A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Dietary Supplement
2.3. Adverse Events
2.4. Blood Parameters
2.5. Anthropometric Mesurements and Dietary Counselling
2.6. Body Composition
2.7. Assessment of Resting Energy Expenditure (REE)
2.8. Primary and Secondary Endpoints
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrea, L.; Pugliese, G.; Laudisio, D.; Colao, A.; Savastano, S.; Muscogiuri, G. Mediterranean diet as medical prescription in menopausal women with obesity: A practical guide for nutritionists. Crit. Rev. Food Sci. Nutr. 2021, 61, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, E.; Faubion, S.S.; Kling, J.M. Obesity Update in Women. J. Women’s Health 2019, 28, 1601. [Google Scholar] [CrossRef]
- Williams, M.J.; Hunter, G.R.; Kekes-Szabo, T.; Trueth, M.S.; Snyder, S.; Berland, L.; Blaudeau, T. Intra-abdominal adipose tissue cut-points related to elevated cardiovascular risk in women. Int. J. Obes. 1996, 20, 613–617. [Google Scholar] [CrossRef]
- Yves, R.; Perry, H.I.; Ping, P.; Banks, W.; Morley, J. Leptin and adiponectin levels in middle-aged postmenopausal women: Associations with lifestyle habits, hormones, and inflammatory markers—A cross-sectional study. Metabolism 2006, 12, 1630–1636. [Google Scholar]
- Goodarzi, M.T.; Babaahmadi-Rezaei, H.; Kadkhodaei-Eliaderani, M.; Haddadinezhad, S. Relationship of serum adiponectin with blood lipids, HbA1c, and hs-CRP in type II diabetic postmenopausal women. J. Clin. Lab. Anal. 2007, 21, 197–200. [Google Scholar] [CrossRef]
- Bajaj, M.; Suraamornkul, S.; Piper, P.; Hardies, L.J.; Glass, L.; Cersosimo, E.; Pratipanawatr, T.; Miyazaki, Y.; Defronzo, R.A. Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2004, 89, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fruebis, J.; Tsao, T.S.; Javorschi, S.; Ebbets-Reed, D.; Erickson, M.R.S.; Yen, F.T.; Bihain, B.E.; Lodish, H.F. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 2001, 98, 2005–2010. [Google Scholar] [CrossRef]
- Ríos-Hoyo, A.; Gutiérrez-Salmeán, G. New dietary supplements for obesity: What we currently know. Curr. Obes. Rep. 2016, 5, 262–270. [Google Scholar] [CrossRef]
- Rains, T.M.; Agarwal, S.; Maki, K.C. Antiobesity effects of green tea catechins: A mechanistic review. J. Nutr. Biochem. 2011, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S.; Wang, Y.; Thielecke, F. Anti-obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 2006, 50, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Kolesarova, A. The anti-obesity and health-promoting effects of tea and coffee. Physiol. Res. 2021, 70, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nagle, D.; Ferreira, D.; Zhou, Y.-D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry 2015, 67, 1849–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Okubo, T. Physiological effects of epigallocatechin-3-gallate (EGCG) on energy expenditure for prospective fat oxidation in humans: A systematic review and meta-analysis. J. Nutr. Biochem. 2017, 43, 1–10. [Google Scholar] [CrossRef]
