Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Data Collection
2.2.1. General Questionnaire
2.2.2. Dietary Records and Iron Intake
2.2.3. Iron Status
2.3. Covariates
2.4. Definition of Cut-Offs for Iron Intake and Status
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Assessing the Iron Status of populations: Including Literature Reviews: Report of a Joint World Health Organization. In Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva, Switzerland; WHO: Geneva, Switzerland, 2004; pp. 6–8. [Google Scholar]
- Ebner, N.; Jankowska, E.A.; Ponikowski, P.; Lainscak, M.; Elsner, S.; Sliziuk, V.; Steinbeck, L.; Kube, J.; Bekfani, T.; Scherbakov, N.; et al. The impact of iron deficiency and anaemia on exercise capacity and outcomes in patients with chronic heart failure. Results from the Studies Investigating Co-morbidities Aggravating Heart Failure. Int. J. Cardiol. 2015, 205, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Auersperger, I.; Škof, B.; Leskošek, B.; Knap, B.; Jerin, A.; Lainscak, M. Exercise-Induced Changes in Iron Status and Hepcidin Response in Female Runners. PLoS ONE 2013, 8, e58090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekfani, T.; Pellicori, P.; Morris, D.; Ebner, N.; Valentova, M.; Sandek, A.; Doehner, W.; Cleland, J.G.; Lainscak, M.; Schulze, P.C.; et al. Iron deficiency in patients with heart failure with preserved ejection fraction and its association with reduced exercise capacity, muscle strength and quality of life. Clin. Res. Cardiol. 2019, 108, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.J.; Anker, S.D.; Comin-Colet, J.; Filippatos, G.; Lainscak, M.; Lüscher, T.F.; Mori, C.; Johnson, P.; Ponikowski, P.; Dickstein, K. Relation of Longitudinal Changes in Quality of Life Assessments to Changes in Functional Capacity in Patients with Heart Failure with and without Anemia. Am. J. Cardiol. 2016, 117, 1482–1487. [Google Scholar] [CrossRef]
- Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021, 21, 107–113. [Google Scholar] [CrossRef]
- WHO. Iron Deficiency Anaemia Assesment: Prevention, and Control: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- McClung, J.P.; Murray-Kolb, L.E. Iron Nutrition and Premenopausal Women: Effects of Poor Iron Status on Physical and Neuropsychological Performance. Annu. Rev. Nutr. 2013, 33, 271–288. [Google Scholar] [CrossRef]
- Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron considerations for the athlete: A narrative review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [Google Scholar] [CrossRef]
- McIntyre, A.S.; Long, R.G. Prospective survey of investigations in outpatients referred with iron deficiency anaemia. Gut 1993, 34, 1102–1107. [Google Scholar] [CrossRef]
- Kepczyk, T.; Kadakia, S.C. Prospective evaluation of gastrointestinal tract in patients with iron-deficiency anemia. Dig. Dis. Sci. 1995, 40, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; García-López, S. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. World J. Gastroenterol. 2009, 15, 4638–4643. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.T. Dietary Iron Intakes in Men in Europe Are Distinctly Above the Recommendations: A Review of 39 National Studies from 20 Countries in the Period 1995–2016. Gastroenterol. Res. 2020, 13, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, J.; Wolk, A.; Larsson, S.C. Heme Iron Intake and Risk of Stroke. Stroke 2013, 44, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G.; Jones, D.Y.; Micozzi, M.S.; Taylor, P.R. Body iron stores and the risk of cancer. N. Engl. J. Med. 1988, 319, 1047–1052. [Google Scholar] [CrossRef]
- Kaikkonen, J.; Kosonen, L.; Nyyssönen, K.; Porkkala-Sarataho, E.; Salonen, R.; Korpela, H.; Salonen, J.T. Effect of combined coenzyme Q10 and d-α-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: A placebo-controlled double-blind study in marathon runners. Free Radic. Res. 1998, 29, 85–92. [Google Scholar] [CrossRef]
- Bao, W.; Rong, Y.; Rong, S.; Liu, L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Med. 2012, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, S.-R.; Drakesmith, H.; Black, J.; Hipgrave, D.; Biggs, B.-A. Control of iron deficiency anemia in low- and middle-income countries. Blood 2013, 121, 2607–2617. [Google Scholar] [CrossRef] [Green Version]
- Disler, P.B.; Lynch, S.R.; Charlton, R.W.; Torrance, J.D.; Bothwell, T.H.; Walker, R.B.; Mayet, F. The effect of tea on iron absorption. Gut 1975, 16, 193–200. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Mahoney, A.W. Contributions of heme and nonheme iron to human nutrition. Crit. Rev. Food Sci. Nutr. 1992, 31, 333–367. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Hultén, L.; Gramatkovski, E. Iron absorption from the whole diet in men: How effective is the regulation of iron absorption? Am. J. Clin. Nutr. 1997, 66, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.D. Adaptation in iron metabolism. Am. J. Clin. Nutr. 1990, 51, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, J.B.; Zhu, G.; Heath, A.C.; Powell, L.W.; Martin, N.G. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol. Clin. Exp. Res. 2001, 25, 1037–1045. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- DACH. Reference Values DACH. Available online: https://www.sge-ssn.ch/grundlagen/lebensmittel-und-naehrstoffe/naehrstoffempfehlungen/dachreferenzwerte/ (accessed on 14 July 2021).
