Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Test Beverages
2.4. Analytical Procedure
2.5. Statistical Analysis
3. Results
3.1. Subjects
3.2. Blood Glucose and Insulin
3.3. Incretins
3.4. Insulin Sensitivity and Insulin Secretion Indices
3.5. Blood Biochemical Values
3.6. Correlations between the Differences in Insulin Sensitivity with the Difference in GLP-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akash, M.S.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Fujishima, M.; Kiyohara, Y.; Kato, I.; Ohmura, T.; Iwamoto, H.; Nakayama, K.; Ohmori, S.; Yoshitake, T. Diabetes and cardiovascular disease in a prospective population survey in Japan: The Hisayama Study. Diabetes 1996, 45 (Suppl. S3), S14–S16. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Wölnerhanssen, B.K.; Meyer-Gerspach, A.C.; Schmidt, A.; Zimak, N.; Peterli, R.; Beglinger, C.; Borgwardt, S. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: A pilot study. PLoS ONE 2015, 10, e0130280. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Okahara, F.; Osaki, N.; Shimotoyodome, A. Increased GIP signaling induces adipose inflammation via a HIF-1alpha-dependent pathway and impairs insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E414–E425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iso, H.; Date, C.; Wakai, K.; Fukui, M.; Tamakoshi, A.; JACC Study Group. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann. Intern. Med. 2006, 144, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.; Lee, C.M.; Barzi, F.; Timmermeister, L.; Czernichow, S.; Perkovic, V.; Grobbee, D.E.; Batty, D.; Woodward, M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Arch. Intern. Med. 2009, 169, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- van Dam, R.M.; Hu, F.B. Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA 2005, 294, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Miyashita, M.; Suzuki, K.; Bae, S.R.; Kim, H.K.; Wakisaka, T.; Matsui, Y.; Takeshita, M.; Yasunaga, K. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br. J. Nutr. 2014, 112, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Ryu, O.H.; Lee, J.; Lee, K.W.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res. Clin. Pract. 2006, 71, 356–358. [Google Scholar] [CrossRef]
- Brown, A.L.; Lane, J.; Coverly, J.; Stocks, J.; Jackson, S.; Stephen, A.; Bluck, L.; Coward, A.; Hendrickx, H. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: Randomized controlled trial. Br. J. Nutr. 2009, 101, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Liao, Y.L.; Lin, S.C.; Tsai, T.H.; Huang, C.J.; Chou, P. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern. Med. Rev. 2011, 16, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015, 7, 5443–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.A.; Silva, D.M.; de Morais, A.C., Jr.; Mota, J.F.; Botelho, P.B. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults—A review. Obes. Rev. 2016, 17, 1316–1328. [Google Scholar] [CrossRef] [PubMed]
- Thielecke, F.; Boschmann, M. The potential role of green tea catechins in the prevention of the metabolic syndrome—A review. Phytochemistry 2009, 70, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Altern. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef] [Green Version]
- Venables, M.C.; Hulston, C.J.; Cox, H.R.; Jeukendrup, A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am. J. Clin. Nutr. 2008, 87, 778–784. [Google Scholar] [CrossRef] [Green Version]
- Iwai, K.; Narita, Y.; Fukunaga, T.; Nakagiri, O.; Kamiya, T.; Ikeguchi, M.; Kikuchi, Y. Study on the postprandial glucose responses to a chlorogenic acid-rich extract of decaffeinated geen coffee beans in rats and healthy human subjects. Food Sci. Technol. Res. 2012, 18, 849–860. [Google Scholar] [CrossRef]
- Jokura, H.; Watanabe, I.; Umeda, M.; Hase, T.; Shimotoyodome, A. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults. Nutr. Res. 2015, 35, 873–881. [Google Scholar] [CrossRef]
- Zuñiga, L.Y.; Aceves-de la Mora, M.C.A.; González-Ortiz, M.; Ramos-Núñez, J.L.; Martínez-Abundis, E. Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food 2018, 21, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Harano, Y.; Miyawaki, T.; Nabiki, J.; Shibachi, M.; Adachi, T.; Ikeda, M.; Ueda, F.; Nakano, T. Development of cookie test for the simultaneous determination of glucose intolerance, hyperinsulinemia, insulin resistance and postprandial dyslipidemia. Endocr. J. 2006, 53, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Aloulou, I.; Brun, J.F.; Mercier, J. Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: Comparison with the minimal model analysis of an intravenous glucose tolerance test. Metabolism 2006, 55, 676–690. [Google Scholar] [CrossRef]
- Maki, K.C.; Kelley, K.M.; Lawless, A.L.; Hubacher, R.L.; Schild, A.L.; Dicklin, M.R.; Rains, T.M. Validation of insulin sensitivity and secretion indices derived from the liquid meal tolerance test. Diabetes Technol. Ther. 2011, 13, 661–666. [Google Scholar] [CrossRef]
- Caumo, A.; Bergman, R.N.; Cobelli, C. Insulin sensitivity from meal tolerance tests in normal subjects: A minimal model index. J. Clin. Endocrinol. Metab. 2000, 85, 4396–4402. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Utzschneider, K.M.; Prigeon, R.L.; Faulenbach, M.V.; Tong, J.; Carr, D.B.; Boyko, E.J.; Leonetti, D.L.; McNeely, M.J.; Fujimoto, W.Y.; Kahn, S.E. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 2009, 32, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.; Kenward, M.G. Design and Analysis of Cross-Over Trials; Chapman & Hall/CRC: London, UK, 1989; Volume 5. [Google Scholar]
- Shahwan, M.; Alhumaydhi, F.; Ashraf, G.M.; Hasan, P.M.Z.; Shamsi, A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int. J. Biol. Macromol. 2022, 206, 567–579. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhao, C.; Zhang, B.; Peng, B.; Zhang, Y.; Wang, J.; Wang, S. Positive effects of Epigallocatechin-3-gallate (EGCG) intervention on insulin resistance and gut microbial dysbiosis induced by bisphenol A. J. Funct. Foods 2022, 93, 105083. [Google Scholar] [CrossRef]
- Murase, T.; Yokoi, Y.; Misawa, K.; Ominami, H.; Suzuki, Y.; Shibuya, Y.; Hase, T. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Br. J. Nutr. 2012, 107, 1757–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akash, M.S.; Rehman, K.; Chen, S. Effects of coffee on type 2 diabetes mellitus. Nutrition 2014, 30, 755–763. [Google Scholar] [CrossRef]
- Moon, S.M.; Joo, M.J.; Lee, Y.S.; Kim, M.G. Effects of Coffee Consumption on Insulin Resistance and Sensitivity: A Meta-Analysis. Nutrients 2021, 13, 3976. [Google Scholar] [CrossRef]
