Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design and Population
2.2. Measurements
2.3. Sample Size Calculation
2.4. Statistical Analyses
3. Results
3.1. Insulin Sensitivity
3.2. Cardiometabolic Risk Factors and Markers
3.3. Reactive Dicarbonyls and D-Lactate
3.4. Free AGE-Adducts and Their Excretion
3.5. Protein-Bound AGEs
3.6. sRAGE, sVAP-1 Levels, and SSAO Activity
3.7. Simple and Multivariate Regression of Independent Variables on QUICKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laakso, M. Is Insulin Resistance a Feature of or a Primary Risk Factor for Cardiovascular Disease? Curr. Diabetes Rep. 2015, 15, 105. [Google Scholar] [CrossRef]
- Degenhardt, T.P.; Thorpe, S.R.; Baynes, J.W. Chemical modification of proteins by methylglyoxal. Cell. Mol. Biol. 1998, 44, 1139–1145. [Google Scholar] [PubMed]
- Rabbani, N.; Xue, M.; Thornalley, P.J. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj. J. 2016, 33, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Dyer, D.G.; Blackledge, J.A.; Thorpe, S.R.; Baynes, J.W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J. Biol. Chem. 1991, 266, 11654–11660. [Google Scholar] [CrossRef]
- Jono, T.; Nagai, R.; Lin, X.; Ahmed, N.; Thornalley, P.J.; Takeya, M.; Horiuchi, S. Nepsilon-(Carboxymethyl)lysine and 3-DG-imidazolone are major AGE structures in protein modification by 3-deoxyglucosone. J. Biochem. 2004, 136, 351–358. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 2015, 458, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.H.; Ramasamy, R.; Schmidt, A.M. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology 2020, 161, bqz006. [Google Scholar] [CrossRef]
- Stern, D.; Yan, S.D.; Yan, S.F.; Schmidt, A.M. Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Adv. Drug Deliv. Rev. 2002, 54, 1615–1625. [Google Scholar] [CrossRef]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Vlassara, H.; Striker, G.E. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol. Metab. Clin. N. Am. 2013, 42, 697–719. [Google Scholar] [CrossRef]
- Reynaert, N.L.; Gopal, P.; Rutten, E.P.A.; Wouters, E.F.M.; Schalkwijk, C.G. Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. Int. J. Biochem. Cell Biol. 2016, 81, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.J.; Boyd, A.C.; O’Harte, F.P.; McKillop, A.M.; Wiggam, M.I.; Mooney, M.H.; McCluskey, J.T.; Lindsay, J.R.; Ennis, C.N.; Gamble, R.; et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes 2003, 52, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Olson, D.J.; Ross, A.R.; Wu, L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 2006, 20, 1555–1557. [Google Scholar] [CrossRef] [PubMed]
- Miele, C.; Riboulet, A.; Maitan, M.A.; Oriente, F.; Romano, C.; Formisano, P.; Giudicelli, J.; Beguinot, F.; Van Obberghen, E. Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. J. Biol. Chem. 2003, 278, 47376–47387. [Google Scholar] [CrossRef] [Green Version]
- Unoki, H.; Bujo, H.; Yamagishi, S.; Takeuchi, M.; Imaizumi, T.; Saito, Y. Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Res. Clin. Pract. 2007, 76, 236–244. [Google Scholar] [CrossRef]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef]
- Liang, G.; Wang, F.; Song, X.; Zhang, L.; Qian, Z.; Jiang, G. 3-Deoxyglucosone induces insulin resistance by impairing insulin signaling in HepG2 cells. Mol. Med. Rep. 2016, 13, 4506–4512. [Google Scholar] [CrossRef] [Green Version]
- Unoki-Kubota, H.; Yamagishi, S.; Takeuchi, M.; Bujo, H.; Saito, Y. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice. Protein Pept. Lett. 2010, 17, 1177–1181. [Google Scholar] [CrossRef]
- Guo, Q.; Mori, T.; Jiang, Y.; Hu, C.; Osaki, Y.; Yoneki, Y.; Sun, Y.; Hosoya, T.; Kawamata, A.; Ogawa, S.; et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J. Hypertens. 2009, 27, 1664–1671. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, L.; Ji, Q.; Wang, F.; Xu, H.; Huang, F.; Wang, C. Accumulation of plasma 3-deoxyglucosone impaired glucose regulation in Chinese seniors: Implication for senile diabetes? Diabetes Metab. Syndr. 2012, 6, 140–145. [Google Scholar] [CrossRef]
- Tan, K.C.; Shiu, S.W.; Wong, Y.; Tam, X. Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab. Res. Rev. 2011, 27, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Tahara, N.; Yamagishi, S.-I.; Matsui, T.; Takeuchi, M.; Nitta, Y.; Kodama, N.; Mizoguchi, M.; Imaizumi, T. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc. Ther. 2012, 30, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, A.; Urbano, F.; Zagami, R.M.; Filippello, A.; Di Mauro, S.; Piro, S.; Purrello, F.; Rabuazzo, A.M. Low Endogenous Secretory Receptor for Advanced Glycation End-Products Levels Are Associated with Inflammation and Carotid Atherosclerosis in Prediabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1701–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Que, Y.; Shen, X. Correlation of the plasma levels of soluble RAGE and endogenous secretory RAGE with oxidative stress in pre-diabetic patients. J. Diabetes Complicat. 2015, 29, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Gurecka, R.; Koborova, I.; Sebek, J.; Sebekova, K. Presence of Cardiometabolic Risk Factors Is Not Associated with Microalbuminuria in 14-to-20-Years Old Slovak Adolescents: A Cross-Sectional, Population Study. PLoS ONE 2015, 10, e0129311. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Scheijen, J.L.; Schalkwijk, C.G. Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: Evaluation of blood specimen. Clin. Chem. Lab. Med. 2014, 52, 85–91. [Google Scholar] [CrossRef]
- Martens, R.J.H.; Broers, N.J.H.; Canaud, B.; Christiaans, M.H.L.; Cornelis, T.; Gauly, A.; Hermans, M.M.H.; Konings, C.J.A.M.; Van Der Sande, F.M.; Scheijen, J.L.J.M.; et al. Relations of advanced glycation endproducts and dicarbonyls with endothelial dysfunction and low-grade inflammation in individuals with end-stage renal disease in the transition to renal replacement therapy: A cross-sectional observational study. PLoS ONE 2019, 14, e0221058. [Google Scholar] [CrossRef] [Green Version]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 2016, 31, 798–806. [Google Scholar] [CrossRef]
- Soldatovic, I.; Vukovic, R.; Culafic, D.; Gajic, M.; Dimitrijevic-Sreckovic, V. siMS Score: Simple Method for Quantifying Metabolic Syndrome. PLoS ONE 2016, 11, e0146143. [Google Scholar] [CrossRef]
- Chung, H.F.; Lees, H.; Gutman, S.I. Effect of nitroblue tetrazolium concentration on the fructosamine assay for quantifying glycated protein. Clin. Chem. 1988, 34, 2106–2111. [Google Scholar] [CrossRef]
- Karlik, M.; Valkovic, P.; Hancinova, V.; Krizova, L.; Tothova, L.; Celec, P. Markers of oxidative stress in plasma and saliva in patients with multiple sclerosis. Clin. Biochem. 2015, 48, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.H.; Zuo, D.M. Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells. Possible consequences for diabetes. Diabetes 1993, 42, 594–603. [Google Scholar] [CrossRef]
- Osborne, J.W.; Costello, A.B. Sample size and subject to item ratio in principal components analysis. Pract. Assess. Res. Eval. 2004, 9, 11. [Google Scholar]
- Maessen, D.E.; Hanssen, N.M.; Lips, M.A.; Scheijen, J.L.; Willems van Dijk, K.; Pijl, H.; Stehouwer, C.D.; Schalkwijk, C.G. Energy restriction and Roux-en-Y gastric bypass reduce postprandial alpha-dicarbonyl stress in obese women with type 2 diabetes. Diabetologia 2016, 59, 2013–2017. [Google Scholar] [CrossRef] [Green Version]
- Van den Eynde, M.D.G.; Kusters, Y.H.; Houben, A.J.; Scheijen, J.L.; van Duynhoven, J.; Fazelzadeh, P.; Joris, P.J.; Plat, J.; Mensink, R.P.; Hanssen, N.M.; et al. Diet-induced weight loss reduces postprandial dicarbonyl stress in abdominally obese men: Secondary analysis of a randomized controlled trial. Clin. Nutr. 2021, 40, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Wei, J.-N.; Lin, M.-S.; Smith, D.J.; Vainio, J.; Lin, C.-H.; Chiang, F.-T.; Shih, S.-R.; Huang, C.-H.; Wu, M.-Y.; et al. Serum vascular adhesion protein-1 is increased in acute and chronic hyperglycemia. Clin. Chim. Acta 2009, 404, 149–153. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, P.H. Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase. Anal. Biochem. 1999, 270, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Koborová, I.; Gurecká, R.; Csongová, M.; Volkovová, K.; Szökő, É.; Tábi, T.; Šebeková, K. Association between metabolically healthy central obesity in women and levels of soluble receptor for advanced glycation end products, soluble vascular adhesion protein-1, and the activity of semicarbazide-sensitive amine oxidase. Croat Med. J. 2017, 58, 106–116. [Google Scholar] [CrossRef]
- Seibert, R.; Abbasi, F.; Hantash, F.M.; Caulfield, M.P.; Reaven, G.; Kim, S.H. Relationship between insulin resistance and amino acids in women and men. Physiol. Rep. 2015, 3, e12392. [Google Scholar] [CrossRef] [PubMed]
- Vangipurapu, J.; Stancáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids Are Associated with Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5181 Finnish Men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.S.; Hakimi, M.; Vittas, S.; Fleming, T.H.; Nawroth, P.P.; Böckler, D.; Dihlmann, S. Gender difference in glyoxalase 1 activity of atherosclerotic carotid artery lesions. J. Vasc. Surg. 2015, 62, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugliucci, A.; Gutierrez, K.P.; Caccavello, R.; Gonzalez, A.P.; Garay-Sevilla, E. Obesity rather than insulin resistance per se is associated with high serum D-lactate levels in adolescents: Correlation with chylomicron remnants. In Proceedings of the 14th Triennial International Symposium on the Maillard Reaction (IMARS-14)-Protein Glycation in Food, Health and Disease, IMARS, Doha, Qatar, 20–24 September 2021; p. 105. [Google Scholar]
- Maessen, D.E.; Hanssen, N.M.; Scheijen, J.L.; van der Kallen, C.J.; van Greevenbroek, M.M.; Stehouwer, C.D.; Schalkwijk, C.G. Post-Glucose Load Plasma α-Dicarbonyl Concentrations Are Increased in Individuals with Impaired Glucose Metabolism and Type 2 Diabetes: The CODAM Study. Diabetes Care 2015, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Song, X.; Xu, H.; Wang, F.; Zhang, L.; Zhou, L.; Jiang, G. 3-Deoxyglucosone Induced Acute Glucose Intolerance in Sprague-Dawley Rats: Involvement of Insulin Resistance and Impaired β-cell Function. Exp. Clin. Endocrinol. Diabetes 2016, 124, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A.; Bendayan, M. Renal fate of circulating advanced glycated end products (AGE): Evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia 1996, 39, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Perkins, B.A.; Rabbani, N.; Weston, A.; Adaikalakoteswari, A.; Lee, J.A.; Lovblom, L.E.; