Effects of Carbohydrate Restriction on Body Weight and Glycemic Control in Individuals with Type 2 Diabetes: A Randomized Controlled Trial of Efficacy in Real-Life Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Intervention
2.3. Blood Samples
2.4. Urine Samples
2.5. Statistical Analysis and Calculations
3. Results
3.1. Participants
3.2. Self-Prepared Diet
3.3. Anthropometrics
3.4. Glucose Metabolism
3.5. Lipid Profile
3.6. Renal Function
3.7. Medication Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pi-Sunyer, X.; Blackburn, G.; Brancati, F.L.; Bray, G.A.; Bright, R.; Clark, J.M.; Curtis, J.M.; Espeland, M.A.; Foreyt, J.P.; Graves, K.; et al. Reduction in Weight and Cardiovascular Disease Risk Factors in Individuals with Type 2 Diabetes. One-year results of the Look AHEAD trial. Diabetes Care 2007, 30, 1374–1383. [Google Scholar] [PubMed] [Green Version]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Standards of Medical Care in Diabetes; American Diabetes Association: Arlington, VA, USA, 2019. [Google Scholar]
- Samkani, A.; Skytte, M.J.; Kandel, D.; Kjaer, S.; Astrup, A.; Deacon, C.F.; Holst, J.J.; Madsbad, S.; Rehfeld, J.F.; Haugaard, S.B.; et al. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients. Br. J. Nutr. 2018, 119, 910–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheard, N.F.; Clark, N.G.; Brand-Miller, J.C.; Franz, M.J.; Pi-Sunyer, F.X.; Mayer-Davis, E.; Kulkarni, K.; Geil, P. Dietary Carbohydrate (Amount and Type) in the Prevention and Management of Diabetes: A statement by the American Diabetes Association. Diabetes Care 2004, 27, 2266–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korsmo-Haugen, H.-K.; Brurberg, K.G.; Mann, J.; Aas, A.-M. Carbohydrate quantity in the dietary management of type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2019, 21, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntriss, R.; Campbell, M.; Bedwell, C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2018, 72, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Skytte, M.J.; Samkani, A.; Petersen, A.D.; Thomsen, M.N.; Astrup, A.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Thomsen, H.S.; Madsbad, S.; et al. A carbohydrate-reduced high-protein diet improves HbA1c and liver fat content in weight stable participants with type 2 diabetes: A randomised controlled trial. Diabetologia 2019, 62, 2066–2078. [Google Scholar] [CrossRef]
- Alzahrani, A.H.; Skytte, M.J.; Samkani, A.; Thomsen, M.N.; Astrup, A.; Ritz, C.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Thomsen, H.S.; et al. Body weight and metabolic risk factors in patients with type 2 diabetes on a self-selected high-protein low-carbohydrate diet. Eur. J. Nutr. 2021, 60, 4473–4482. [Google Scholar] [CrossRef]
- Alzahrani, A.H.; Skytte, M.J.; Samkani, A.; Thomsen, M.N.; Astrup, A.; Ritz, C.; Frystyk, J.; Holst, J.J.; Madsbad, S.; Haugaard, S.B.; et al. Effects of a Self-Prepared Carbohydrate-Reduced High-Protein Diet on Cardiovascular Disease Risk Markers in Patients with Type 2 Diabetes. Nutrients 2021, 13, 1694. [Google Scholar] [CrossRef]