- NIJZ. Referenčne Vrednosti Za Energijski Vnos Ter Vnos Hranil. Available online: https://www.nijz.si/sites/www.nijz.si/files/uploaded/referencne_vrednosti_2020_3_2.pdf (accessed on 3 February 2020).
- Policnik, R.; Pokorn, D.; Kulnik, D.; Micetic-Turk, D.; Hlastan-Ribic, C. Energy and Nutrient Intake Among Pre-School Children in Central Slovenia. Acta Aliment. 2013, 42, 291–300. [Google Scholar] [CrossRef]
- Mijatov, M.A.; Mičetić-Turk, D. Dietary Intake In Adult Female Coeliac Disease Patients In Slovenia: Prehranski Vnos Odraslih Bolnic s Celiakijo v Sloveniji. Zdr. Varst. 2016, 55, 86–93. [Google Scholar]
- Branko, Š.; Kozjek, N.R. A comparison of dietary habits between recreational runners and a randomly selected adult population in Slovenia. Slov. J. Public Health 2015, 54, 212. [Google Scholar]
- Sirca-Campa, A.; Fidler Mis, N.; Hren, I.; Sedmak, M.; Brecelj, J.; Krzisnik, C.; Koletzko, B. Nutrition of lactating women in Slovenia. Zb. Bioteh. Fak. Univerze Ljubl. Slov. 2003, 82, 135–142. [Google Scholar]
- Horvat, M.; Baskar, M.; Cencič-Kodba, Z.; Fajon, V.; Jagodic, M.; Križanec, B.; Krsnik, M.; Levačić-Turk, Z.; Mazej, D.; Pavlin, M.; et al. Monitoring Kemikalij in Njihovih Ostankov v Ljudeh za Leto 2011–2014: Zaključno Poročilo o Rezultatih Kemijskih Analiz. 2015. Available online: https://www.nijz.si/sites/www.nijz.si/files/uploaded/zakljucno_porocilo_hbm_2011_2014_verzija_27112015.pdf (accessed on 21 November 2022).
- Auersperger, I.; Knap, B.; Jerin, A.; Blagus, R.; Lainscak, M.; Skitek, M.; Skof, B. The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.T. Dietary iron intake in women of reproductive age in Europe: A review of 49 studies from 29 countries in the period 1993–2015. J. Nutr. Metab. 2019, 2019, 7631306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casgrain, A.; Collings, R.; Harvey, L.J.; Hooper, L.; Fairweather-Tait, S.J. Effect of iron intake on iron status: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Aimone-Gastin, I. Biochemical markers of iron status. Nephrol. Ther. 2006, 2, S321–S326. [Google Scholar]
- Skikne, B.S.; Punnonen, K.; Caldron, P.H.; Bennett, M.T.; Rehu, M.; Gasior, G.H.; Chamberlin, J.S.; Sullivan, L.A.; Bray, K.R.; Southwick, P. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: A prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am. J. Hematol. 2011, 86, 923–927. [Google Scholar] [CrossRef]
- Alkhateeb, A.A.; Connor, J.R. The significance of ferritin in cancer: Anti-oxidation, inflammation and tumorigenesis. Biochim. Biophys. Acta BBA Rev. Cancer 2013, 1836, 245–254. [Google Scholar] [CrossRef]
- Pasricha, S.S.; Flecknoe-Brown, S.C.; Allen, K.J.; Gibson, P.R.; McMahon, L.P.; Olynyk, J.K.; Roger, S.D.; Savoia, H.F.; Tampi, R.; Thomson, A.R.; et al. Diagnosis and management of iron deficiency anaemia: A clinical update. Med. J. Aust. 2010, 193, 525–532. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- Beverborg, N.G.; Klip, I.T.; Meijers, W.C.; Voors, A.A.; Vegter, E.L.; van der Wal, H.H.; Swinkels, D.W.; van Pelt, J.; Mulder, A.B.; Bulstra, S.K.; et al. Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients. Circ. Heart Fail. 2018, 11, e004519. [Google Scholar] [CrossRef] [PubMed]
- Wish, J.B. Assessing Iron Status: Beyond Serum Ferritin and Transferrin Saturation. Clin. J. Am. Soc. Nephrol. 2006, 1, S4–S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434, 365–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: https://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 15 November 2022).
