Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Target Population and Data Collection
2.3. Questionnaire
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Relationship between Breakfast Style and Usual Protein Source Intake
3.3. Relationship between Breakfast Style and Usual Food Intake
3.4. Relationship between Breakfast Style and Usual Eating Habits
4. Discussion
4.1. Risks of Skipping Breakfast
4.2. Japanese Food Styles and Their Effects
4.3. Eating Habits and Breakfast Intake Style
4.4. Breakfast Realities and History
4.5. Limitation of Current Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cadenas-Sanchez, C.; Medrano, M.; Arenaza, L.; Amasene, M.; Osés, M.; Labayen, I. Association between Mediterranean Dietary Pattern and Breakfast Quality with Physical Fitness in School Children: The HIIT Project. Nutrients 2021, 13, 1353. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. PREDIMED Study Investigators. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Gabriel, A.S.; Ninomiya, K.; Uneyama, H. The Role of the Japanese Traditional Diet in Healthy and Sustainable Dietary Patterns around the World. Nutrients 2017, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Yatsuya, H.; Tsugane, S. What constitutes healthiness of Washoku or Japanese diet? Eur. J. Clin. Nutr. 2021, 75, 863–864. [Google Scholar] [CrossRef]
- Nakashita, C.; Xi, L.; Inoue, Y.; Kabura, R.; Masuda, S.; Yamano, Y.; Katoh, K. Impact of dietary compositions and patterns on the prevalence of nonalcoholic fatty liver disease in Japanese men: A cross-sectional study. BMC Gastroenterol. 2021, 21, 342. [Google Scholar] [CrossRef] [PubMed]
- Suthuvoravut, U.; Takahashi, K.; Murayama, H.; Tanaka, T.; Akishita, M.; Iijima, K. Association between Traditional Japanese Diet Washoku and Sarcopenia in Community-Dwelling Older Adults: Findings from the Kashiwa Study. J. Nutr. Health Aging 2020, 24, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Tsugane, S.; Sawada, N. The JPHC Study: Design and Some Findings on the Typical Japanese Diet. Jpn. J. Clin. Oncol. 2014, 44, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Kajiya, K.; Kishi, H.; Inagaki, J.; Mitarai, M.; Oda, H.; Umemoto, S.; Kobayashi, S. The Nutritional Characteristics of the Hypotensive WASHOKU-modified DASH Diet: A Sub-analysis of the DASH-JUMP Study. Curr. Hypertens. Rev. 2018, 14, 56–65. [Google Scholar] [CrossRef]
- Htun, N.C.; Suga, H.; Imai, S.; Shimizu, W.; Ishikawa-Takata, K.; Takimoto, H. Dietary pattern and its association with blood pressure and blood lipid profiles among Japanese adults in the 2012 Japan National Health and Nutrition Survey. Asia Pac. J. Clin. Nutr. 2018, 27, 1048–1061. [Google Scholar]
- Rivas, M.; Garay, R.P.; Escanero, J.F.; Cia, P.; Cia, P.; Alda, J.O. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J. Nutr. 2002, 132, 1900–1902. [Google Scholar] [CrossRef]
- Jayagopal, V.; Albertazzi, P.; Kilpatrick, E.S.; Howarth, E.M.; Jennings, P.E.; Hepburn, D.A.; Atkin, S.L. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 2002, 25, 1709–1714. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Shinozaki, N.; Sugimoto, M.; Fujiwara, A.; Masayasu, S.; Sasaki, S. Food Combinations in Relation to the Quality of Overall Diet and Individual Meals in Japanese Adults: A Nationwide Study. Nutrients 2020, 12, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Dietrich, M.; Brown, C.J.; Clark, C.A.; Block, G. The effect of breakfast type on total daily energy intake and body mass index: Results from the Third National Health and Nutrition Examination Survey (NHANES III). J. Am. Coll. Nutr. 2003, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Purslow, L.R.; Sandhu, M.S.; Forouhi, N.; Young, E.H.; Luben, R.N.; Welch, A.A.; Khaw, K.T.; Bingham, S.A.; Wareham, N.J. Energy intake at breakfast and weight change: Prospective study of 6764 middle-aged men and women. Am. J. Epidemiol. 2008, 167, 188–192. [Google Scholar] [CrossRef]