- Thomsen, M.N.; Skytte, M.J.; Samkani, A.; Carl, M.H.; Weber, P.; Astrup, A.; Chabanova, E.; Fenger, M.; Frystyk, J.; Hartmann, B.; et al. Dietary carbohydrate restriction augments weight loss-induced improvements in glycaemic control and liver fat in individuals with type 2 diabetes: A randomised controlled trial. Diabetologia 2022, 65, 506–517. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes—2019 Abridged for Primary Care Providers. Clin. Diabetes 2018, 42 (Suppl. 1), S1–S194. [Google Scholar]
- Mann, J.I.; De Leeuw, I.; Hermansen, K.; Karamanos, B.; Karlström, B.; Katsilambros, N.; Riccardi, G.; Rivellese, A.A.; Rizkalla, S.; Slama, G.; et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 373–394. [Google Scholar] [CrossRef]
- Grubb, A.; Nyman, U.; Björk, J.; Lindström, V.; Rippe, B.; Sterner, G.; Christensson, A. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin. Chem. 2005, 51, 1420–1431. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, J.D.; Elley, C.R.; Parry-Strong, A.; Lunt, H.; Drury, P.L.; Bell, D.A.; Robinson, E.; Moyes, S.A.; Mann, J.I. The Diabetes Excess Weight Loss (DEWL) Trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 2012, 55, 905–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, R.N.; Mann, N.J.; Maclean, E.; Shaw, J.E. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 2011, 54, 731–740. [Google Scholar] [CrossRef]
- Pedersen, E.; Jesudason, D.R.; Clifton, P.M. High protein weight loss diets in obese subjects with type 2 diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases: Nutr. Metab. Cardiovasc. Dis. 2014, 24, 554–562. [Google Scholar] [CrossRef]
- Snorgaard, O.; Poulsen, G.M.; Andersen, H.K.; Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000354. [Google Scholar] [CrossRef]
- Jayedi, A.; Zeraattalab-Motlagh, S.; Jabbarzadeh, B.; Hosseini, Y.; Jibril, A.T.; Shahinfar, H.; Mirrafiei, A.; Hosseini, F.; Shab-Bidar, S. Dose-dependent effect of carbohydrate restriction for type 2 diabetes management: A systematic review and dose-response meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2022, 116, 40–56. [Google Scholar] [CrossRef]
- Kotronen, A.; Juurinen, L.; Hakkarainen, A.; Westerbacka, J.; Cornér, A.; Bergholm, R.; Yki-Järvinen, H. Liver Fat Is Increased in Type 2 Diabetic Patients and Underestimated by Serum Alanine Aminotransferase Compared with Equally Obese Nondiabetic Subjects. Diabetes Care 2008, 31, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Petersen, K.F.; Dufour, S.; Befroy, D.; Lehrke, M.; Hendler, R.E.; Shulman, G.I. Reversal of Nonalcoholic Hepatic Steatosis, Hepatic Insulin Resistance, and Hyperglycemia by Moderate Weight Reduction in Patients with Type 2 Diabetes. Diabetes 2005, 54, 603–608. [Google Scholar] [CrossRef]