- Rondanelli, M.; Riva, A.; Petrangolini, G.; Allegrini, P.; Perna, S.; Faliva, M.A.; Peroni, G.; Naso, M.; Nichetti, M.; Perdoni, F.; et al. Effect of acute and chronic dietary supplementation with green tea catechins on resting metabolic rate, energy expenditure and respiratory quotient: A systematic review. Nutrients 2021, 13, 644. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Hou, L.; Wu, H.; Wu, Y.; Xu, R.; Xiao, Y.; Wang, X. Does tea extract supplementation benefit metabolic syndrome and obesity? A systematic review and meta-analysis. Clin. Nutr. 2019, 39, 1049–1058. [Google Scholar] [CrossRef]
- Haffner, S.M.; Kennedy, E.; Gonzalez, C.; Stern, M.P.; Miettinen, H. A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care 1996, 19, 1138–1141. [Google Scholar] [CrossRef]
- Frisancho, A.R. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am. J. Clin. Nutr. 1984, 40, 808–819. [Google Scholar] [CrossRef]
- World Health Organization. Energy and Protein Requirements—Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Mohammad, A.; De Lucia Rolfe, E.; Sleigh, A.; Kivisild, T.; Behbehani, K.; Wareham, N.J.; Brage, S.; Mohammad, T. Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr. Diabetes 2017, 7, e238. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Weir, J.D.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Linear and nonlinear mixed effects models. R Dev. Core Team 2007, 3, 1–89. [Google Scholar]
- John, A. Rice Mathematical Statistics and Data Analysis, 2nd ed.; Cengage Learning: Boston, MA, USA, 2007. [Google Scholar]
- Benjamin, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Thielecke, F.; Rahn, G.; Böhnke, J.; Adams, F.; Birkenfeld, A.L.; Jordan, J.; Boschmann, M. Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: A pilot study. Eur. J. Clin. Nutr. 2010, 64, 704–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschmann, M.; Thielecke, F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: A pilot study. J. Am. Coll. Nutr. 2007, 26, 389S–395S. [Google Scholar] [CrossRef] [PubMed]
- Venables, M.C.; Hulston, C.J.; Cox, H.R.; Jeukendrup, A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans 1, 2. Am. J. Clin. Nutr. 2008, 87, 778–784. [Google Scholar] [CrossRef] [Green Version]
- Westerterp-Plantenga, M.S. Green tea catechins, caffeine and body-weight regulation. Physiol. Behav. 2010, 100, 42–46. [Google Scholar] [CrossRef]
- Reilly, S.M.; Hung, C.W.; Ahmadian, M.; Zhao, P.; Keinan, O.; Gomez, A.V.; DeLuca, J.H.; Dadpey, B.; Lu, D.; Zaid, J.; et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat. Metab. 2020, 2, 620–634. [Google Scholar] [CrossRef]
- Ravussin, E.; Swinburn, B.A. Pathophysiology of obesity. Lancet 1992, 340, 404–408. [Google Scholar] [CrossRef]
- Weinsier, R.L.; Nelson, K.M.; Hensrud, D.D.; Damell, B.E.; Hunter, G.R.; Schutz, Y. Metabolic predictors of obesity contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. J. Clin. Investig. 1995, 95, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Zurlo, F.; Lillioja, S.; Esposito-del Puente, A.; Nyomba, B.L.; Raz, I.; Saad, M.F.; Swinburn, B.A.; Knowler, W.C.; Bogardus, C.; Ravussin, E.; et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24-h RQ Es. Am. J. Physiol. 1990, 259, E650–E657. [Google Scholar] [CrossRef]
