of Diet Inflammatory Index Scores
2.3. Assessment of Anthropometry
2.4. Assessment of Sarcopenia Symptomology and Functional Frailty
2.4.1. Muscle Quantity
2.4.2. Muscle Strength
2.4.3. Physical Performance
2.5. Socio-Demographic and Physical Activity
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergman, H.; Karunananthan, S.; Robledo, L.M.; Brodsky, J.; Chan, P.; Cheung, M.; Bovet, P. Understanding and meeting the needs of the older population: A global challenge. Can. Geriatr. J. 2013, 16, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, E.; Zoli, M.; Gonzalez-Freire, M.; Salive, M.E.; Studenski, S.A.; Ferrucci, L. Aging and Multimorbidity: New Tasks, Priorities, and Frontiers for Integrated Gerontological and Clinical Research. J. Am. Med. Dir. Assoc. 2015, 16, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.M.; Errasti-Ibarrondo, B.; Low, G. Where are we now in relation to determining the prevalence of ageism in this era of escalating population ageing? Ageing Res. Rev. 2019, 51, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Ogawa, S.; Yakabe, M.; Akishita, M. Age-related sarcopenia and its pathophysiological bases. Inflamm. Regen. 2016, 36, 17. [Google Scholar] [CrossRef] [Green Version]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Mithal, A.; Bonjour, J.-P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R. Impact of nutrition on muscle mass, strength, and performance in older adults. J. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyere, O.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Morley, J.E.; Schols, A.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Gadecka, A.; Bielak-Zmijewska, A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019, 11, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miquel, J. Nutrition and ageing. Public Health Nutr. 2001, 4, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Hughes, C.F.; Ward, M.; Hoey, L.; McNulty, H. Diet, nutrition and the ageing brain: Current evidence and new directions. Proc. Nutr. Soc. 2018, 77, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metabolism 2014, 63, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.; Carta, L.; Martinez-Gonzalez, M.A.; Serra-Majem, L. Effectiveness of the Mediterranean diet in the elderly. Clin. Interv. Aging 2008, 3, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; Konig, J.; Hoffmann, G. Adherence to a Mediterranean diet and risk of diabetes: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef] [Green Version]
- Buckland, G.; Bach, A.; Serra-Majem, L. Obesity and the Mediterranean diet: A systematic review of observational and intervention studies. Obes. Rev. 2008, 9, 582–593. [Google Scholar] [CrossRef]
- Esposito, K.; Kastorini, C.M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean diet and weight loss: Meta-analysis of randomized controlled trials. Metab. Syndr. Relat. Disord. 2011, 9, 1–12. [Google Scholar] [CrossRef]
- Álvarez-Pérez, J.; Sánchez-Villegas, A.; Díaz-Benítez, E.M.; Ruano-Rodríguez, C.; Corella, D.; Martínez-González, M.Á.; Estruch, R.; Salas-Salvadó, J.; Serra-Majem, L.; Investigators, P.S. Influence of a Mediterranean dietary pattern on body fat distribution: Results of the PREDIMED–Canarias Intervention Randomized Trial. J. Am. Coll. Nutr. 2016, 35, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Pizato, N.; da Mata, F.; Figueiredo, A.; Ito, M.; Pereira, M.G. Mediterranean Diet and Musculoskeletal-Functional Outcomes in Community-Dwelling Older People: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2018, 22, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, A.; Nieves, J.W. Nutrition and sarcopenia—What do we know? J. Nutr. 2020, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Vissers, L.E.; Waller, M.; van der Schouw, Y.T.; Hebert, J.R.; Shivappa, N.; Schoenaker, D.; Mishra, G.D. A pro-inflammatory diet is associated with increased risk of developing hypertension among middle-aged women. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Schoenaker, D.A.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Mayr, H.L.; Itsiopoulos, C.; Tierney, A.C.; Ruiz-Canela, M.; Hebert, J.R.; Shivappa, N.; Thomas, C.J. Improvement in dietary inflammatory index score after 6-month dietary intervention is associated with reduction in interleukin-6 in patients with coronary heart disease: The AUSMED heart trial. Nutr. Res. Rev. 2018, 55, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; Bassett, J.K.; Shivappa, N.; Hebert, J.R.; English, D.R.; Giles, G.G.; Severi, G. Dietary inflammatory index, Mediterranean diet score, and lung cancer: A prospective study. Cancer Causes Control 2016, 27, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Dugué, P.A.; Hodge, A.M.; Brinkman, M.T.; Bassett, J.K.; Shivappa, N.; Hebert, J.R.; Hopper, J.L.; English, D.R.; Milne, R.L.; Giles, G.G. Association between selected dietary scores and the risk of urothelial cell carcinoma: A prospective cohort study. Int. J. Cancer 2016, 139, 1251–1260. [Google Scholar] [CrossRef] [Green Version]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Lee, J.S.; Kanaya, A.M.; Sahyoun, N.R. Dietary patterns, insulin sensitivity and inflammation in older adults. Eur. J. Clin. Nutr. 2012, 66, 18–24. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hebert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Dietary patterns and markers of systemic inflammation among Iranian women. J. Nutr. 2007, 137, 992–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, A.; Soltani, S.; Hashemi, R.; Heshmat, R.; Motlagh, A.D.; Esmaillzadeh, A. Inflammatory potential of the diet and risk of sarcopenia and its components. Nutr. J. 2020, 19, 129. [Google Scholar] [CrossRef] [PubMed]
- Cervo, M.M.; Shivappa, N.; Hebert, J.R.; Oddy, W.H.; Winzenberg, T.; Balogun, S.; Wu, F.; Ebeling, P.; Aitken, D.; Jones, G. Longitudinal associations between dietary inflammatory index and musculoskeletal health in community-dwelling older adults. Clin. Nutr. 2020, 39, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Gojanovic, M.; Holloway-Kew, K.L.; Hyde, N.K.; Mohebbi, M.; Shivappa, N.; Hebert, J.R.; O’Neil, A.; Pasco, J.A. The dietary inflammatory index is associated with low muscle mass and low muscle function in older australians. Nutrients 2021, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Laclaustra, M.; Rodriguez-Artalejo, F.; Guallar-Castillon, P.; Banegas, J.R.; Graciani, A.; Garcia-Esquinas, E.; Lopez-Garcia, E. The inflammatory potential of diet is related to incident frailty and slow walking in older adults. Clin. Nutr. 2020, 39, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Stubbs, B.; Hébert, J.R.; Cesari, M.; Schofield, P.; Soysal, P.; Maggi, S.; Veronese, N. The relationship between the dietary inflammatory index and incident frailty: A longitudinal cohort study. JAMDA 2018, 19, 77–82. [Google Scholar] [CrossRef]
- Australia, E.S.S. Adult Pre-Exercise Screening System (APSS) v2. Available online: https://www.essa.org.au/Public/ABOUT_ESSA/Pre-Exercise_Screening_Systems.aspx (accessed on 4 July 2022).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Brazier, J.E.; Harper, R.; Jones, N.; O’cathain, A.; Thomas, K.; Usherwood, T.; Westlake, L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Black, A.E. The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395–404. [Google Scholar] [CrossRef]
- Goldberg, G.; Black, A.; Jebb, S.; Cole, T.; Murgatroyd, P.; Coward, W.; Prentice, A. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hebert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, J.E.; MacInnis, R.J.; Wattanapenpaiboon, N.; Nowson, C.A. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.A.; Aljied, R.; Allison, D.J.; Anderson, L.N.; Ma, J.; Raina, P. Body mass index and all-cause mortality in older adults: A scoping review of observational studies. Obes. Rev. 2020, 21, e13035. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Burke, L.M. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 313–322. [Google Scholar] [CrossRef]
- Farley, A.; Slater, G.J.; Hind, K. Short-term precision error of body composition assessment methods in resistance-trained male athletes. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 55–65. [Google Scholar] [CrossRef]
- Lee, S.H.; Gong, H.S. Measurement and Interpretation of Handgrip Strength for Research on Sarcopenia and Osteoporosis. J. Bone Metab. 2020, 27, 85–96. [Google Scholar] [CrossRef]
- Oktaviana, J.; Zanker, J.; Vogrin, S.; Duque, G. The effect of protein supplements on functional frailty in older persons: A systematic review and meta-analysis. Arch. Gerontol Geriatr. 2020, 86, 103938. [Google Scholar] [CrossRef]
- Unver, B.; Kahraman, T.; Kalkan, S.; Yuksel, E.; Karatosun, V.; Gunal, I. Test-retest reliability of the 50-foot timed walk and 30-second chair stand test in patients with total hip arthroplasty. Acta Orthop. Belg. 2015, 81, 435–441. [Google Scholar] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [PubMed] [Green Version]
- Amireault, S.; Godin, G. The Godin-Shephard leisure-time physical activity questionnaire: Validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Percept. Mot. Skills 2015, 120, 604–622. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Household Income and Wealth; Australian Bureau of Statistics: Canberra, Australia, 2022.