- Cahill, L.E.; Chiuve, S.E.; Mekary, R.A.; Jensen, M.K.; Flint, A.J.; Hu, F.B.; Rimm, E.B. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation 2013, 128, 337–343. [Google Scholar] [CrossRef]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Roshanmehr, F.; Hayashi, H.; Tahara, Y.; Suiko, T.; Nagamori, Y.; Iwai, T.; Shibata, S. Association between Breakfast Meal Categories and Timing of Physical Activity of Japanese Workers. Foods 2022, 11, 2609. [Google Scholar] [CrossRef] [PubMed]
- Osera, T.; Awai, M.; Kobayashi, M.; Tsutie, S.; Kurihara, N. Relationship between Self-Rated Health and Lifestyle and Food Habits in Japanese High School Students. Behav. Sci. 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Meal-specific dietary patterns and their contribution to overall dietary patterns in the Japanese context: Findings from the 2012 National Health and Nutrition Survey, Japan. Nutrition 2019, 59, 108–115. [Google Scholar] [CrossRef]
- Tani, Y.; Asakura, K.; Sasaki, S.; Hirota, N.; Notsu, A.; Todoriki, H.; Miura, A.; Fukui, M.; Date, C. Higher proportion of total and fat energy intake during the morning may reduce absolute intake of energy within the day. An observational study in free-living Japanese adults. Appetite 2015, 92, 66–73. [Google Scholar] [CrossRef]
- Yasuda, M.; Murata, K.; Hasegawa, T.; Yamamura, M.; Maeo, S.; Takegaki, J.; Tottori, N.; Yokokawa, T.; Mori, R.; Mori, T.; et al. Relationship between protein intake and resistance training-induced muscle hypertrophy in middle-aged women: A pilot study. Nutrition 2022, 97, 111607. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Uemura, H.; Katsuura-Kamano, S.; Nakamoto, M.; Hiyoshi, M.; Takami, H.; Sawachika, F.; Juta, T.; Arisawa, K. Relationship of dietary factors and habits with sleep-wake regularity. Asia Pac. J. Clin. Nutr. 2013, 22, 457–465. [Google Scholar]
- Kito, K.; Kuriyama, A.; Takahashi, Y.; Nakayama, N. Impacts of skipping breakfast and late dinner on the incidence of being overweight: A 3-year retrospective cohort study of men aged 20-49 years. J. Hum. Nutr. Diet. 2019, 32, 349–355. [Google Scholar] [CrossRef]
- Maukonen, M.; Kanerva, N.; Partonen, T.; Kronholm, E.; Konttinen, H.; Wennman, H.; Männistö, S. The associations between chronotype, a healthy diet and obesity. Chronobiol. Int. 2016, 33, 972–981. [Google Scholar] [CrossRef]
- Merikanto, I.; Lahti, T.; Puolijoki, H.; Vanhala, M.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Salomaa, V.; Kronholm, E.; Partonen, T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol. Int. 2013, 30, 470–477. [Google Scholar] [CrossRef]
- Kanerva, N.; Kronholm, E.; Partonen, T.; Ovaskainen, M.-L.; Kaartinen, N.E.; Konttinen, H.; Broms, U.; Männistö, S. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol. Int. 2012, 29, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Sato-Mito, N.; Shibata, S.; Sasaki, S.; Sato, K. Dietary intake is associated with human chronotype as assessed by both morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int. J. Food Sci. Nutr. 2011, 62, 525–532. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Powell, L.M.; Wang, Y. Reduced away-from-home food expenditure and better nutrition knowledge and belief can improve quality of dietary intake among US adults. Public Health Nutr. 2009, 12, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Saito, A.; Okada, C.; Okada, E.; Tajima, R.; Takimoto, H. Consumption of meals prepared away from home is associated with inadequacy of dietary fiber, vitamin C and mineral intake among Japanese adults: Analysis from the 2015 National Health and Nutrition Survey. Nutr. J. 