- Seidell, J.; Muller, D.; Sorkin, J.; Andres, R. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: The Baltimore Longitudinal Study on Aging. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 667–674. [Google Scholar]
- Harvey, A.E.; Lashinger, L.M.; Hursting, S.D. The growing challenge of obesity and cancer: An inflammatory issue. Ann. N. Y. Acad. Sci. 2011, 1229, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ntamo, Y.; Jack, B.; Ziqubu, K.; Mazibuko-Mbeje, S.E.; Nkambule, B.B.; Nyambuya, T.M.; Mabhida, S.E.; Hanser, S.; Orlando, P.; Tiano, L.; et al. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: Novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Barbarroja, N.; López-Pedrera, R.; Mayas, M.D.; García-Fuentes, E.; Garrido-Sánchez, L.; Macías-González, M.; El Bekay, R.; Vidal-Puig, A.; Tinahones, F.J. The obese healthy paradox: Is inflammation the answer? Biochem. J. 2010, 430, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Xu, Y.; Zhang, C.; Wang, N.; Li, H.; Feng, Y. Green tea and epigallocatechin gallate (Egcg) for the management of nonalcoholic fatty liver diseases (nafld): Insights into the role of oxidative stress and antioxidant mechanism. Antioxidants 2021, 10, 1076. [Google Scholar] [CrossRef]
- Hou, H.; Yang, W.; Bao, S.; Cao, Y. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats. J. Oleo Sci. 2020, 69, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef]
- Colonetti, L.; Grande, A.J.; Toreti, I.R.; Ceretta, L.B.; da Rosa, M.I.; Colonetti, T. Green tea promotes weight loss in women with polycystic ovary syndrome: Systematic review and meta-analysis. Nutr. Res. 2022, 104, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Liu, C.Y.; Chiu, J.P.; Hsu, C.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef]
- Basu, A.; Sanchez, K.; Leyva, M.J.; Wu, M.; Betts, N.M.; Aston, C.E.; Lyons, T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010, 29, 31–40. [Google Scholar] [CrossRef]
- Qiao, L.; Kinney, B.; Schaack, J.; Shao, J. Adiponectin inhibits lipolysis in mouse adipocytes. Diabetes 2011, 60, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Park, J.; Shin, H.J.; Kim, Y.-K.; Shin, D.W.; Shin, E.S.; Lee, H.; Lee, B.G.; Baik, J.-H.; Lee, T.R. (−)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am. J. Physiol. Endo.-Crinol. Metab. 2007, 292, 1166–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighatdoost, F.; Nobakht, M.; Gh, B.F.; Hariri, M. Effect of green tea on plasma leptin and ghrelin levels: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2018, 45, 17–23. [Google Scholar] [CrossRef]
- Basu, A.; Du, M.; Sanchez, K.; Leyva, M.J.; Betts, N.M.; Blevins, S.; Wu, M.; Aston, C.E.; Lyons, T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 2011, 27, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, O.H.; Lee, J.; Lee, K.W.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res. Clin. Pract. 2006, 71, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova-Lorenzova, A.; Suchánek, P.; Havel, P.J.; Stávek, P.; Karasová, L.; Valenta, Z.; Tintěra, J.; Poledne, R. The decrease in C-reactive protein concentration after diet and physical activity induced weight reduction is associated with changes in plasma lipids, but not interleukin-6 or adiponectin. Metabolism 2006, 55, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Kovacova, Z.; Vitkova, M.; Kovacikova, M.; Klimcakova, E.; Bajzova, M.; Hnevkovska, Z.; Rossmeilova, L.; Stich, V.; Langin, D.; Polak, J. Secretion of adiponectin multimeric complexes from adipose tissue explants is not modified by very low calorie diet. Eur. J. Endocrinol. 