- Schatzkin, A.; Kipnis, V.; Carroll, R.J.; Midthune, D.; Subar, A.F.; Bingham, S.; Schoeller, D.A.; Troiano, R.P.; Freedman, L.S. A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: Results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. J. Int. J. Epidemiol. 2003, 32, 1054–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zembroń-Łacny, A.; Dziubek, W.; Rogowski, Ł.; Skorupka, E.; Dąbrowska, G. Sarcopenia: Monitoring, molecular mechanisms, and physical intervention. J. Physiol. Res. 2014, 63, 683–691. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons learned, improvements made, and future directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Poslusna, K.; Ruprich, J.; de Vries, J.H.; Jakubikova, M.; van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101, S73–S85. [Google Scholar] [CrossRef] [Green Version]
- Bahr, L.S.; Franz, K.; Mähler, A. Assessing the (anti)-inflammatory potential of diets. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 402–410. [Google Scholar] [CrossRef]
Dietary Inflammatory Index Group | ||||
---|---|---|---|---|
Total | Anti-Inflammatory (n = 63) | Pro-Inflammatory (n = 47) | p-Value a | |
Participant Characteristics | ||||
Age (years) | 72.1 ± 4.7 | 71.8 ± 4.4 | 72.4 ± 5.0 | 0.498 |
Female n (%) | 84 (76.4) | 45 (71) | 39 (83) | 0.180 |
Weight (kg) | 70.6 ± 13.0 | 71.6 ± 12.6 | 69.3 ± 13.4 | 0.373 |
Height (m) | 1.65 ± 0.07 | 1.67 ± 0.07 | 1.63 ± 0.07 | 0.100 |
Body Mass Index (kg/m2) | 25.8 ± 4.3 | 25.7 ± 4.0 | 25.9 ± 4.7 | 0.727 |
Waist circumference (cm) | 86.4 ± 12.2 | 86.3 ± 11.9 | 86.5 ± 12.6 | 0.944 |
2 or more co-morbidities n (%) | 18 (16.4) | 9 (14.3) | 9 (19.1) | 0.595 |
Leisure Time Exercise (n = 110) | 0.512 | |||
Insufficiently/Moderately Active | 10 (9.1%) | 7 (6.4%) | 3 (2.7%) | |
Active | 100 (90.9%) | 56 (50.9%) | 44 (40.0%) | |
Marital Status (n = 88): | 0.257 | |||
Married or Partnered | 56 (65.9%) | 36 (40.9%) | 20 (22.7%) | |
Single/Widowed | 16 (14.5%) | 6 (5.5%) | 10 (9.1%) | |
Separated or Divorced | 16 (18.2%) | 8 (9.0%) | 8 (9.0%) | |
Highest Level of Education (n = 88): | 0.272 | |||
Primary/Secondary education | 6 (5.5%) | 5 (4.5%) | 1 (0.9%) | |
Vocational education | 24 (27.2%) | 15 (17.0%) | 9 (10.2%) | |
Tertiary education | 58 (68.2%) | 30 (34.1%) | 28 (31.8%) | |
Household Income [56] b (n = 87): | 0.155 | |||
Lower income | 32 (36.8%) | 14 (16.1%) | 17 (19.5%) | |
Low income | 29 (33.3%) | 17 (19.5%) | 11 (12.6%) | |
Middle/High income | 16 (18.4%) | 10 (11.5%) | 6 (6.9%) | |
Undisclosed | 10 (11.5%) | 6 (6.9%) | 4 (4.6%) | |
Sarcopenia Symptomology | ||||
Hand grip strength (kg) | 27.0 ± 7.6 | 28.6 ± 8.0 | 24.8 ± 6.6 | 0.009 |
Sit-to-stand test (reps) | 14.7 ± 4.6 | 14.8 ± 4.7 | 14.5 ± 4.5 | 0.719 |
Timed up and go (sec) | 5.9 ± 1.1 | 5.8 ± 0.9 | 6.0 ± 1.3 | 0.476 |
Appendicular Skeletal muscle mass (kg) (n = 87) | 18.56 ± 3.84 | 19.18 ± 3.78 | 17.59 ± 3.79 | 0.058 |
Appendicular Skeletal muscle mass index (kg/m2) (n = 87) | 6.7 ± 1.0 | 6.8 ± 1.0 | 6.5 ± 1.1 | 0.224 |
Dietary Inflammatory Index Group | |||||
---|---|---|---|---|---|
Sarcopenia Symptomology b | Total | Anti-Inflammatory (n = 63) | Pro-Inflammatory (n = 47) | x2 | p-Value a |
Low muscle strength (n = 110) | 7 (6.4%) | 2 (1.8%) | 5 (4.5%) | 2.517 | 0.135 |
Low muscle quantity (n = 87) | 10 (11.5%) | 3 (3.4%) | 7 (6.4%) | 4.537 | 0.043 |
Low performance (n = 110) | 0 (0%) | 0 (0%) | 0 (0%) | - | - |
Model 3 c | Model 2 b | Model 1 a | Unadjusted Model | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | Β (95%CI) | R2 | p-Value | Β (95%CI) | R2 | p-Value | Β (95%CI) | R2 | p-Value | Β (95%CI) | R2 | |||||
Hand grip strength | ||||||||||||||||
0.015 | −0.160 | (−1.303, −0.145) | 0.642 | 0.015 | −0.160 | (−1.297, −0.146) | 0.646 | 0.016 | −0.157 | (−1.285, −10.133) | 0.645 | 0.009 | −0.249 | (−2.017, −0.299) | 0.053 | DII |
Timed up and go | ||||||||||||||||
0.146 | 0.138 | (−0.33, 0.219) | 0.234 | 0.141 | 0.139 | (−0.032, −0.292) | 0.24 | 0.179 | 0.127 | (−0.029, 0.228) | 0.233 | 0.046 | 0.191 | (0.003, 0.251) | 0.028 | DII |
Appendicular skeletal muscle mass (kg) | ||||||||||||||||
0.016 | −0.157 | (−0.684, −0.162) | 0.754 | 0.002 | −0.182 | (−0.682, −0.164) | 0.757 | 0.001 | −0.206 | (−0.759, −0.198) | 0.712 | 0.023 | −0.243 | (−1.060, −0.080) | 0.048 | DII |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linton, C.; Wright, H.H.; Wadsworth, D.P.; Schaumberg, M.A. Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults. Nutrients 2022, 14, 5319. https://doi.org/10.3390/nu14245319
Linton C, Wright HH, Wadsworth DP, Schaumberg MA. Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults. Nutrients. 2022; 14(24):5319. https://doi.org/10.3390/nu14245319
Chicago/Turabian StyleLinton, Corey, Hattie H. Wright, Daniel P. Wadsworth, and Mia A. Schaumberg. 2022. "Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults" Nutrients 14, no. 24: 5319. https://doi.org/10.3390/nu14245319