- Hercberg, S.; Preziosi, P.; Galan, P. Iron deficiency in Europe. Public Health Nutr. 2007, 4, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655S–1662S. [Google Scholar] [CrossRef]
- The European Parliament. Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off. J. Eur. Union OJ 2001, 50, 26–38. [Google Scholar]
- Pravst, I.; Kušar, A. Consumers’ Exposure to Nutrition and Health Claims on Pre-Packed Foods: Use of Sales Weighting for Assessing the Food Supply in Slovenia. Nutrients 2015, 7, 9353–9368. [Google Scholar] [CrossRef] [Green Version]
- The European Food Safety Authority. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar]
- National Institute of Public Health (NIJZ); Gregorič, M.; Blaznik, U.; Delfar, N.; Zaletel, M.; Lavtar, D.; Seljak, B.K.; Golja, P.; Kotnik, K.Z.; Pravst, I.; et al. Slovenian national food consumption survey in adolescents, adults and elderly. EFSA Support. Publ. 2019, 16, 1729E. [Google Scholar]
- Hribar, M.; Hristov, H.; Gregorič, M.; Blaznik, U.; Zaletel, K.; Oblak, A.; Osredkar, J.; Kušar, A.; Žmitek, K.; Rogelj, I.; et al. Nutrihealth Study: Seasonal Variation in Vitamin D Status Among the Slovenian Adult and Elderly Population. Nutrients 2020, 12, 1838. [Google Scholar] [CrossRef]
- Gregorič, M.; Turk, V.F.; Gabrijelčič Blenkuš, M. Slikovno Gradivo s Prikazom Velikosti Porcij. Available online: https://www.nijz.si/sites/www.nijz.si/files/publikacije-datoteke/slikovno_gradivo_s_prikazom_velikosti_porcij.pdf (accessed on 27 January 2021).
- IJS. OPKP—Odprta Platforma za Klinično Prehrano. Available online: www.opkp.si (accessed on 15 November 2022).
- FINELI. Finnish Food Composition Database; Finnish Public Health Institute: Helsinki, Finland; Nutrition Unit Helsinki: Helsinki, Finland, 2004. [Google Scholar]
- Bodner-Montville, J.; Ahuja, J.K.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, B.P. USDA food and nutrient database for dietary studies: Released on the web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
- Pravst, I.; Lavriša, Ž.; Hribar, M.; Hristov, H.; Kvarantan, N.; Seljak, B.K.; Gregorič, M.; Blaznik, U.; Gregorič, N.; Zaletel, K.; et al. Dietary Intake of Folate and Assessment of the Folate Deficiency Prevalence in Slovenia Using Serum Biomarkers. Nutrients 2021, 13, 3860. [Google Scholar] [CrossRef] [PubMed]
- Haubrock, J.; Nöthlings, U.; Volatier, J.L.; Dekkers, A.; Ocké, M.; Harttig, U.; Illner, A.K.; Knüppel, S.; Andersen, L.F.; Boeing, H. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Onis, M.; Onyango, A.; Borghi, E.; Siyam, A.; Blössner, M.; Lutter, C. Worldwide implementation of the WHO child growth standards. Public Health Nutr. 2012, 15, 1603–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onis, M.d.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Available online: https://apps.who.int/iris/bitstream/handle/10665/331505/9789240000124-eng.pdf?sequence=1&isAllowed=y (accessed on 21 February 2022).
- Fleming, R.E.; Ponka, P. Iron overload in human disease. N. Engl. J. Med. 2012, 366, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Zupanič, N.; Hristov, H.; Gregorič, M.; Blaznik, U.; Delfar, N.; Koroušić Seljak, B.; Ding, E.L.; Fidler Mis, N.; Pravst, I. Total and Free Sugars Consumption in a Slovenian Population Representative Sample. Nutrients 2020, 12, 1729. [Google Scholar] [CrossRef]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- German Institute of Human Nutrition Potsdam-Rehbrücke. The Multiple Source Method. Available online: https://msm.dife.de/ (accessed on 2 December 2022).
- Kolenikov, S. Calibrating Survey Data using Iterative Proportional Fitting (Raking). Stata J. 2014, 14, 22–59. [Google Scholar] [CrossRef] [Green Version]
- Dunford, E.; Webster, J.; Metzler, A.B.; Czernichow, S.; Ni Mhurchu, C.; Wolmarans, P.; Snowdon, W.; L’Abbe, M.; Li, N.; Maulik, P.K.; et al. International collaborative project to compare and monitor the nutritional composition of processed foods. Eur. J. Prev. Cardiol. 2012, 19, 1326–1332. [Google Scholar] [CrossRef]
- Lavriša, Ž.; Hristov, H.; Hribar, M.; Žmitek, K.; Kušar, A.; Koroušić Seljak, B.; Gregorič, M.; Blaznik, U.; Gregorič, N.; Zaletel, K.; et al. Dietary Intake and Status of Vitamin B12 in Slovenian Population. Nutrients 2022, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Alibabić, V.; Šertović, E.; Mujić, I.; Živković, J.; Blažić, M.; Zavadlav, S. The Level of Nutrition Knowledge and Dietary Iron Intake of Bosnian Women. Procedia Soc. Behav. Sci. 2016, 217, 1071–1075. [Google Scholar] [CrossRef] [Green Version]
- Babinská, K.; Béderová, A. Changes in Nutrient Intake in the Adult Population of the Slovak Republic. J. Food Compos. Anal. 2002, 15, 359–365. [Google Scholar] [CrossRef]
- Mensink, G.B.M.; Fletcher, R.; Gurinović, M.; Huybrechts, I.; Lafay, L.; Serra-Majem, L.; Szponar, L.; Tetens, I.; Verkaik-Kloosterman, J.; Baka, A.; et al. Mapping low intake of micronutrients across Europe. Br. J. Nutr. 2013, 110, 755–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregoric, M.; Blaznik, U.; Turk, V. Razlicni Vidiki Prehranjevanja Prebivalcev Slovenije (V Starosti Od 3 Mesecev Do 74 Let). NIJZ. 2020, pp. 1–78. Available online: https://www.nijz.si/sites/www.nijz.si/files/publikacije-datoteke/razlicni_vidiki_prehranjevanja_prebivalcev_slovenije.pdf (accessed on 2 December 2022).
- Gregorič, M.; Hristov, H.; Blaznik, U.; Koroušić Seljak, B.; Delfar, N.; Pravst, I. Dietary Intakes of Slovenian Adults and Elderly: Design and Results of the National Dietary Study SI.Menu 2017/18. Nutrients 2022, 14, 3618. [Google Scholar] [CrossRef] [PubMed]
- Seljak, B.K.; Valenčič, E.; Hristov, H.; Hribar, M.; Lavriša, Ž.; Kušar, A.; Žmitek, K.; Krušič, S.; Gregorič, M.; Blaznik, U.; et al. Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study. Nutrients 2021, 13, 3826. [Google Scholar] [CrossRef]
- Samaniego-Vaesken, M.D.L.; Partearroyo, T.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Iron Intake and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 203. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2020, 40, 3503–3521. [Google Scholar] [CrossRef]
- Gallego-Narbón, A.; Zapatera, B.; Vaquero, M.P. Physiological and dietary determinants of iron status in Spanish vegetarians. Nutrients 2019, 11, 1734. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.; et al. Intake of macro- and micronutrients in Danish vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.R. Moving toward a Plant-based Diet: Are Iron and Zinc at Risk? Nutr. Rev. 2002, 60, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Finch, C. Regulators of Iron Balance in Humans. Blood 1994, 84, 1697–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Prevalence of Anaemia in Women of Reproductive Age (Aged 15–49) (%). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-) (accessed on 21 February 2022).
- Rakic, L.; Djokic, D.; Drakulovic, M.; Pejic, A.; Radojicic, Z.; Marinkovic, M. Risk factors associated with anemia among Serbian non-pregnant women 20 to 49 years old. A cross-sectional study. Hippokratia 2013, 17, 47–54. [Google Scholar]
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M. Epidemiology of iron deficiency anaemia in four European countries: A population-based study in primary care. Eur. J. Haematol. 2016, 97, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Loncar, G.; Obradovic, D.; Thiele, H.; von Haehling, S.; Lainscak, M. Iron deficiency in heart failure. ESC Heart Fail. 2021, 8, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Simonetti, M.; Marconi, E.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Heiman, F.; Cricelli, C.; Lapi, F. Gender differences in determinants of iron-deficiency anemia: A population-based study conducted in four European countries. Ann. Hematol. 2019, 98, 1573–1582. [Google Scholar] [CrossRef]
- Asberg, A.; Mikkelsen, G.; Thorstensen, K.; Asberg, A.E. Lower hemoglobin with lower ferritin: It is not just a question of anemia. Scand. J. Clin. Lab. Investig. 2013, 73, 622–626. [Google Scholar]
- Hallberg, L.; Hulthén, L.; Garby, L. Iron stores and haemoglobin iron deficits in menstruating women. Calculations based on variations in iron requirements and bioavailability of dietary iron. Eur. J. Clin. Nutr. 2000, 54, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Ekroos, S.; Arvas, M.; Castrén, J. Factors associated with iron deficiency and how they can be used in blood donor selection processes. medRxiv 2022. preprint. [Google Scholar] [CrossRef]
- de Groot, R. Associations of Environmental Characteristics and Lifestyle Behaviours with Donor Blood Parameters: Chapter 6: Dietary Intake of Haem Iron is Associated with Ferritin and Hemoglobin Levels in Dutch Blood Donors: Results from Donor InSight. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2020. [Google Scholar]
- Young, I.; Parker, H.M.; Rangan, A.; Prvan, T.; Cook, R.L.; Donges, C.E.; Steinbeck, K.S.; O’Dwyer, N.J.; Cheng, H.L.; Franklin, J.L.; et al. Association between Haem and Non-Haem Iron Intake and Serum Ferritin in Healthy Young Women. Nutrients 2018, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.L.; Kruger, R.; Conlon, C.A.; Heath, A.-L.M.; Matthys, C.; Coad, J.; Stonehouse, W. Suboptimal iron status and associated dietary patterns and practices in premenopausal women living in Auckland, New Zealand. Eur. J. Nutr. 2013, 52, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rojo, R.; Toxqui, L.; López-Parra, A.M.; Baeza-Richer, C.; Pérez-Granados, A.M.; Arroyo-Pardo, E.; Vaquero, M.P. Influence of Diet, Menstruation and Genetic Factors on Iron Status: A Cross-Sectional Study in Spanish Women of Childbearing Age. Int. J. Mol. Sci. 2014, 15, 4077–4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, M.; Speedy, J.; Styles, C.; De-Regil, L.M.; Pasricha, S.-R. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst. Rev. 2016, 4, CD009747. [Google Scholar] [CrossRef] [PubMed]
- Cvetinovic, N.; Loncar, G.; Isakovic, A.M.; von Haehling, S.; Doehner, W.; Lainscak, M.; Farkas, J. Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable. Int. J. Mol. Sci. 2019, 20, 5627. [Google Scholar] [CrossRef] [Green Version]
- Garry, P.J.; Hunt, W.C.; Baumgartner, R.N. Effects of Iron Intake on Iron Stores in Elderly Men and Women: Longitudinal and Cross-Sectional Results. J. Am. Coll. Nutr. 2000, 19, 262–269. [Google Scholar] [CrossRef]
- Hurrell, R.; Ranum, P.; de Pee, S.; Biebinger, R.; Hulthen, L.; Johnson, Q.; Lynch, S. Revised Recommendations for Iron Fortification of Wheat Flour and an Evaluation of the Expected Impact of Current National Wheat Flour Fortification Programs. Food Nutr. Bull. 2010, 31, S7–S21. [Google Scholar] [CrossRef]