2009, 160, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Pietta, P.; Simonetti, P.; Gardana, C.; Brusamolino, A.; Morazzoni, P.; Bombardelli, E. Relationship between rate and extent of catechin absorption and plasma antioxidant status. Biochem. Mol. Biol. Int. 1998, 46, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, F.; Borsetto Menghi, A.; Barreca, A.; Lucarelli, M.; Calandrelli, A. Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: A clinical trial. Altern. Med. Rev. 2009, 14, 154–160. [Google Scholar]
- Belcaro, G.; Ledda, A.; Hu, S.; Cesarone, M.R.; Feragalli, B.; Dugall, M. Greenselect phytosome for borderline metabolic syndrome. Evid.-Based Complement. Altern. Med. 2013, 2013, 7. [Google Scholar] [CrossRef]
Placebo Group (n = 14) Mean (SD) | GSP Group (n = 14) Mean (SD) | p-Value | |
---|---|---|---|
Age (y) | 56.92 (5.70) | 60.57 (7.28) | 0.15 |
BMI (Kg/m2) | 31.10 (3.54) | 31.99 (2.23) | 0.84 |
Placebo Group (n = 14) Mean (SD) | GSP Group (n = 14) Mean (SD) | |||||
---|---|---|---|---|---|---|
t0 | t1 | t2 | t0 | t1 | t2 | |
Primary endpoints | ||||||
RQ | 0.79 (0.09) | 0.79 (0.09) | 0.81 (0.05) | 0.77 (0.06) | 0.72 (0.05) | 0.71 (0.05) |
%CHO oxidation | 48.21 (16.57) | 49.21 (16.22) | 44.00 (18.83) | 47.50 (18.28) | 21.14 (12.50) | 21.21 (12.66) |
%LIP oxidation | 51.79 (16.57) | 50.79 (16.22) | 56.00 (18.83) | 52.50 (18.28) | 78.86 (12.50) | 78.79 (12.66) |
REE (kcal/day) | 1396.57 (238.37) | 1390.71 (201.04) | 1365.64 (230.96) | 1401.71 (202.88) | 1500.64 (229.12) | 1537.21 (190.76) |
Secondary endpoints | ||||||
Body composition | ||||||
Fat Free Mass (g) | 43,033.43 (4005.97) | 43,505.93 (3728.92) | 43,013.21 (3595.07) | 41,353.36 (3587.18) | 41,377.00 (3736.21) | 40,872.43 (3333.17) |
Fat Mass (g) | 38,630.71 (9224.67) | 38,019.00 (10,345.88) | 37,543.36 (10,608.83) | 37,882.86 (6013.62) | 36,472.36 (5819.56) | 35,831.57 (5488.24) |
VAT (g) | 1395.71 (636.83) | 1370.71 (665.94) | 1298.56 (832.95) | 1383.21 (429.11) | 1235.64 (489.22) | 1212.71 (441.54) |
Waist Circumference (cm) | 101.25 (9.83) | 100.32 (10.14) | 100.07 (10.17) | 105.86 (7.35) | 104.57 (6.49) | 102.54 (6.47) |
Glucose and lipid profile | ||||||
Glycemia (mg/dL) | 90.36 (15.35) | 89.14 (12.91) | 87.43 (12.15) | 87.71 (8.94) | 90.36 (8.85) | 88.71 (8.44) |
Insulin (μIU/mL) | 11.04 (4.24) | 11.30 (4.21) | 11.94 (5.03) | 11.88 (5.09) | 9.97 (4.01) | 9.30 (3.60) |
HOMA (pt) | 2.50 (1.10) | 2.54 (1.15) | 2.61 (1.20) | 2.54 (1.07) | 2.21 (0.86) | 2.04 (0.81) |
Total Cholesterol (mg/dL) | 194.86 (37.08) | - | 199.21 (36.36) | 199.86 (30.86) | - | 199.07 (28.37) |
HDL (mg/dL) | 61.50 (18.18) | - | 61.00 (16.85) | 66.86 (12.53) | - | 65.14 (10.83) |
LDL (mg/dL) | 116.00 (30.44) | - | 115.71 (30.90) | 115.93 (22.67) | - | 120.36 (21.67) |
VLDL (mg/dL) | 22.74 (6.26) | - | 25.50 (13.13) | 23.34 (8.27) | - | 24.06 (7.39) |
Triglycerides (mg/dL) | 113.71 (31.29) | - | 127.50 (65.64) | 116.71 (41.35) | - | 120.29 (36.93) |
Anti-/proinflammatory state | ||||||
Adiponectin (μg/mL) | 8.12 (4.24) | 8.61 (4.17) | 9.56 (5.15) | 7.50 (2.95) | 9.76 (4.93) | 10.59 (6.16) |
Adiponectin/leptin ratio | 0.23 (0.15) | 0.27 (0.18) | 0.32 (0.26) | 0.18 (0.10) | 0.26 (0.15) | 0.30 (0.16) |
CRP (mg/L) | 0.29 (0.22) | - | 0.29 (0.22) | 0.30 (0.22) | - | 0.16 (0.13) |
Liver and kidney function | ||||||
AST (IU/l) | 19.36 (6.21) | - | 17.14 (4.05) | 17.00 (5.13) | - | 18.21 (4.63) |
ALT (IU/l) | 20.79 (8.92) | - | 18.21 (8.76) | 16.50 (6.56) | - | 19.21 (5.06) |
G-GT (U/l) | 23.07 (17.41) | - | 24.50 (25.97) | 15.79 (7.08) | - | 16.00 (6.96) |
Creatinine (mg/dl) | 0.78 (0.07) | - | 0.82 (0.09) | 0.69 (0.13) | - | 0.71 (0.15) |
Azoturia (g/24 h) | 57.04 (16.87) | 47.17 (18.56) | 50.15 (17.22) | 51.82 (12.69) | 55.58 (14.84) | 52.88 (22.76) |
Hormonal profile and status of catecholamines | ||||||
Leptin (ng/mL) | 40.45 (16.97) | 37.51 (17.38) | 37.30 (19.61) | 48.61 (17.71) | 43.26 (15.92) | 39.78 (15.35) |
Adrenaline (pg/mL) | 26.93 (11.49) | 27.00 (19.91) | 26.57 (19.25) | 31.07 (17.18) | 31.29 (14.37) | 36.93 (20.62) |
Noradrenaline (pg/mL) | 485.43 (185.13) | 393.21 (145.13) | 486.71 (128.97) | 509.50 (186.25) | 571.50 (245.84) | 627.64 (279.69) |
Placebo Group | GSP Group | |||
---|---|---|---|---|
Time β [95%CI] | p-Value Adjusted | Time β [95%CI] | p-Value Adjusted | |
Primary endpoints | ||||
RQ | 0.01 [−0.01;0.04] | 0.47 | −0.03 [−0.04;−0.02] | <0.0001 |
%CHO | −2.11 [−5.42;1.67] | 0.47 | −13.14 [−17.33;−8.96] | <0.0001 |
%LIP | −2.11 [−1.67;5.42] | 0.47 | 13.14 [8.96;17.33] | <0.0001 |
REE (kcal/day) | −15.46 [−50.29;19.37] | 0.56 | 67.75 [27.67;107.83] | 0.006 |
Secondary endpoints | ||||
Body composition | ||||
Fat Free Mass (g) | −10.11 [−335.77;315.55] | 0.99 | −240.46 [−587.19;106.26] | 0.24 |
Fat Mass (g) | −543.68 [−997.30;−90.06] | 0.18 | −1025.64 [−1331.97;−719.31] | <0.0001 |
VAT (g) | −48.58 [−163.47;102.00] | 0.63 | −85.25 [−126.39;−44.11] | 0.0008 |
Waist Circumference (cm) | −0.58 [−0.90;−0.28] | 0.02 | −1.66 [−2.20;−1.13] | <0.0001 |
Glucose and lipid profile | ||||
Glycemia (mg/dL) | −1.46 [−3.65;0.72] | 0.47 | 0.50 [−1.36;2.36] | 0.72 |
Insulin (μIU/mL) | 0.45 [−0.29;1.08] | 0.47 | −1.29 [−2.01;−0.49] | 0.007 |
HOMA (pt) | 0.06 [−0.06;0.17] | 0.49 | −0.25 [−0.40;−0.09] | 0.01 |
Total Cholesterol (mmol/L) | 4.36 [−8.37;17.09] | 0.63 | −0.79 [−7.09;5.52] | 0.79 |
HDL (mg/dL) | −0.50 [−5.52;4.52] | 0.99 | −1.71 [−4.15;0.72] | 0.23 |
LDL (mg/dL) | −0.29 [−10.97;10.40] | 0.99 | 4.43 [−4.52;13.38] | 0.40 |
VLDL (mg/dL) | 2.76 [−2.52;8.03] | 0.47 | 0.71 [−3.82;5.25] | 0.78 |
Triglycerides (mg/dL) | 13.79 [−12.58;10.15] | 0.47 | 3.57 [−24.21;30.07] | 0.78 |
Anti-/proinflammatory state | ||||
Adiponectin (μg/mL) | 0.72 [−0.56;1.68] | 0.47 | 1.54 [0.42;2.49] | 0.02 |
Adiponectin/leptin ratio | 0.05 [0.02;0.08] | 0.04 | 0.06 [0.04;0.09] | 0.0001 |
CRP (mg/L) | −0.004 [−0.05;0.04] | 0.99 | −0.15 [−0.23;−0.06] | 0.007 |
Liver and kidney function | ||||
AST (IU/l) | −2.21 [−5.32;0.89] | 0.47 | 1.21 [−0.42;2.85] | 0.21 |
ALT (IU/l) | −2.57 [−5.78;0.64] | 0.47 | 2.71 [−0.11;5.54] | 0.11 |
G-GT (U/l) | 1.43 [−6.65;9.51] | 0.91 | 0.21 [−0.90;1.33] | 0.78 |