- Seppälä-Lindroos, A.; Vehkavaara, S.; Häkkinen, A.M.; Goto, T.; Westerbacka, J.; Sovijärvi, A.; Halavaara, J.; Yki-Järvinen, H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 2002, 87, 3023–3028. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.J.; Campbell-Sargent, C.; Mirshahi, F.; Rizzo, W.B.; Contos, M.J.; Sterling, R.K.; Luketic, V.A.; Shiffman, M.L.; Clore, J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001, 120, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, P.P. Reverse cholesterol transport: High-density lipoprotein’s magnificent mile. Curr. Atheroscler. Rep. 2003, 5, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzman, E. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 2018, 7, 212525. [Google Scholar] [CrossRef]
- Yu, Z.; Nan, F.; Wang, L.Y.; Jiang, H.; Chen, W.; Jiang, Y. Effects of high-protein diet on glycemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2020, 39, 1724–1734. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Sato, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: A meta-analysis. Diabetes Care 2009, 32, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Florvall, G.; Basu, S.; Larsson, A. Apolipoprotein A1 Is a Stronger Prognostic Marker Than Are HDL and LDL Cholesterol for Cardiovascular Disease and Mortality in Elderly Men. J. Gerontol. Ser. A 2006, 61, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Rader, D.J. Molecular regulation of HDL metabolism and function: Implications for novel therapies. J. Clin. Investig. 2006, 116, 3090–3100. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, E.; Kizirian, N.V.; Partridge, S.R.; Gill, T.; Colagiuri, S.; Gibson, A.A. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2018, 139, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.A.; Sainsbury, A. Strategies to Improve Adherence to Dietary Weight Loss Interventions in Research and Real-World Settings. Behav. Sci. 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, 102–138. [Google Scholar] [CrossRef] [Green Version]
- Perri, M.G.; Limacher, M.C.; Durning, P.E.; Janicke, D.M.; Lutes, L.D.; Bobroff, L.B.; Dale, M.S.; Daniels, M.J.; Radcliff, T.A.; Martin, A.D. Extended-care programs for weight management in rural communities: The treatment of obesity in underserved rural settings (TOURS) randomized trial. Arch. Intern. Med. 2008, 168, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CD | CRHP |
---|---|---|
Participants (male) | 31 (15) | 28 (17) |
Age (years) | 67.0 (±8.4) | 66.9 (±6.9) |
Duration of T2DM (years) | 7.7 (3.2; 10.0) | 8.2 (3.9; 12.7) |
Height (cm) | 170.7 (±11.8) | 170.6 (±8.3) |
Body weight (kg) | 97.4 (±25.9) | 98.8 (±13.4) |
Body mass index (kg/m2) | 33.0 (±5.2) | 34.0 (±4.7) |
HbA1c (mmol/mol) | 57.7 (±7.8) | 57.0 (±6.7) |
Medication | ||
No hypoglycemic agents | 11 | 7 |
1 hypoglycemic agent | 17 | 13 |
2 hypoglycemic agents | 3 | 8 |
Lipid lowering medication | 24 | 24 |
Anti-hypertensive medication | 21 | 22 |