- Peng, B.J.; Zhu, Q.; Zhong, Y.L.; Xu, S.H.; Wang, Z. Chlorogenic acid maintains glucose homeostasis through modulating the expression of SGLT-1, GLUT-2, and PLG in different intestinal segments of Sprague-Dawley rats fed a high-fat diet. Biomed. Environ. Sci. 2015, 28, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 2003, 78, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Montelius, C.; Erlandsson, D.; Vitija, E.; Stenblom, E.L.; Egecioglu, E.; Erlanson-Albertsson, C. Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women. Appetite 2014, 81, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, S.A.; Lefrandt, J.D.; Petersen, J.F.; Boersma, H.H.; Mulder, D.J.; Hoogenberg, K. The effects of GLP-1 analogues in obese, insulin-using type 2 diabetes in relation to eating behaviour. Int. J. Clin. Pharm. 2016, 38, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Spencer, N.J.; Hibberd, T.J. GLP-1 appetite control via intestinofugal neurons. Cell Res. 2022, 32, 711–712. [Google Scholar] [CrossRef] [PubMed]
- Verdich, C.; Flint, A.; Gutzwiller, J.P.; Näslund, E.; Beglinger, C.; Hellström, P.M.; Long, S.J.; Morgan, L.M.; Holst, J.J.; Astrup, A. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 2001, 86, 4382–4389. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Astrup, A.; Holst, J.J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Investig. 1998, 101, 515–520. [Google Scholar] [CrossRef]
- Matsumoto, N.; Ishigaki, F.; Ishigaki, A.; Iwashina, H.; Hara, Y. Reduction of blood glucose levels by tea catechin. Biosci. Biotechnol. Biochem. 1993, 57, 525–527. [Google Scholar] [CrossRef]
- Hjorne, A.P.; Modvig, I.M.; Holst, J.J. The Sensory Mechanisms of Nutrient-Induced GLP-1 Secretion. Metabolites 2022, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M. Interaction between food substances and the intestinal epithelium. Biosci. Biotechnol. Biochem. 2010, 74, 232–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, M.; Kobayashi, Y.; Suzuki, M.; Satsu, H.; Miyamoto, Y. Regulation of intestinal glucose transport by tea catechins. BioFactors 2000, 13, 61–65. [Google Scholar] [CrossRef]
- da Silva, L.A.; Wouk, J.; Weber, V.M.R.; da Luz Eltchechem, C.; de Almeida, P.; Martins, J.C.L.; Malfatti, C.R.M.; Osiecki, R. Mechanisms and biological effects of caffeine on substrate metabolism homeostasis: A systematic review. J. Appl. Pharm. Sci. 2017, 7, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.E.; Sathasivam, P.; Rowland, M.; Marko, N.; Greer, F.; Battram, D. Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Can. J. Physiol. Pharmacol. 2001, 79, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Thong, F.S.; Graham, T.E. Caffeine-induced impairment of glucose tolerance is abolished by beta-adrenergic receptor blockade in humans. J. Appl. Physiol. 2002, 92, 2347–2352. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.E.; Savani, S.; Battram, D.S.; McLaren, D.H.; Sathasivam, P.; Graham, T.E. Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J. Nutr. 2004, 134, 2528–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, R.; Papetti, A. Decaffeinated coffee and its benefits on health: Focus on systemic disorders. Crit. Rev. Food Sci. Nutr. 2021, 61, 2506–2522. [Google Scholar] [CrossRef] [PubMed]
PLA | GTC+CCA | ||
---|---|---|---|
Catechin | mg | 0 | 31 |
Epicatechin | mg | 0 | 37 |
Gallocatechin | mg | 0 | 134 |
Epigallocatechin | mg | 0 | 120 |
Catechin gallate | mg | 0 | 23 |
Epicatechin gallate | mg | 0 | 41 |
Gallocatechin gallate | mg | 0 | 108 |
Epigallocatechin gallate | mg | 0 | 126 |
Total catechins | mg | 0 | 620 |
3-caffeoylquinic acid | mg | 0 | 104 |
4-caffeoylquinic acid | mg | 0 | 94 |
5-caffeoylquinic acid | mg | 0 | 102 |
3-feruloylquinic acid | mg | 0 | 25 |
4-feruloylquinic acid | mg | 0 | 23 |
5-feruloylquinic acid | mg | 0 | 25 |
Total chlorogenic acids | mg | 0 | 373 |
Caffeine | mg | 119 | 119 |
Baseline | ||
---|---|---|
Age | y | 41 ± 9 |
Height | cm | 174.2 ± 4.0 |
Weight | kg | 70.3 ± 9.4 |