- Hurrell, R.F. Iron Fortification Practices and Implications for Iron Addition to Salt. J. Nutr. 2021, 151, 3S–14S. [Google Scholar] [CrossRef]
- Milman, N.; Byg, K.-E.; Ovesen, L.; Kirchhoff, M.; Jürgensen, K.S.-L. Iron status in Danish men 1984–94: A cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload. Eur. J. Haematol. 2002, 68, 332–340. [Google Scholar] [CrossRef]
- Milman, N.; Ovesen, L.; Byg, K.E.; Graudal, N. Iron status in Danes updated 1994. I: Prevalence of iron deficiency and iron overload in 1332 men aged 40–70 years. Influence of blood donation, alcohol intake, and iron supplementation. Ann. Hematol. 1999, 78, 393–400. [Google Scholar] [CrossRef]
- Garcia-Casal, M.N.; Pasricha, S.-R.; Martinez, R.X.; Lopez-Perez, L.; Peña-Rosas, J.P. Are Current Serum and Plasma Ferritin Cut-offs for Iron Deficiency and Overload Accurate and Reflecting Iron Status? A Systematic Review. Arch. Med. Res. 2018, 49, 405–417. [Google Scholar] [CrossRef]
- Han, M.; Guan, L.; Ren, Y.; Zhao, Y.; Liu, D.; Zhang, D.; Liu, L.; Liu, F.; Chen, X.; Cheng, C.; et al. Dietary iron intake and risk of death due to cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. Asia Pac. J. Clin. Nutr. 2020, 29, 309–321. [Google Scholar] [PubMed]
- Fonseca-Nunes, A.; Jakszyn, P.; Agudo, A. Iron and Cancer Risk—A Systematic Review and Meta-analysis of the Epidemiological Evidence. Cancer Epidemiol. Biomark. Prev. 2014, 23, 12–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Red Meat and Processed Meat; IARC: Lyon, France, 2018; Volume 114. [Google Scholar]
- Vandevijvere, S.; Michels, N.; Verstraete, S.; Ferrari, M.; Leclercq, C.; Cuenca-García, M.; Grammatikaki, E.; Manios, Y.; Gottrand, F.; Santamaría, J.V.; et al. Intake and dietary sources of haem and non-haem iron among European adolescents and their association with iron status and different lifestyle and socio-economic factors. Eur. J. Clin. Nutr. 2013, 67, 765–772. [Google Scholar] [CrossRef]
- Milman, N.; Pedersen, A.N.; Ovesen, L.; Schroll, M. Iron status in 358 apparently healthy 80-year-old Danish men and women: Relation to food composition and dietary and supplemental iron intake. Ann. Hematol. 2004, 83, 423–429. [Google Scholar]
Adolescents N (%) | Adults N (%) | Elderly N (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
All | Male | Female | All | Male | Female | All | Male | Female | ||
10–17 years | 10–17 years | 10–17 years | 18–64 years | 18–64 years | 18–50 years | 51–64 years | 65–75 years | 65–75 years | 65–75 years | |
SI.Menu N (%) | 468 (100) | 238 (50.9) | 230 (49.1) | 364 (100) | 173 (47.5) | 121 (33.2) | 70 (19.3) | 416 (100) | 213 (51.2) | 203 (48.8) |
Usual daily iron intake | ||||||||||
Mean [mg/day] (95%CI) | 16.7 (16.1–17.2) | 18.4 (17.7–19.2) | 14.7 (14.1–15.4) | 16.0 (15.4–16.5) | 17.7 (16.9–18.6) | 14.1 (13.3–15.0) | 14.2 (13.1–15.3) | 16.0 (15.1–16.8) | 17.1 (16.3–17.9) | 14.9 (13.6–16.2) |
Q25 [mg/day] | 13.1 | 14.9 | 11.6 | 12.5 | 13.9 | 11.3 | 12.1 | 12.3 | 13.9 | 11.6 |
Median [mg/day] | 16.3 | 18.0 | 13.9 | 15.5 | 17.7 | 13.8 | 13.6 | 15.5 | 17.3 | 14.0 |
Q75 [mg/day] | 19.4 | 21.0 | 17.1 | 19.2 | 20.6 | 16.6 | 15.6 | 18.7 | 18.9 | 17.5 |
Mean (95%CI) [mg/1000 kcal/day] | 6.3 (6.1–6.5) | 6.2 (6.0–6.5) | 6.4 (6.2–6.6) | 6.3 (6.2–6.5) | 6.4 (6.2–6.6) | 6.1 (5.9–6.4) | 6.5 (6.2–6.8) | 6.7 (6.5–6.8) | 6.9 (6.7–7.1) | 6.5 (6.3–6.7) |
Prevalence of inadequate daily iron intake (%) | ||||||||||
D-A-CH (DRI) * (95% CI) | 43.7 (36.7–51.1) | 17.1 (12.1–23.6) | 72.6 (64.9–79.1) | 33.4 (28.3–39.0) | 8.8 (5.2–14.3) | 76.3 (67.0–83.6) | 22.8 (13.4–36.2) | 13.7 (10.1–18.4) | 6.1 (3.2–11.3) | 20.7 (14.8–28.1) |