Baseline | Week 30 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CRHP | n | CD | n | CRHP | n | CD | n | Between-Diet Difference (95% CI) | p-Value | |
Total energy (kJ) | 8604 (±2789) | 35 | 8488 (±2488) | 35 | 8296 (±2904) | 25 | 7273 (±2067) | 26 | 371 (−606; 1347) | 0.5 |
Total energy (kcal) | 2065 (±669) | 35 | 2037 (±597) | 35 | 1991 (±697) | 25 | 1746 (±496) | 25 | 88.5 (−145; 322) | 0.5 |
Protein (E%) | 18.6 (±4.3) | 35 | 18.6 (±3.4) | 35 | 21.0 (±5.4) | 25 | 19.8 (±4.7) | 26 | 2.2 (−0.3; 4.6) | 0.09 |
Carbohydrate (E%) | 43.4 (±7.1) | 35 | 41.4 (±6.9) | 35 | 38.8 (±5.9) | 25 | 42.3 (±6.1) | 26 | −4.4 (−7.1; −1.7) | 0.002 |
Fibre (g/day) | 25.1 (±8.8) | 35 | 23.1 (±9.0) | 35 | 23.4 (±8.3) | 25 | 26.1 (±13.6) | 26 | −3.3 (−9.2; 2.6) | 0.3 |
Fat (E%) | 34.9 (±6.2) | 35 | 37.2 (±6.4) | 35 | 36.2 (±7.3) | 25 | 35.4 (±4.3) | 26 | 1.4 (−1.5; 4.4) | 0.3 |
Saturated fatty acids (g/day) | 22.3 (17.2; 33.8) | 35 | 25.8 (17.2; 33.8) | 34 A | 22.3 (16.3; 28.3) | 25 | 22 (16.8; 25.6) | 26 | 2.7 (−1.4; 6.8) | 0.2 |
Monounsaturated fatty acids (g/day) | 18.7 (12.8; 23.5) | 35 | 21.8 (13.9; 27.0) | 34 A | 19.0 (13.7; 22.7) | 25 | 13.8 (10.1; 18.7) | 26 | 1.4 (1.1; 1.8) | 0.006 |
Polyunsaturated fatty acids (g/day) | 8.5 (5.7; 10.0) | 35 | 8.6 (6.9; 11.1) | 34 A | 8.2 (5.5; 11.2) | 25 | 7.1 (5.4; 9.4) | 26 | 1.3 (−1.0; 1.7) | 0.1 |
Alcohol (E%) | 0.0 (0.0; 3.2) | 35 | 0.0 (0.0; 2.9) | 35 | 0.23 (0.0; 4.2) | 25 | 0.0 (0.0; 4.2) | 26 | 1.0 (−0.5; 2.5) | 0.2 |
CD | CRHP | p1 | p2 | |||||
---|---|---|---|---|---|---|---|---|
Baseline (n = 31) | Week 6 (n = 31) | Week 30 (n = 31) | Baseline (n = 28) | Week 6 (n = 28) | Week 30 (n = 28) | |||
Anthropometrics | ||||||||
Body weight (kg) | 97.4 (±25.9) | −5.8 (±2.3) ††† | −4.6 (±4.8) ††† | 98.8 (±13.4) | −5.9 (±1.9) ††† | −5.5 (±4.5) ††† | 0.5 | 0.5 |
Body mass index (kg/m2) | 33.0 (±5.2) | −2.0 (±0.6) ††† | −1.6 (±1.7) ††† | 34.0 (±4.7) | −2.0 (±0.6) ††† | −1.9 (±1.6) ††† | 0.6 | 0.6 |
Glucose metabolism | ||||||||
HbA1c (mmol/mol) | 57.7 (±7.8) | −7.2 (±4.1) ††† | −8.4 (±6.9) ††† | 57.0 (±6.7) | −9.1 (±3.6) ††† | −8.4 (±6.2) ††† | 0.7 | 0.4 |
Fasting glucose (mmol/L) | 8.5 (7.9; 10.0) | −1.5 (−2.3; −1.1) ††† | −1.1 (−1.7; −0.5) ††† | 8.3 (7.5; 9.8) | −1.7 (−2.7; −1.0) ††† | −1.0 (−1.7; −0.3) ††† | 0.8 | 0.7 |
Insulin (pmol/L) | 124.7 (83.2; 183.0) | −27.7 (−54.2; −9.0) ††† | −33.3 (−57.6; −2.8)†† | 120.3 (96.1; 151.5) | −24.0 (−50.9; −9.5) ††† | −33.9 (−54.3; +7.2)† | 0.7 | 0.7 |
C-peptide (pmol/L) | 1342 (1001; 1643) | −152 (−327; −2) ††† | −250 (−334; −42.4) ††† | 1256 (1028; 1617) | −170 (−286; 4) ††† | −193 (−354; −62) ††† | 0.9 | 0.6 |
HOMA2 IR | 3.5 (2.7; 4.3) | −0.5 (−1.2; −0.2) ††† | −0.8 (−1.2; −0.3) ††† | 3.5 (2.7; 4.1) | −0.7 (−1.0; −0.2) ††† | −0.7 (−1.0; −0.2) ††† | 0.6 | 1.0 |
HOMA2 B% | 71.1 (51.0; 98.5) | 20.6 (10.8; 33.6) ††† | 9.0 (2.0; 17.2) †† | 79.0 (55.5; 95.0) | 27.3 (12.0; 41.9) ††† | 7.3 (−3.5; 7.6) † | 0.7 | 0.3 |
Lipid metabolism | ||||||||
Total cholesterol (mmol/L) | 3.9 (±0.8) | −0.5 (±0.6) ††† | 0.2 (±0.6) | 3.7 (±0.9) | −0.6 (±0.6) ††† | 0.3 (±0.8) | 0.9 | 0.4 |