Creatinine (mg/dl) | 0.04 [−0.02;0.09] | 0.47 | 0.03 [−0.006;0.06] | 0.17 |
Azoturia (g/24 h) | −3.45 [−8.39;1.50] | 0.47 | 0.53 [−2.93;4.00] | 0.78 |
Hormonal profile and status of catecholamines | ||||
Leptin (ng/mL) | −1.55 [−3.86;0.71] | 0.47 | −4.42 [−7.99;0.06] | 0.10 |
Adrenaline (pg/mL) | −0.18 [−5.88;5.03] | 0.99 | 2.93 [−3.62;10.08] | 0.55 |
Noradrenaline (pg/mL) | 0.64 [−61.46;62.75] | 0.99 | 59.07 [28.78;89.36] | 0.001 |
Time*Group β [95%CI] | p-Value Adjusted | |
---|---|---|
Primary endpoints | ||
RQ | −0.04 [−0.07;−0.02] | 0.009 |
REE (kcal/day) | 83.21 [31.33;135.10] | 0.009 |
%CHO | −11.04 [−16.03;−6.04] | 0.0006 |
%LIP | 11.04 [6.04;16.03] | 0.0006 |
Secondary endpoints | ||
Body composition | ||
Fat Free Mass (g) | −230.36 [−695.15;234.44] | 0.51 |
Fat Mass (g) | −481.96 [−1016.80;52.87] | 0.22 |
VAT (g) | −36.67 [−194.60;86.15] | 0.73 |
Waist Circumference (cm) | −1.07 [−1.68;−0.47] | 0.007 |
Glucose and lipid profile | ||
Glycemia (mg/dL) | 1.96 [−0.84;4.77] | 0.35 |
Insulin (μIU/mL) | −1.74 [−2.71;−0.65] | 0.009 |
HOMA (pt) | −0.31 [−0.51;−0.09] | 0.02 |
Total Cholesterol (mmol/L) | −5.14 [−21.58;13.19] | 0.66 |
HDL (mg/dL) | −1.21 [−7.28;6.21] | 0.73 |
LDL (mg/dL) | 4.71 [−8.55;17.97] | 0.66 |
VLDL (mg/dL) | −2.04 [−10.11;5.90] | 0.66 |
Triglycerides (mg/dL) | −10.21 [−50.57;29.51] | 0.66 |
Anti-/proinflammatory state | ||
Adiponectin (μg/mL) | 0.83 [−0.72;2.46] | 0.51 |
Adiponectin/leptin ratio | 0.01 [−0.02;0.05] | 0.66 |
CRP (mg/L) | −0.14 [−0.24;−0.05] | 0.02 |
Liver and kidney function | ||
AST (IU/l) | 3.43 [−0.67;7.55] | 0.23 |
ALT (IU/l) | 5.29 [0.03;10.34] | 0.15 |
G-GT (U/l) | −1.21 [−9.23;9.67] | 0.73 |
Creatinine (mg/dl) | −0.01 [−0.07;0.05] | 0.73 |
Azoturia (g/24 h) | 3.98 [−1.92;9.88] | 0.35 |
Hormonal profile and status of catecholamines | ||
Leptin (ng/mL) | −2.84 [−7.38;2.37] | 0.47 |
Adrenaline (pg/mL) | 3.11 [−5.27;11.75] | 0.66 |
Noradrenaline (pg/mL) | 58.43 [−10.23;128.05] | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondanelli, M.; Gasparri, C.; Perna, S.; Petrangolini, G.; Allegrini, P.; Fazia, T.; Bernardinelli, L.; Cavioni, A.; Mansueto, F.; Oberto, L.; et al. A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women. Nutrients 2022, 14, 5209. https://doi.org/10.3390/nu14245209
Rondanelli M, Gasparri C, Perna S, Petrangolini G, Allegrini P, Fazia T, Bernardinelli L, Cavioni A, Mansueto F, Oberto L, et al. A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women. Nutrients. 2022; 14(24):5209. https://doi.org/10.3390/nu14245209
Chicago/Turabian StyleRondanelli, Mariangela, Clara Gasparri, Simone Perna, Giovanna Petrangolini, Pietro Allegrini, Teresa Fazia, Luisa Bernardinelli, Alessandro Cavioni, Francesca Mansueto, Letizia Oberto, and et al. 2022. "A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women" Nutrients 14, no. 24: 5209. https://doi.org/10.3390/nu14245209
APA StyleRondanelli, M., Gasparri, C., Perna, S., Petrangolini, G., Allegrini, P., Fazia, T., Bernardinelli, L., Cavioni, A., Mansueto, F., Oberto, L., Patelli, Z., Tartara, A., & Riva, A. (2022). A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women. Nutrients, 14(24), 5209. https://doi.org/10.3390/nu14245209