Omics as a Tool to Help Determine the Effectiveness of Supplements
Abstract
:1. Introduction
2. Fields Studying the Influence of Substances on Various Levels of Life Organization
2.1. Genomics
2.2. Nutritional Genomics
2.3. Proteomics
2.4. Metabolomics
2.5. Foodomics
3. Molecular Techniques Most often Used in Omic Studies
3.1. NGS
3.2. LC/MS
3.3. NMR
4. Some Examples of Omics Studies on the Most Popular Dietary Supplements
4.1. Vitamins
4.1.1. Vitamin D
4.1.2. Vitamin E
4.1.3. Vitamin A
4.2. Plant Extracts
4.2.1. Resveratrol
4.2.2. Green Tea
4.2.3. Ginseng
4.2.4. Curcumin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kantor, E.D.; Rehm, C.D.; Du, M.; White, E.; Giovannucci, E.L. Trends in Dietary Supplement Use Among US Adults From 1999–2012. JAMA 2016, 316, 1464. [Google Scholar] [CrossRef] [PubMed]
- FDA Consumer Updates. Available online: https://www.fda.gov/consumers/consumer-updates/fda-101-dietary-supplements (accessed on 10 October 2021).
- Dwyer, J.T.; Coates, P.M.; Smith, M.J. Dietary supplements: Regulatory challenges and research resources. Nutrients 2018, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, P.P.; Chiang, H.M.; Xia, Q.; Chen, T.; Chen, B.H.; Yin, J.J.; Wen, K.C.; Lin, G.; Yu, H. Quality assurance and safety of herbal dietary supplements. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Dietary Supplements Market Size, Share & Trends Analysis Report by Ingredient (Vitamins, Minerals), by Form, by Application, by End User, by Distribution Channel, by Region, and Segment Forecasts 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/dietary-supplements-market (accessed on 15 March 2022).
- Kesselheim, A.S.; Connolly, J.; Rogers, J.; Avorn, J. Mandatory disclaimers on dietary supplements do not reliably communicate the intended issues. Health Aff. 2015, 34, 438–446. [Google Scholar] [CrossRef]
- Denham, B.E. Dietary supplements—Regulatory issues and implications for public health. JAMA 2011, 306, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Deuster, P.A.; Lindsey, A.T.; Scott, J.M. Dietary supplements: Regulatory challenges and issues in the department of defense. Mil. Med. 2018, 183, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Pawar, R.S.; Grundel, E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test. Anal. 2017, 9, 500–517. [Google Scholar] [CrossRef]
- Petroczi, A.; Taylor, G.; Naughton, D.P. Mission impossible? Regulatory and enforcement issues to ensure safety of dietary supplements. Food Chem. Toxicol. 2011, 49, 393–402. [Google Scholar] [CrossRef]
- Tucker, J.; Fischer, T.; Upjohn, L.; Mazzera, D.; Kumar, M. Unapproved Pharmaceutical Ingredients Included in Dietary Supplements Associated With US Food and Drug Administration Warnings. JAMA Netw. Open 2018, 1, e183337. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.C. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food Chem. Toxicol. 2017, 107, 449–471. [Google Scholar] [CrossRef]
- Ratajczak, M.; Kaminska, D.; Światły-Błaszkiewicz, A.; Matysiak, J. Quality of dietary supplements containing plant-derived ingredients reconsidered by microbiological approach. Int. J. Environ. Res. Public Health 2020, 17, 6837. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Ferroni, A.; Ertek, S. Tolerability and safety of commonly used dietary supplements and nutraceuticals with lipid-lowering effects. Expert Opin. Drug Saf. 2012, 11, 753–766. [Google Scholar] [CrossRef]
- Maughan, R.J. Quality assurance issues in the use of dietary supplements, with special reference to protein supplements. J. Nutr. 2013, 143, 1843S–1847S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faller, A.C.; Arunachalam, T.; Shanmughanandhan, D.; Kesanakurti, P.; Shehata, H.R.; Ragupathy, S.; Newmaster, S.G. Investigating appropriate molecular and chemical methods for ingredient identity testing of plant-based protein powder dietary supplements. Sci. Rep. 2019, 9, 12130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crighton, E.; Coghlan, M.L.; Farrington, R.; Hoban, C.L.; Power, M.W.P.; Nash, C.; Mullaney, I.; Byard, R.W.; Trengove, R.; Musgrave, I.F.; et al. Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health. J. Pharm. Biomed. Anal. 2019, 176, 112834. [Google Scholar] [CrossRef] [PubMed]