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Malta, D.; Petersen, K.S.; Johnson, C.; Trieu, K.; Rae, S.; Jefferson, K.; Santos, J.A.; Wong, M.M.Y.; Raj, T.S.; Webster, J.; et al. High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: A regularly updated systematic review of salt and health outcomes (August 2016 to March 2017). J. Clin. Hypertens. 2018, 20, 1654–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuya, T.; Ishikawa, K.; Sugimoto, K.; Rakugi, H.; Ogihara, T. Salt sensitivity of Japanese from the viewpoint of gene polymorphism. Hypertens. Res. 2003, 26, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, T.; Nishiwaki, Y.; Okamura, T.; Asakura, K.; Nakano, M.; Takebayashi, T. A The taste of salt measured by a simple test and blood pressure in Japanese women and men. Hypertens. Res. 2009, 32, 399–403. [Google Scholar] [PubMed] [Green Version]
- Betts, J.A.; Chowdhury, E.A.; Gonzalez, J.T.; Richardson, J.D.; Tsintzas, K.; Thompson, D. Is breakfast the most important meal of the day? Proc. Nutr. Soc. 2016, 75, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, Q.; Pu, Y.; Guo, M.; Jiang, Z.; Huang, W.; Lomg, Y.; Xu, Y. Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, H.C.; Kirk, R.T. Breakfast: A review of associations with measures of dietary intake, physiology and biochemistry. Br. J. Nutr. 1997, 78, 199–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.O.; Chun, O.K.; Obayashi, S.; Cho, S.; Chung, C.E. Is consumption of breakfast associated with body mass index in US adults? J. Am. Diet. Assoc. 2005, 105, 1373–1382. [Google Scholar] [CrossRef]
- Timlin, M.T.; Pereira, M.A.; Story, M.; Neumark-Sztainer, D. Breakfast eating and weight change in a 5-year prospective analysis of adolescents: Project EAT (Eating Among Teens). Pediatrics 2008, 121, e638–e645. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, A.A.; Hu, F.B.; Rimm, E.B.; van Dam, R.M. A prospective study of breakfast consumption and weight gain among U.S. men. Obesity 2007, 15, 2463–2469. [Google Scholar] [CrossRef]
- Uesugi, T.; Fukui, Y.; Yamori, Y. Beneficial Effects of Soybean Isoflavone Supplementation on Bone Metabolism and Serum Lipids in Postmenopausal Japanese Women: A Four-week Study. J. Am. Coll. Nutr. 2002, 21, 97–102. [Google Scholar]
- Yamori, Y.; Liu, L.; Ikeda, K.; Miura, A.; Mizushima, S.; Miki, T.; Nara, Y. WHO-Cardiovascular Disease and Alimentary Comprarison (CARDIAC) Study Group, Distribution of 24-hour Urinary Taurine Excretion and Association with Ischemic Heart Disease Mortality in 24 Populations of 16 Countries: Results from the WHO-CARDIAC Study. Hypertens. Res. 2001, 24, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.A.; Burke, V.; Puddey, I.B.; Watts, G.F.; O’Neal, D.N.; Best, J.D.; Beilin, L.J. Purified Eicosapentaenoic and Docosahexaenoic Acids have Differential Effects on Serum Lipids and Lipoproteins, LDL Particle Size, Glucose, and Insulin in Mildly Hyperlipidemic Men. Am. J. Clin. Nutr. 2000, 71, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.M.; Waadgø, R.; Espe, M. Functional amino acids in fish health and welfare. Front. Biosci. Elite Is Front Biosci. (Elite Ed) 2016, 8, 143–169. [Google Scholar] [PubMed]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa-Takata, K.; Takimoto, H. Current protein and amino acid intakes among Japanese people: Analysis of the 2012 National Health and Nutrition Survey. Geriatr. Gerontol. Int. 2018, 18, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Gosby, A.K.; Conigrave, A.D.; Raubenheimer, D.; Simpson, S.J. Protein leverage and energy intake. Obes. Rev. 2014, 15, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Simonson, M.; Boirie, Y.; Guillet, C. Protein, amino acids and obesity treatment. Rev. Endocr. Metab. Disord. 2020, 21, 341–353. [Google Scholar] [CrossRef]
- Saito, A.; Imai, S.; Htun, N.C.; Okada, E.; Yoshita, K.; Yoshiike, N.; Takimoto, H. The trends in total energy, macronutrients and sodium intake among Japanese: Findings from the 1995-2016 National Health and Nutrition Survey. Br. J. Nutr. 2018, 120, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Cottin, S.C.; Sanders, T.A.; Hall, W.L. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [Green Version]
- Kromann, N.; Green, A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med. Scand. 1980, 208, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Dyerberg, J. Mortality from ischaemic heart disease and cerebrovascular disease in Greenland. Int. J. Epidemiol. 1988, 17, 514–519. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy Critical Reviews in Clinical. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Freeman, C.R.; Zehra, A.; Ramirez, V.; Wiers, C.E.; Volkow, N.D.; Wang, G. Impact of sugar on the body, brain, and behavior. Front. Biosci. 2018, 23, 2255–2266. [Google Scholar]
- Yamori, Y.; Sagara, M.; Arai, Y.; Kobayashi, H.; Kishimoto, K.; Matsuno, K.; Mori, H.; Mori, M. Correction: Soy and fish as features of the Japanese diet and cardiovascular disease risks. PLoS ONE 2017, 12, e0186533. [Google Scholar] [CrossRef] [Green Version]
- Yamori, Y.; Sagara, M.; Arai, Y.; Kobayashi, H.; Kishimoto, K.; Matsuno, I.; Mori, H.; Mori, M. Cross-Sectional Inverse Association of Regular Soy Intake with Insulin Resistance in Japanese Elderly. J. Nutr. Gerontol. Geriatr. 2018, 37, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Alhussain, M.H.; Macdonald, I.A.; Taylor, M.A. Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: A randomized controlled trial in healthy normal-weight women. Am. J. Clin. Nutr. 2016, 104, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhussain, M.H.; Macdonald, I.A.; Taylor, M.A. Impact of isoenergetic intake of irregular meal patterns on thermogenesis, glucose metabolism, and appetite: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 284–297. [Google Scholar] [CrossRef]
- Pot, G.K.; Almoosawi, S.; Stephen, A.M. Meal irregularity and cardiometabolic consequences: Results from observational and intervention studies. Proc. Nutr. Soc. 2016, 75, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, N.; Groß, P. Special aspects of nutrition in elderly. Swiss Dent. J. 2019, 129, 929–936. [Google Scholar]
- Melzer, T.M.; Manosso, L.M.; Yau, S.; Gil-Mohapel, J.; Brocardo, P.S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int. J. Mol. Sci. 2021, 22, 5026. [Google Scholar] [CrossRef] [PubMed]
- Piernas, C.; Popkin, B.M. Snacking increased among U.S. adults between 1977 and 2006. J. Nutr. 2010, 140, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Piernas, C.; Popkin, B.M. Trends in snacking among U.S. children. Health Aff. 2010, 29, 398–404. [Google Scholar] [CrossRef]
- Njike, V.Y.; Smith, T.M.; Shuval, O.; Shuval, K.; Edshteyn, I.; Kalantari, V.; Yaroch, A.L. Snack Food, Satiety, and Weight. Adv. Nutr. 2016, 7, 866–878. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, M.; Kim, H.; Ozaki, M.; Nanba, T.; Chijiki, H.; Fukazawa, M.; Okubo, J.; Mineshita, Y.; Takahashi, M.; Shibata, S. Consumption of Biscuits with a Beverage of Mulberry or Barley Leaves in the Afternoon Prevents Dinner-Induced High, but Not Low, Increases in Blood Glucose among Young Adults. Nutrients 2020, 12, 1580. [Google Scholar] [CrossRef]