EFSA (AR) ** (95% CI) | 1.3 (0.6–2.7) | 0.7 (0.2–2.4) | 1.8 (0.6–4.8) | 0.3 (0.1–1.4) | 0 | 0.4 (0.01–3.4) | 1.2 (0.2–8.0) | 0.1 (0.01–0.8) | 0.2 (0.03–1.8) | 0 |
EFSA (PRI) *** (95% CI) | 18.6 (14.6–23.4) | 7.0 (4.1–11.6) | 31.1 (23.8–39.5 | 29.8 (24.9–35.2) | 7.3 (4.2–12.4) | 69.2 (59.5–77.41) | 19.5 (10.7–32.8) | 13.8 (10.1–18.5) | 7.5 (4.1–13.4) | 19.6 (13.9–26.8) |
Variable | Adolescents (10–17 Years) | Adults (18–64 Years) | Elderly (65–74 Years) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Prevalence (%) | Crude OR (CI) | Adjusted OR (CI) | Prevalence (%) | Crude OR (CI) | Adjusted OR (CI) | Prevalence (%) | Crude OR | Adjusted OR | ||
Unweighted N (%) | 208 (44.4) | 124 (34.1) | 62 (14.9) | |||||||
Sex | male | 47 (19.8) | 1 | 1 | 16 (9.3) | 1 | 1 | 14 (6.6) | 1 | 1 |
female * | 161 (70.0) | 9.48 (6.10–14.87) | 10.71 (6.79–16.90) | 94 (77.7) | 34.16 (16.73–70.96) | 51.18 (20.58–127.57) | 48 (23.7) | 4.40 (2.28–8.94) | 3.69 (1.77–7.70) | |
female ** | 14 (20.0) | 2.45 (1.03–5.73) | 2.67 (1.02–7.02) | |||||||
Residential area | rural | 112 (41.5) | 1 | 1 | 61 (30.2) | 1 | 1 | 28 (12.2) | 1 | 1 |
intermediate | 35 (46.1) | 1.20 (0.70–2.07) | 1.15 (0.63–2.11) | 21 (37.5) | 1.39 (0.71–2.68) | 1.50 (0.58–3.88) | 12 (16.9) | 1.46 (0.63–3.18) | 1.04 (0.47–2.32) | |
urban | 61 (50.0) | 1.41 (0.90–2.22) | 1.68 (1.00–2.82) | 42 (39.6) | 1.52 (0.90–2.55) | 1.55 (0.73–3.32) | 22 (19.0) | 1.68 (0.87–3.22) | 1.42 (0.70–2.88) | |
Education | no university degree | n.a. | n.a. | 80 (32.1) | 1 | 1 | 53 (15.5) | 1 | 1 | |
university degree | 44 (38.3) | 1.31 (0.80–2.13) | 0.65 (0.29–1.46) | 9 (12.2) | 0.76 (0.31–1.65) | 0.52 (0.19–1.38) | ||||
Financial status | below average | n.a. | n.a. | 35 (29.7) | 1 | 1 | 44 (16.4) | 1 | 1 | |
above average | 69 (36.5) | 1.36 (0.81–2.31) | 0.85 (0.39–1.88) | 12 (11.2) | 0.65 (0.30–1.31) | 0.68 (0.32–1.43) | ||||
BMI | normal | 166 (55.2) | 1 | 1 | 67 (45.3) | 1 | 1 | 19 (17.6) | 1 | 1 |
overweight | 73 (43.7) | 0.95 (0.64–1.42) | 1.16 (0.74–1.83) | 57 (26.4) | 0.47 (0.27–0.69) | 0.48 (0.24–0.97) | 43 (14.0) | 0.76 (0.41–1.46) | 0.92 (0.46–1.85) | |
IPAQ | low intensity | 38 (35.2) | 1 | 1 | 39 (30.7) | 1 | 1 | 15 (11.0) | 1 | 1 |
moderate intensity | 70 (49.7) | 1.82 (1.05–3.14) | 1.40 (0.76–2.56) | 46 (42.6) | 1.67 (0.95–2.97) | 1.70 (0.75–3.86) | 31 (23.3) | 2.47 (1.21–5.20) | 1.99 (0.98–4.03) | |
high intensity | 96 (44.9) | 1.50 (0.91–2.49) | 1.67 (0.95–2.92) | 37 (29.6) | 0.95 (0.53–1.68) | 0.78 (0.34–1.79) | 16 (11.4) | 1.05 (0.46–2.39) | 0.91 (0.40–2.03) | |
Employment | employed | n.a. | n.a. | n.a. | 80 (35.4) | 1 | 1 | n.a. | n.a. | n.a. |
unemployed | 18 (42.9) | 1.37 (0.65–2.81) | 1.96 (0.61–6.34) | |||||||
student | 14 (43.8) | 1.42 (0.62–3.20) | 0.55 (0.14–2.12) | |||||||
retired | 12 (18.8) | 0.42 (0.19–0.86) | 1.45 (1.49–4.31) | |||||||
Smoking status | non-smoker | 190 (43.4) | 1 | 1 | 75 (37.7) | 1 | 1 | 37 (16.0) | 1 | 1 |
current, occasional, ex-smoker | 18 (60.0) | 1.96 (0.87–4.57) | 3.66 (1.51–8.88) | 49 (29.7) | 0.70 (0.44–1.11) | 0.74 (0.34–1.52) | 25 (13.5) | 0.82 (0.45–1.47) | 1.18 (0.59–2.35) | |
Medical diet | no special diet | 204 (44.8) | 1 | 1 | 116 (34.9) | 1 | 1 | 54 (14.8) | 1 | 1 |
medical/weight loss | 4 (30.8) | 0.55 (0.12–2.00) | 0.64 (0.15–2.65) | 8 (25.0) | 0.62 (0.23–1.49) | 0.52 (0.36–1.52) | 8 (15.7) | 1.07 (0.41–2.47) | 1.03 (0.43–2.47) | |
Behavioural diet | no diet | 197 (43.2) | 1 | n.a. | 118 (33.2) | 1 | n.a. | 61 (14.8) | 1. | n.a. |
vegetarian/vegan | 11 (91.7) | 14.46 (2.06–624.7) | n.a. | 6 (75.0) | 6.05 (1.06–61.87) | n.a. | 1 (33.3) | 2.88 (0.05–56.02) | n.a. |