- Micheel, C.M.; Nass, S.J.; Omenn, G.S.; Policy, H.S. Evolution of Translational Omics; Micheel, C.M., Nass, S.J., Omenn, G.S., Eds.; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22418-5. [Google Scholar]
- Mathers, J.C. Nutrigenomics in the modern era. Proc. Nutr. Soc. 2017, 76, 265–275. [Google Scholar] [CrossRef]
- Craig Venter, J.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S. Genomics. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 310–312. [Google Scholar] [CrossRef]
- Garrod, A.E. The incidence of alkaptonuria: A study in chemical individuality. Mol. Med. 1996, 2, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Peregrin, T. The new frontier of nutrition science: Nutrigenomics. J. Am. Diet. Assoc. 2001, 101, 1306. [Google Scholar] [CrossRef]
- Ekmekci, A.; Cirak, M.Y. Nutrigenomics and nutrigenetics. Adv. Food Biochem. 2009, 457–475. [Google Scholar] [CrossRef]
- Subbiah, M.T.R. Nutrigenetics and nutraceuticals: The next wave riding on personalized medicine. Transl. Res. 2007, 149, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, R. Nutrigenomics, individualism and public health. Proc. Nutr. Soc. 2004, 63, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Jensen, M.K.; Curhan, G.C.; Pasquale, L.R.; Ridker, P.M.; Hunter, D.J.; Willett, W.C.; Rimm, E.B.; et al. Sugar-Sweetened Beverages and Genetic Risk of Obesity. N. Engl. J. Med. 2012, 367, 1387–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried food consumption, genetic risk, and body mass index: Gene-diet interaction analysis in three US cohort studies. BMJ 2014, 348, g1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Food Sci. Nutr. 2014, 3, 17–179. [Google Scholar] [CrossRef]
- Fenech, M. Genome health nutrigenomics and nutrigenetics—diagnosis and nutritional treatment of genome damage on an individual basis. Food Chem. Toxicol. 2008, 46, 1365–1370. [Google Scholar] [CrossRef]
- Gȩtek, M.; Czech, N.; Fizia, K.; Białek-Dratwa, A.; Muc-Wierzgoń, M.; Kokot, T.; Nowakowska-Zajdel, E. Nutrigenomika—Bioaktywne składniki żywności. Postep. Hig. Med. Dosw. 2013, 67, 255–260. [Google Scholar] [CrossRef]
- Verma, M.; Hontecillas, R.; Abedi, V.; Leber, A.; Tubau-Juni, N.; Philipson, C.; Carbo, A.; Bassaganya-Riera, J. Modeling-Enabled Systems Nutritional Immunology. Front. Nutr. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Takahashi, S.; Saito, K. Omics and integrated omics for the promotion of food and nutrition science. J. Tradit. Complement. Med. 2011, 1, 25–30. [Google Scholar] [CrossRef]
- Blackstock, W.P.; Weir, M.P. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999, 17, 121–127. [Google Scholar] [CrossRef]
- Wasinger, V.C.; Cordwell, S.J.; Poljak, A.; Yan, J.X.; Gooley, A.A.; Wilkins, M.R.; Duncan, M.W.; Harris, R.; Williams, K.L.; Humphery-Smith, I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.L.; Anderson, N.G. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 1998, 19, 1853–1861. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Stenoien, D.L.; Paša-Tolić, L. High-throughput proteomics. Annu. Rev. Anal. Chem. 2014, 7, 427–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stobiecki, M. Metabolomika—narzędzie w genomice funkcjonalnej i biologii systemów. Biotechnologia 2009, 2, 54–64. [Google Scholar]
- Hollywood, K.; Brison, D.R.; Goodacre, R. Metabolomics: Current technologies and future trends. Proteomics 2006, 6, 4716–4723. [Google Scholar] [CrossRef]
- Gates, S.C.; Sweeley, C.C. Quantitative metabolic profiling based on gas chromatography. Clin. Chem. 1978, 24, 1663–1673. [Google Scholar] [CrossRef]