- Tremblay, A.; Bellisle, F. Nutrients, satiety, and control of energy intake. Appl. Physiol. Nutr. Metab. 2015, 40, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melby, M.K.; Takeda, W. Lifestyle constraints, not inadequate nutrition education, cause gap between breakfast ideals and realities among Japanese in Tokyo. Appetite 2014, 72, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Roshanmehr, F.; Tahara, Y.; Makino, S.; Tada, A.; Abe, N.; Michie, M.; Shibata, S. Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype. Nutrients 2022, 14, 3496. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T. The integration of school nutrition program into health promotion and prevention of lifestyle-related diseases in Japan. Asia Pac. J. Clin. Nutr. 2008, 17, 349–351. [Google Scholar]
JB | J-W B | WB | CB | R2 | F | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |||
Meat | 0.087 | p < 0.005 | 0.050 | p < 0.05 | 0.069 | p < 0.05 | 0.038 | 0.053 | 0.017 | 11.516 |
Fish | 0.163 | p < 0.005 | 0.124 | p < 0.005 | 0.075 | p < 0.005 | 0.039 | p < 0.05 | 0.016 | 10.702 |
Eggs | 0.193 | p < 0.005 | 0.138 | p < 0.005 | 0.132 | p < 0.001 | 0.041 | p < 0.05 | 0.021 | 14.348 |
Beans | 0.188 | p < 0.005 | 0.104 | p < 0.005 | 0.023 | 0.368 | 0.067 | p < 0.001 | 0.036 | 25.139 |
Dairy products | 0.175 | p < 0.005 | 0.163 | p < 0.005 | 0.274 | p < 0.001 | 0.208 | p < 0.001 | 0.082 | 60.236 |
JB | J-W B | WB | CB | R2 | F | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |||
Staple food | 0.246 | p < 0.001 | 0.139 | p < 0.001 | 0.285 | p < 0.001 | 0.009 | 0.640 | 0.052 | 37.208 |
Vegetables | 0.181 | p < 0.001 | 0.164 | p < 0.001 | 0.170 | p < 0.001 | 0.123 | p < 0.001 | 0.068 | 48.914 |
Fruits | 0.181 | p < 0.001 | 0.173 | p < 0.001 | 0.226 | p < 0.001 | 0.147 | p < 0.001 | 0.049 | 34.466 |
Snack | 0.064 | p < 0.05 | 0.079 | p < 0.001 | 0.134 | p < 0.001 | 0.072 | p < 0.001 | 0.073 | 53.147 |
Juice | −0.039 | 0.105 | −0.008 | 0.726 | 0.008 | 0.765 | −0.068 | p < 0.001 | 0.014 | 9.230 |
Drinking | 0.005 | 0.843 | −0.004 | 0.864 | −0.089 | p < 0.001 | −0.020 | 0.293 | 0.089 | 65.962 |
JB | J-W B | WB | CB | R2 | F | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |||
Consumption of irregular amounts of food | −0.265 | p < 0.001 | −0.194 | p < 0.001 | −0.262 | p < 0.001 | −0.164 | p < 0.001 | 0.057 | 40.450 |
Less chewing | −0.068 | p < 0.005 | −0.099 | p < 0.001 | −0.073 | p < 0.005 | −0.051 | p < 0.05 | 0.019 | 13.184 |
Consumption of large amounts of food | −0.013 | p < 0.001 | −0.115 | p < 0.001 | −0.130 | p < 0.001 | −0.089 | p < 0.001 | 0.058 | 41.115 |
Frequent eating out | −0.087 | p < 0.001 | −0.070 | p < 0.001 | −0.074 | p < 0.005 | −0.080 | p < 0.001 | 0.041 | 28.596 |
Nutritional imbalance | −0.202 | p < 0.001 | −0.162 | p < 0.001 | −0.157 | p < 0.001 | −0.125 | p < 0.001 | 0.029 | 20.289 |
Excessive salt intake | −0.120 | p < 0.001 | −0.102 | p < 0.001 | −0.112 | p < 0.001 | −0.075 | p < 0.001 | 0.019 | 12.697 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuwahara, M.; Tahara, Y.; Suiko, T.; Nagamori, Y.; Shibata, S. Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits. Nutrients 2022, 14, 5143. https://doi.org/10.3390/nu14235143
Kuwahara M, Tahara Y, Suiko T, Nagamori Y, Shibata S. Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits. Nutrients. 2022; 14(23):5143. https://doi.org/10.3390/nu14235143
Chicago/Turabian StyleKuwahara, Mai, Yu Tahara, Takahiko Suiko, Yuki Nagamori, and Shigenobu Shibata. 2022. "Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits" Nutrients 14, no. 23: 5143. https://doi.org/10.3390/nu14235143
APA StyleKuwahara, M., Tahara, Y., Suiko, T., Nagamori, Y., & Shibata, S. (2022). Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits. Nutrients, 14(23), 5143. https://doi.org/10.3390/nu14235143