HDL cholesterol (mmol/L) | 1.1 (±0.2) | −0.1 (±0.1) †† | 0.2 (±0.1) ††† | 1.2 (±0.3) | −0.1 (±0.2) † | 0.2 (±0.2) ††† | 0.3 | 0.3 |
LDL cholesterol (mmol/L) | 2.2 (±0.7) | −0.3 (±0.4) ††† | 0.1 (±0.5) | 2.0 (±0.7) | −0.4 (±0.4) ††† | 0.1 (±0.6) | 0.9 | 0.2 |
Non-HDL cholesterol (mmol/L) | 2.8 (±0.8) | −0.4 (±0.6) ††† | 0.0 (±0.6) | 2.5 (±1.0) | −0.5 (±0.6) ††† | 0.0 (±0.8) | 0.8 | 0.2 |
Triglycerides (mmol/L) | 1.7 (1.3; 2.1) | −0.3 (−0.5; 0.1) † | −0.2 (−0.5; 0.2) | 1.5 (1.1; 2.1) | −0.4 (−0.7; −0.1) ††† | −0.3 (−0.5; 0.1) † | 0.6 | 0.2 |
NEFA (mmol/l) | 0.70 (0.65; 0.84) | −0.1 (−0.2; 0.0) | −0.3 (−0.4; −0.1) ††† | 0.60 (0.50; 0.70) | −0.0 (−0.1; 0.1) | −0.2 (−0.3; −0.1) ††† | 0.8 | 0.7 |
ApoA-I (g/L) | 1.34 (±0.2) | −0.13 (±0.14) ††† | 0.14 (±1.6) ††† | 1.39 (±0.26) | −0.15 (±0.19) ††† | 0.17 (±0.18) ††† | 0.4 | 0.2 |
ApoB (g/L) | 0.85 (±0.20) | −0.10 (±0.12) ††† | −0.00 (±0.13) | 0.77 (±0.22) | −0.13 (±0.13) ††† | 0.00 (±0.17) | 0.7 | 0.3 |
ApoB/ApoA-I | 0.65 (0.55; 0.74) | −0.02 (−0.10; +0.06) | −0.07 (−0.10; −0.01) †† | 0.50 (0.43; 0.64) | −0.04 (−0.08; −0.01) † | −0.05 (−0.10; −0.01) ††† | 0.4 | 0.5 |
Kidney function | ||||||||
eGFR (ml/min/1.73 m2) | 78.0 (±17.0) | −1.3 (±6.5) | −5.2 (±7.0) ††† | 80.2 (17.3) | −0.2 (±6.6) | −5.1 (±4.6) ††† | 0.9 | 0.3 |
Albumin (μmol/L) | 0.08 (0.03; 0.16) A | −0.02 (−0.07; 0.00) A | −0.00 (−0.06; 0.00) A | 0.07 (0.03; 0.19) B | −0.01 (−0.05; 0.00) B | −0.00 (−0.05; 0.01) B | 0.7 | 0.3 |
CD (n = 31) | CRHP (n = 28) | p-Value | |||
---|---|---|---|---|---|
Increased Dose | Decreased Dose | Increased Dose | Decreased Dose | ||
Anti-hyperglycemic | 5 | 5 | 4 | 7 | 0.7 |
Lipid-lowering | 3 | 0 | 0 | 0 | 0.2 |
Anti-hypertensive | 3 | 1 | 3 | 2 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, P.; Thomsen, M.N.; Skytte, M.J.; Samkani, A.; Carl, M.H.; Astrup, A.; Frystyk, J.; Holst, J.J.; Hartmann, B.; Madsbad, S.; et al. Effects of Carbohydrate Restriction on Body Weight and Glycemic Control in Individuals with Type 2 Diabetes: A Randomized Controlled Trial of Efficacy in Real-Life Settings. Nutrients 2022, 14, 5244. https://doi.org/10.3390/nu14245244
Weber P, Thomsen MN, Skytte MJ, Samkani A, Carl MH, Astrup A, Frystyk J, Holst JJ, Hartmann B, Madsbad S, et al. Effects of Carbohydrate Restriction on Body Weight and Glycemic Control in Individuals with Type 2 Diabetes: A Randomized Controlled Trial of Efficacy in Real-Life Settings. Nutrients. 2022; 14(24):5244. https://doi.org/10.3390/nu14245244
Chicago/Turabian StyleWeber, Philip, Mads N. Thomsen, Mads Juul Skytte, Amirsalar Samkani, Martin Hansen Carl, Arne Astrup, Jan Frystyk, Jens J. Holst, Bolette Hartmann, Sten Madsbad, and et al. 2022. "Effects of Carbohydrate Restriction on Body Weight and Glycemic Control in Individuals with Type 2 Diabetes: A Randomized Controlled Trial of Efficacy in Real-Life Settings" Nutrients 14, no. 24: 5244. https://doi.org/10.3390/nu14245244