- Novotny, M.V.; Soini, H.A.; Mechref, Y. Biochemical individuality reflected in chromatographic, electrophoretic and mass-spectrometric profiles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 866, 26–47. [Google Scholar] [CrossRef] [Green Version]
- Dalgliesh, C.; Horning, E.; Horning, M.; Knox, K.; Yarger, K. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts. Biochem. J. 1966, 101, 792–810. [Google Scholar] [CrossRef]
- Horning, E.C.; Horning, M.G. Human metabolic profiles obtained by gc and gc/ms. J. Chromatogr. Sci. 1971, 9, 129–140. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007, 35, 521–526. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, A. Food analysis and foodomics. J. Chromatogr. A 2009, 1216, 7109. [Google Scholar] [CrossRef] [Green Version]
- Andjelković, U.; Gajdošik, M.Š.; Gašo-Sokač, D.; Martinović, T.; Josić, D. Foodomics and food safety: Where we are. Food Technol. Biotechnol. 2017, 55, 290–307. [Google Scholar] [CrossRef]
- Capozzi, F.; Bordoni, A. Foodomics: A new comprehensive approach to food and nutrition. Genes Nutr. 2013, 8, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacometti, J.; Josic, D. Foodomics in microbial safety. TrAC Trends Anal. Chem. 2013, 52, 16–22. [Google Scholar] [CrossRef]
- National Human Genome Research Institute. Human Genome Project FAQ, National Institute of Health. 2010. Available online: https://www.genome.gov/11006943/human-genome-project-completion-frequently-asked-questions/ (accessed on 8 January 2021).
- Muzzey, D.; Evans, E.A.; Lieber, C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr. Genet. Med. Rep. 2015, 3, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzker, M.L. Sequencing technologies the next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- Sequencing Technology Sequencing by Synthesis. Available online: https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html (accessed on 25 November 2021).
- Olsen, T.K.; Baryawno, N. Introduction to Single-Cell RNA Sequencing. Curr. Protoc. Mol. Biol. 2018, 122, e57. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.V.; Kuzmina, M.L.; Braukmann, T.W.A.; Borisenko, A.V.; Zakharov, E.V. Authentication of herbal supplements using next-generation sequencing. PLoS ONE 2016, 11, e0156426. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, D.A.; Fitzgerald, R.L. Liquid Chromatography—Mass Spectrometry: An Introduction; Ardrey, R.E., Ed.; Wiley: Hoboken, NJ, USA, 2003; Volume 50, p. 276. ISBN 0471497991. [Google Scholar]
- Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev. 2009, 30, 19–34. [Google Scholar]
- Stobiecki, M.; Skirycz, A.; Kerhoas, L.; Kachlicki, P.; Muth, D.; Einhorn, J.; Mueller-Roeber, B. Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics 2006, 2, 197–219. [Google Scholar] [CrossRef]
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal. 2014, 87, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 2013, 12, 3006–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, C.J. Magnetic resonance spectroscopy. Sci. Prog. 2017, 100, 241–292. [Google Scholar] [CrossRef]
- Rinck, P. Magnetic Resonance in Medicine. In The Basic Textbook of the European Magnetic Resonance Forum, 11th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Horgan, R.P.; Kenny, L.C. ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 2011, 13, 189–195. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G.; Wagner, H. Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 1999, 6, 287–300. [Google Scholar] [CrossRef]
- Dobson, R.; Cock, H.R.; Brex, P.; Giovannoni, G. Vitamin D supplementation. Pract. Neurol. 2018, 18, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Collagen and Magnesium Rise in Popularity, as Fish Oil and Curcumin Dip in Latest ConsumerLab Survey of Supplement Users. Available online: https://www.consumerlab.com/news/most-popular-supplements-from-survey/02-29-2020/ (accessed on 11 April 2022).