Adults N (%) | Elderly N (%) | ||||||
---|---|---|---|---|---|---|---|
All | Male | Female | All | Male | Female | ||
18–64 years | 18–64 years | 18–50 years | 51–64 years | 65–75 years | 65–75 years | 65–75 years | |
Nutrihealth N (%) | 124 (100) | 57 (46.0) | 38 (30.6) | 29 (23.3) | 156 (100) | 76 (48.7) | 80 (51.3) |
Haemoglobin [g/L] | |||||||
Mean [g/L] (95%CI) | 146.7 (144.3–149.2) | 154.0 (151.2–156.9) | 139.0 (135.6–142.4) | 139.0 (134.4–143.5) | 145.1 (143.1–147.1) | 152.0 (149.3–154.7) | 138.9 (136.7–141.1) |
Q25 [g/L] | 139.0 | 149.0 | 131.0 | 133.0 | 136.0 | 145.0 | 132.5 |
Median [g/L] | 147.0 | 153.0 | 138.0 | 142.0 | 145.0 | 154.0 | 139.0 |
Q75 [g/L] | 153.0 | 159.0 | 144.0 | 145.0 | 154.0 | 159.0 | 145.5 |
Prevalence of haemoglobin (%) (95% CI) below 120 and 130 g/L | |||||||
<120 g/L | 1.1 (0.2–4.3) | 0.0 | 0.0 | 6.9 (1.7–24.4) | 1.3 (0.3–5.2) | 1.4 (0.1–9.2) | 1.3 (0.1–8.9) |
<130 g/L | 7.5 (3.9–13.8) | 1.3 (0.1–8.7) | 14.2 (6.0–30.5) | 13.8 (5.1–32.1) | 10.3 (6.2–16.4) | 4.1 (1.3–12.1) | 15.7 (9.1–25.9) |
Serum iron [µmol/L] | |||||||
Mean (95%CI) | 17.9 (16.5–19.2) | 18.8 (16.8–20.7) | 17.0 (14.7–19.2) | 16.1 (14.1–18.1) | 19.3 (18.4–20.2) | 21.2 (19.8–22.6) | 17.6 (16.5–18.8) |
Median | 17.6 | 18.4 | 16.5 | 14.4 | 18.8 | 20.8 | 16.8 |
Prevalence of serum iron (%) (95% CI) below 13 µmol/L | |||||||
<13 µmol/L | 19.9 (13.5–28.4) | 10.4 (4.5–22.4) | 32.0 (18.8–48.8) | 27.6 (14.1–46.8) | 8.0 (4.6–13.7) | 4.0 (1.3–11.8) | 11.7 (6.1–21.1) |
Serum Ferritin [µg/L] | |||||||
Mean (95%CI) | 121.7 (98.7–144.8) | 158.1 (121.2–194.9) | 68.2 (40.9–95.4) | 90.7 (74.3–107.1) | 170.5 (144.7–196.2) | 222.6 (176.0–269.2) | 124.0 (103.2–144.6) |
Median | 80 | 121 | 51 | 91 | 126 | 162 | 90 |
Prevalence of serum ferritin (%) (95% CI) below 15, 30, and 100 µg/L, and above 300 and 500 µg/L | |||||||
<15 µg/L | 3.7 (1.5–8.9) | 0 | 10.1 (3.7–24.6) | 3.4 (0.4–21.7) | 0.6 (0.1–4.7) | 0 | 1.3 (0.1–8.8) |
<30 µg/L | 11.6 (7.0–18.5) | 3.5 (1.1–10.8) | 27.2 (15.3–43.7) | 6.9 (1.6–24.4) | 7.9 (4.5–13.4) | 6.6 (2.7–15.0) | 9.1 (4.4–18.0) |
<100 µg/L | 57.7 (47.8–67.0) | 42.3 (28.9–57.0) | 86.2 (70.3–94.3) | 58.6 (39.9–75.2) | 40.2 (32.7–48.1) | 26.3 (17.6–37.4) | 52.5 (41.5–63.3) |
>300 µg/L | 10.1 (5.5–17.9) | 17.7 (9.3–31.0) | 2.4 (0.3–15.9) | 0 | 13.4 (8.9–19.8) | 22.4 (14.3–33.2) | 5.1 (1.9–13.1) |
>500 µg/L | 3.4 (1.2–9.7) | 5.1 (1.5–16.4) | 2.4 (0.3–15.9) | 0 | 3.7 (1.7–8.3) | 7.9 (3.6–16.6) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavriša, Ž.; Hristov, H.; Hribar, M.; Koroušić Seljak, B.; Gregorič, M.; Blaznik, U.; Zaletel, K.; Oblak, A.; Osredkar, J.; Kušar, A.; et al. Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study. Nutrients 2022, 14, 5144. https://doi.org/10.3390/nu14235144
Lavriša Ž, Hristov H, Hribar M, Koroušić Seljak B, Gregorič M, Blaznik U, Zaletel K, Oblak A, Osredkar J, Kušar A, et al. Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study. Nutrients. 2022; 14(23):5144. https://doi.org/10.3390/nu14235144
Chicago/Turabian StyleLavriša, Živa, Hristo Hristov, Maša Hribar, Barbara Koroušić Seljak, Matej Gregorič, Urška Blaznik, Katja Zaletel, Adrijana Oblak, Joško Osredkar, Anita Kušar, and et al. 2022. "Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study" Nutrients 14, no. 23: 5144. https://doi.org/10.3390/nu14235144
APA StyleLavriša, Ž., Hristov, H., Hribar, M., Koroušić Seljak, B., Gregorič, M., Blaznik, U., Zaletel, K., Oblak, A., Osredkar, J., Kušar, A., Žmitek, K., Lainščak, M., & Pravst, I. (2022). Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study. Nutrients, 14(23), 5144. https://doi.org/10.3390/nu14235144