Body mass index | kg/m2 | 23.1 ± 2.7 |
Body fat | % | 20.3 ± 4.6 |
Waist circumference | cm | 84.5 ± 8.7 |
Systolic blood pressure | mmHg | 129 ± 15 |
Diastolic blood pressure | mmHg | 75 ± 12 |
Body temperature | °C | 36.1 ± 0.4 |
Glucose | mg/dL | 87 ± 5 |
Insulin | µU/mL | 4.2 ± 1.8 |
HOMA-IR | 0.90 ± 0.36 | |
Glucose AUC2h × Insulin AUC2h | 7366 ± 4021 | |
Matsuda Index | 12.3 ± 4.6 | |
HOMA-β | 67.3 ± 34.4 | |
GA | % | 13.3 ± 1.2 |
1,5-AG | µg/mL | 24.3 ± 5.2 |
HbA1c | % | 5.4 ± 0.3 |
h-CRP | mg/dL | 0.036 ± 0.052 |
LDL-C | mg/dL | 113 ± 24 |
HDL-C | mg/dL | 56 ± 13 |
TC | mg/dL | 193 ± 22 |
AST | U/L | 19 ± 5 |
ALT | U/L | 20 ± 11 |
ALP | U/L | 170 ± 33 |
γ-GTP | U/L | 28 ± 14 |
T4 | µg/dL | 7.1 ± 1.0 |
T3 | ng/dL | 104 ± 20 |
TSH | µIU/mL | 1.337 ± 0.629 |
PLA | GTC+CCA | Effect of Difference * Mean (95% CI) | p-Value | ||
---|---|---|---|---|---|
Weight | kg | 70.7 ± 2.7 | 70.1 ± 2.7 | −0.52 (−0.99, −0.05) | 0.035 |
Body mass index | kg/m2 | 23.2 ± 0.8 | 23.1 ± 0.8 | −0.15 (−0.31, 0.01) | 0.062 |
Body fat | % | 20.4 ± 1.4 | 20.6 ± 1.6 | 0.28 (−0.47, 1.03) | 0.422 |
Waist circumference | cm | 85.0 ± 2.6 | 85.1 ± 2.6 | 0.15 (−0.66, 0.97) | 0.681 |
Systolic blood pressure | mmHg | 130.3 ± 4.2 | 124.8 ± 4.3 | −5.32 (−15.91, 5.27) | 0.285 |
Diastolic blood pressure | mmHg | 80.3 ± 3.3 | 75.7 ± 3.7 | −4.73 (−11.24, 1.77) | 0.134 |
Body temperature | °C | 36.3 ± 0.1 | 36.3 ± 0.1 | 0.02 (−0.15, 0.18) | 0.823 |
HOMA-IR | 1.07 ± 0.15 | 0.90 ± 0.08 | −0.15 (−0.33, 0.03) | 0.099 | |
Glucose AUC2h × Insulin AUC2h | 8367 ± 1686 | 5630 ± 1032 | −2558 (−4697, −420) | 0.024 | |
Matsuda Index | 11.3 ± 1.5 | 14.6 ± 1.4 | 2.96 (0.88, 5.05) | 0.011 | |
HOMA-β | 76.0 ± 10.3 | 64.6 ± 7.4 | −9.50 (−22.08, 3.09) | 0.122 | |
GA | % | 13.2 ± 0.4 | 13.0 ± 0.4 | −0.19 (−0.48, 0.10) | 0.167 |
1,5-AG | µg/mL | 25.7 ± 1.7 | 24.9 ± 1.8 | −0.79 (−1.84, 0.25) | 0.121 |
HbA1c | % | 5.3 ± 0.1 | 5.4 ± 0.1 | 0.04 (−0.03, 0.10) | 0.245 |
h-CRP | mg/dL | 0.04 ± 0.02 | 0.04 ± 0.01 | −0.01 (−0.02, 0.01) | 0.397 |
LDL-C | mg/dL | 108.7 ± 7.0 | 110.9 ± 6.8 | 2.57 (−8.43, 13.56) | 0.610 |
HDL-C | mg/dL | 53.3 ± 2.7 | 52.1 ± 3.5 | −1.30 (−4.41, 1.81) | 0.369 |
TC | mg/dL | 191.3 ± 7.5 | 186.9 ± 7.4 | −3.48 (−20.55, 13.58) | 0.655 |
AST | U/L | 19.8 ± 1.6 | 18.9 ± 1.5 | −0.97 (−3.39, 1.46) | 0.390 |
ALT | U/L | 17.3 ± 2.3 | 17.5 ± 2.2 | 0.28 (−3.48, 4.05) | 0.869 |
ALP | U/L | 176.2 ± 13.4 | 171.6 ± 10.5 | −4.40 (−19.39, 10.59) | 0.523 |
γ-GTP | U/L | 26.8 ± 4.8 | 26.4 ± 4.3 | −0.33 (−2.61, 1.94) | 0.748 |
T4 | µg/dL | 7.1 ± 0.3 | 7.3 ± 0.3 | 0.18 (−0.46, 0.82) | 0.543 |
T3 | ng/dL | 120.2 ± 7.1 | 121.2 ± 5.4 | 0.45 (−5.77, 6.67) | 0.874 |
TSH | µIU/mL | 1.3 ± 0.1 | 1.3 ± 0.1 | 0.01 (−0.22, 0.23) | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagimoto, A.; Matsui, Y.; Yamaguchi, T.; Hibi, M.; Kobayashi, S.; Osaki, N. Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022, 14, 5063. https://doi.org/10.3390/nu14235063
Yanagimoto A, Matsui Y, Yamaguchi T, Hibi M, Kobayashi S, Osaki N. Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients. 2022; 14(23):5063. https://doi.org/10.3390/nu14235063
Chicago/Turabian StyleYanagimoto, Aya, Yuji Matsui, Tohru Yamaguchi, Masanobu Hibi, Shigeru Kobayashi, and Noriko Osaki. 2022. "Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial" Nutrients 14, no. 23: 5063. https://doi.org/10.3390/nu14235063
APA StyleYanagimoto, A., Matsui, Y., Yamaguchi, T., Hibi, M., Kobayashi, S., & Osaki, N. (2022). Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients, 14(23), 5063. https://doi.org/10.3390/nu14235063