- Panel, E.; Nda, A. Scientific Opinion on Dietary Reference Values for niacin. EFSA J. 2014, 12, 3759. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.; Taylor, C.L.; Yaktine, A.L. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16394-1. [Google Scholar]
- Best, C.M.; Riley, D.V.; Laha, T.J.; Pflaum, H.; Zelnick, L.R.; Hsu, S.; Thummel, K.E.; Foster-Schubert, K.E.; Kuzma, J.N.; Cromer, G.; et al. Vitamin D in human serum and adipose tissue after supplementation. Am. J. Clin. Nutr. 2021, 113, 83–91. [Google Scholar] [CrossRef]
- Barger-Lux, M.J.; Heaney, R.P.; Dowell, S.; Chen, T.C.; Holick, M.F. Vitamin D and its Major Metabolites: Serum Levels after Graded Oral Dosing in Healthy Men. Osteoporos. Int. 1998, 8, 222–230. [Google Scholar] [CrossRef]
- Chen, T.C.; Turner, A.K.; Holick, M.F. A method for the determination of the circulating concentration of 1,25-dihydroxyvitamin D. J. Nutr. Biochem. 1990, 1, 320–327. [Google Scholar] [CrossRef]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Janet Barger-Lux, M. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, A.W. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008, 88, 491S–499S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galior, K.; Ketha, H.; Grebe, S.; Singh, R.J. 10 years of 25-hydroxyvitamin-D testing by LC-MS/MS-trends in vitamin-D deficiency and sufficiency. Bone Rep. 2018, 8, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.F.P.; de Oliveira Borges, M.V.; Soares, A.A.; dos Santos, J.C.; de Oliveira, A.B.B.; da Costa, C.H.B.; Cruz, M.S.; Bortolin, R.H.; de Freitas, R.C.C.; Dantas, P.M.S.; et al. The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: Randomized controlled trial. Sci. Rep. 2020, 10, 11943. [Google Scholar] [CrossRef]
- Durrant, L.R.; Bucca, G.; Hesketh, A.; Möller-Levet, C.; Tripkovic, L.; Wu, H.; Hart, K.H.; Mathers, J.C.; Elliott, R.M.; Lanham-New, S.A.; et al. Vitamins D2 and D3 Have Overlapping But Different Effects on the Human Immune System Revealed Through Analysis of the Blood Transcriptome. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef]
- Vaughan-Shaw, P.G.; Grimes, G.; Blackmur, J.P.; Timofeeva, M.; Walker, M.; Ooi, L.Y.; Svinti, V.; Donnelly, K.; Din, F.V.N.; Farrington, S.M.; et al. Oral vitamin D supplementation induces transcriptomic changes in rectal mucosa that are linked to anti-tumour effects. BMC Med. 2021, 19, 174. [Google Scholar] [CrossRef]
- Pasing, Y.; Fenton, C.G.; Jorde, R.; Paulssen, R.H. Changes in the Human Transcriptome upon Vitamin D Supplementation; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 173, ISBN 2007002167. [Google Scholar]
- Dastorani, M.; Aghadavod, E.; Mirhosseini, N.; Foroozanfard, F.; Zadeh Modarres, S.; Amiri Siavashani, M.; Asemi, Z. The effects of vitamin D supplementation on metabolic profiles and gene expression of insulin and lipid metabolism in infertile polycystic ovary syndrome candidates for in vitro fertilization. Reprod. Biol. Endocrinol. 2018, 16, 94. [Google Scholar] [CrossRef] [Green Version]
- Makieva, S.; Reschini, M.; Ferrari, S.; Bonesi, F.; Polledri, E.; Fustinoni, S.; Restelli, L.; Sarais, V.; Somigliana, E.; Viganò, P. Oral Vitamin D supplementation impacts gene expression in granulosa cells in women undergoing IVF. Hum. Reprod. 2021, 36, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Garand, M.; Toufiq, M.; Singh, P.; Huang, S.S.Y.; Tomei, S.; Mathew, R.; Mattei, V.; Al Wakeel, M.; Sharif, E.; Al Khodor, S. Immunomodulatory effects of vitamin d supplementation in a deficient population. Int. J. Mol. Sci. 2021, 22, 5041. [Google Scholar] [CrossRef]
- Claro da Silva, T.; Hiller, C.; Gai, Z.; Kullak-Ublick, G.A. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J. Steroid Biochem. Mol. Biol. 2016, 163, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Seuter, S.; Virtanen, J.K.; Nurmi, T.; Pihlajamäki, J.; Mursu, J.; Voutilainen, S.; Tuomainen, T.P.; Neme, A.; Carlberg, C. Molecular evaluation of vitamin D responsiveness of healthy young adults. J. Steroid Biochem. Mol. Biol. 2017, 174, 314–321. [Google Scholar] [CrossRef]
- Carlberg, C.; Seuter, S.; Nurmi, T.; Tuomainen, T.P.; Virtanen, J.K.; Neme, A. In vivo response of the human epigenome to vitamin D: A Proof-of-principle study. J. Steroid Biochem. Mol. Biol. 2018, 180, 142–148. [Google Scholar] [CrossRef] [Green Version]
- McClorry, S.; Slupsky, C.M.; Lind, T.; Karlsland Åkeson, P.; Hernell, O.; Öhlund, I. Effectiveness of vitamin D supplementation in Swedish children may be negatively impacted by BMI and serum fructose. J. Nutr. Biochem. 2020, 75, 108251. [Google Scholar] [CrossRef] [PubMed]
- Zumaraga, M.P.; Medina, P.J.; Recto, J.M.; Abrahan, L.; Azurin, E.; Tanchoco, C.C.; Jimeno, C.A.; Palmes-Saloma, C. Targeted next generation sequencing of the entire vitamin D receptor gene reveals polymorphisms correlated with vitamin D deficiency among older Filipino women with and without fragility fracture. J. Nutr. Biochem. 2017, 41, 98–108. [Google Scholar] [CrossRef]
- Zumaraga, M.P.; Concepcion, M.A.; Duante, C.; Rodriguez, M. Next generation sequencing of 502 lifestyle and nutrition related genetic polymorphisms reveals independent loci for low serum 25-hydroxyvitamin d levels among adult respondents of the 2013 philippine national nutrition survey. J. ASEAN Fed. Endocr. Soc. 2021, 36, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Barker, B. Vitamin E Supplementation in People with Cystic Fibrosis: Summary of a Cochrane Review; Explore: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, Proceedings of the Panel on Dietary Antioxidants and Related Compounds; National Academies Press: Washington, DC, USA, 2000; Volume 2, ISBN 978-0-309-06935-9. [Google Scholar]
- Klein, E.A.; Thompson, I.M.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the Risk of Prostate Cancer. JAMA 2011, 306, 1549. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, O.P.; Albanes, D.; Virtamo, J.; Taylor, P.R.; Huttunen, J.K.; Hartman, A.M.; Haapakoski, J.; Malila, N.; Rautalahti, M.; Ripatti, S.; et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: Incidence and mortality in a controlled trial. J. Natl. Cancer Inst. 1998, 90, 440–446. [Google Scholar] [CrossRef]
- Huang, J.; Hodis, H.N.; Weinstein, S.J.; Mack, W.J.; Sampson, J.N.; Mondul, A.M.; Albanes, D. Serum Metabolomic Response to Low- and High-Dose Vitamin E Supplementation in Two Randomized Controlled Trials. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1329–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costacou, T.; Levy, A.P.; Miller, R.G.; Snell-Bergeon, J.; Asleh, R.; Farbstein, D.; Fickley, C.E.; Pambianco, G.; de la Vega, R.; Evans, R.W.; et al. Effect of vitamin E supplementation on HDL function by haptoglobin genotype in type 1 diabetes: Results from the HapE randomized crossover pilot trial. Acta Diabetol. 2016, 53, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and Wound Healing. Nutr. Clin. Pract. 2019, 34, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.P.; Petry, N.; Tanumihardjo, S.A.; Rogers, L.M.; McLean, E.; Greig, A.; Garrett, G.S.; Klemm, R.D.W.; Rohner, F. Vitamin a supplementation programs and country-level evidence of vitamin A deficiency. Nutrients 2017, 9, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira Faustino, J.; Ribeiro-Silva, A.; Faeda Dalto, R.; Martins De Souza, M.; Fortes Furtado, J.M.; de Melo Rocha, G.; Alves, M.; Melani Rocha, E. Vitamin A and the eye: An old tale for modern times. Arq. Bras. Oftalmol. 2016, 79, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.; Dullaart, R.P.F.; Schreuder, T.C.M.A.; Blokzijl, H.; Faber, K.N. Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 2018, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Piersma, A.H.; Hessel, E.V.; Staal, Y.C. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod. Toxicol. 2017, 72, 53–61. [Google Scholar] [CrossRef]
- McGrane, M.M. Vitamin A regulation of gene expression: Molecular mechanism of a prototype gene. J. Nutr. Biochem. 2007, 18, 497–508. [Google Scholar] [CrossRef]
- Bar-El Dadon, S.; Reifen, R. Vitamin A and the epigenome. Crit. Rev. Food Sci. Nutr. 2017, 57, 2404–2411. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Geng, Y. Effects of IC50 dose of retinol on metabolomics of RAW264.7 cells. J. Food Biochem. 2020, 44, e13090. [Google Scholar] [CrossRef]
- Novelle, M.G.; Wahl, D.; Diéguez, C.; Bernier, M.; de Cabo, R. Resveratrol supplementation: Where are we now and where should we go? Ageing Res. Rev. 2015, 21, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Chen, L.; Zhu, F.; Han, X.; Sun, L.; Chen, K. The cytotoxicity effect of resveratrol: Cell cycle arrest and induced apoptosis of breast cancer 4T1 cells. Toxins 2019, 11, 731. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liao, Z.; Jia, J.; Chen, J.L.; Xiao, Q. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ 2019, 2019, e7199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.M.; Ling, M.Y.; Chen, C. Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Syst. Biol. Reprod. Med. 2020, 66, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Y.; Tian, J.; Shao, Y.; Zhu, B.; Wang, J.; Hua, Z. Quantitative Chemical Proteomics Reveals Resveratrol Inhibition of A549 Cell Migration Through Binding Multiple Targets to Regulate Cytoskeletal Remodeling and Suppress EMT. Front. Pharmacol. 2021, 12, 636213. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Z.; Zhao, X.; Lin, C.; Hong, S.; Lou, Y.; Shi, X.; Zhao, M.; Yang, X.; Guan, M.X.; et al. Transcriptome-based analysis reveals therapeutic effects of resveratrol on endometriosis in arat model. Drug Des. Devel. Ther. 2021, 15, 4141–4155. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, P.; Ko, Y.T. Validated LC-MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies. J. Pharm. Biomed. Anal. 2016, 119, 71–75. [Google Scholar] [CrossRef]
- Guo, T.; Song, D.; Ho, C.T.; Zhang, X.; Zhang, C.; Cao, J.; Wu, Z. Omics Analyses of Gut Microbiota in a Circadian Rhythm Disorder Mouse Model Fed with Oolong Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 8847–8854. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, L.; Liu, Y.; Zhang, R.; Wu, Z.; Cheng, K.; Zhang, X. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. J. Agric. Food Chem. 2022, 70, 1890–1901. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.; Slimeni, O.; Pokrywka, A.; Kuvačić, G.; Hayes, L.D.; Milic, M.; Padulo, J. Herbal medicine for sports: A review. J. Int. Soc. Sport. Nutr. 2018, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem. 2006, 54, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Shimada, Y.; Nakayama, H.; Kim, Y.; Chu, D.C.; Juneja, L.R.; Kuroyanagi, J.; Nishimura, N. RNA-seq based transcriptome analysis of the anti-obesity effect of green tea extract using zebrafish obesity models. Molecules 2019, 24, 3256. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Kim, Y.J.; Ryu, R.; Cho, S.J.; Kwon, E.Y.; Choi, M.S. Effect of green tea extract on systemic metabolic homeostasis in diet-induced obese mice determined via RNA-seq transcriptome profiles. Nutrients 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Zhao, Y.; Liang, X.-J. Current Evaluation of the Millennium Phytomedicine- Ginseng (II): Collected Chemical Entities, Modern Pharmacology, and Clinical Applications Emanated from Traditional Chinese Medicine. Curr. Med. Chem. 2009, 16, 2924–2942. [Google Scholar] [CrossRef]
- Kim, S.W.; Gupta, R.; Lee, S.H.; Min, C.W.; Agrawal, G.K.; Rakwal, R.; Kim, J.B.; Jo, I.H.; Park, S.Y.; Kim, J.K.; et al. An integrated biochemical, proteomics, and metabolomics approach for supporting medicinal value of Panax ginseng fruits. Front. Plant Sci. 2016, 7, 994. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hou, Y.; Jia, Z.; Xie, X.; Liu, J.; Kang, Y.; Wang, X.; Wang, X.; Jia, W. Metabonomics Approach to Comparing the Antistress Effects of Four Panax ginseng Components in Rats. J. Proteome Res. 2018, 17, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Abdelfatah, S.; Efferth, T. Network pharmacology of ginseng (Part ii): The differential effects of red ginseng and ginsenoside rg5 in cancer and heart diseases as determined by transcriptomics. Pharmaceuticals 2021, 14, 1010. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, K.H.; Jaiswal, V.; Choi, J.; Chun, J.L.; Seo, K.M.; Lee, M.J.; Lee, H.J. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci. Rep. 2021, 11, 8002. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lv, L.; Xu, Y.; Jiang, K.; Chen, F.; Qian, J.; Chen, M.; Liu, G.; Xiang, Y. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed. Pharmacother. 2021, 136, 111287. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Williamson, E.M.; Putnam, S.; Farrimond, J.; Whalley, B.J. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr. Rev. 2014, 72, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.-Z.; Shang, H.-C.; Gao, X.-M.; Zhang, B.-L. A Comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother. Res. 2008, 22, 851–858. [Google Scholar] [CrossRef]
- Multum, C. Ginseng as a Drug—General Information. Available online: https://www.drugs.com/mtm/ginseng.html (accessed on 13 December 2022).
- Yang, S.O.; Shin, Y.S.; Hyun, S.H.; Cho, S.; Bang, K.H.; Lee, D.; Choi, S.P.; Choi, H.K. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages. J. Pharm. Biomed. Anal. 2012, 58, 19–26. [Google Scholar] [CrossRef]
- Yoon, D.; Shin, W.C.; Lee, Y.S.; Kim, S.; Baek, N.I.; Lee, D.Y. A Comparative Study on Processed Panax ginseng Products Using HR-MAS NMR-Based Metabolomics. Molecules 2020, 25, 1390. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Choi, B.R.; Kim, Y.C.; Oh, S.M.; Kim, H.G.; Kim, J.U.; Baek, N.I.; Kim, S.; Lee, D.Y. Comparative analysis of panax ginseng berries from seven cultivars using UPLC-QTOF/MS and nmr-based metabolic profiling. Biomolecules 2019, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- D’Aguanno, S.; D’Agnano, I.; De Canio, M.; Rossi, C.; Bernardini, S.; Federici, G.; Urbani, A. Shotgun proteomics and network analysis of neuroblastoma cell lines treated with curcumin. Mol. Biosyst. 2012, 8, 1068–1077. [Google Scholar] [CrossRef]
- Cooney, J.M.; Barnett, M.P.G.; Dommels, Y.E.M.; Brewster, D.; Butts, C.A.; McNabb, W.C.; Laing, W.A.; Roy, N.C. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a-/- mouse model of inflammatory bowel disease. J. Nutr. Biochem. 2016, 27, 181–192. [Google Scholar] [CrossRef]
- Huminiecki, L.; Horbańczuk, J.; Atanasov, A.G. The functional genomic studies of curcumin. Semin. Cancer Biol. 2017, 46, 107–118. [Google Scholar] [CrossRef]
- Gouda, M.M.; Rex, D.A.B.; Es, S.P.; Modi, P.K.; Chanderasekaran, J.; Bhandary, Y.P. Proteomics Analysis Revealed the Importance of Inflammation-Mediated Downstream Pathways and the Protective Role of Curcumin in Bleomycin-Induced Pulmonary Fibrosis in C57BL/6 Mice. J. Proteome Res. 2020, 19, 2950–2963. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Huang, Y. Integrative transcriptome analysis and discovery of signaling pathways involved in the protective effects of curcumin against oxidative stress in tilapia hepatocytes. Aquat. Toxicol. 2020, 224, 105516. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liang, C.; Yang, H.; Li, X.; Deng, X.; Liang, X.; Li, L.; Huang, Z.; Lu, D.; Ma, Y.; et al. Curcumin induces apoptosis and inhibits the growth of adrenocortical carcinoma: Identification of potential candidate genes and pathways by transcriptome analysis. Oncol. Lett. 2021, 21, 476. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. Curcumin May (Not) Defy Science. ACS Med. Chem. Lett. 2017, 8, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Bashang, H.; Tamma, S. The use of curcumin as an effective adjuvant to cancer therapy: A short review. Biotechnol. Appl. Biochem. 2020, 67, 171–179. [Google Scholar] [CrossRef]
- Sadeghian, M.; Rahmani, S.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord. 2021, 278, 627–636. [Google Scholar] [CrossRef]
- Lestari, M.L.A.D.; Indrayanto, G. Curcumin. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 39, ISBN 9780128001738. [Google Scholar]
First Author | Year of Publishing | Purpose | Used Method |
---|---|---|---|
Carlberg | 2019 | Modulation of the epigenome of immune cells by vitamin D status | ChIP-seq, FAIRE-seq |
Carlberg | 2018 | Response of the human epigenome to vitamin D supplementation | FAIRE-seq |
Seuter | 2016 | Molecular evaluation of vitamin D responsiveness of adults | FAIRE-seq |
Wilfinger | 2014 | Utility of primary vitamin D receptor target genes as biomarkers for the vitamin D3 status | ChIP-seq, FAIRE-seq |
Saksa | 2015 | Dissecting high from low responders for the vitamin D3 supplementation | ChIP-seq |
Tuoresmaki | 2014 | Localizations of vitamin D receptors in genome | ChIP-seq |
Lu | 2018 | Review connecting genomic effects of vitamin D on immune cells with multiple sclerosis | ChIP-seq |
Benson | 2017 | Method analysis: Designing of a custom next generation sequencing panel for vitamin D associated genes | ION AmpliSeq, ION S5 Cl system |
Cheng | 2020 | Effects of vitamin D on the immunomodulation of head kidney in yellow catfish | NGS |
Zumaraga | 2021 | NGS of the entire vitamin D receptor gene in order to investigate polymorphisms and correlation with vitamin D deficiency | targeted NGS |
Zumaraga | 2016 | NGS in order to detect genetic polymorphisms correlated with vitamin D deficiency | targeted NGS |
Silva | 2016 | Studying changes in gene expression in CaCo2 cells upon vitamin D treatment | NGS |
Hänninen | 2020 | Influence of vitamin D supplementation on sNfL (serum neurofilament light chain), that are promising biomarkers of MS activity | MRI |
McClorry | 2019 | Impact of BMI and serum fructose on effectiveness of vitamin D supplementation on children | NMR |
Bislev | 2020 | Investigation of cardiovascular and musculoskeletal health upon daily supplementation of vitamin D | NMR |
Rana | 2014 | Effects of vitamin D supplementation on muscle energy phospho-metabolites | P magnetic resonance spectroscopy |
Sheedy | 2014 | Analysis of human urinary metabolome in response to calcium-vitamin D3 supplementation | H-NMR |
Ponda | 2012 | Inluence of vitamin D oral supplementation on the lipid profile | NMR-based lipid fractions |
Chen | 2015 | Association of consumption of vitamin D2 enhanced mushroom with improved bone health in mice | NMR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steg, A.; Oczkowicz, M.; Smołucha, G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022, 14, 5305. https://doi.org/10.3390/nu14245305
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients. 2022; 14(24):5305. https://doi.org/10.3390/nu14245305
Chicago/Turabian StyleSteg, Anna, Maria Oczkowicz, and Grzegorz Smołucha. 2022. "Omics as a Tool to Help Determine the Effectiveness of Supplements" Nutrients 14, no. 24: 5305. https://doi.org/10.3390/nu14245305
APA StyleSteg, A., Oczkowicz, M., & Smołucha, G. (2022). Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients, 14(24), 5305. https://doi.org/10.3390/nu14245305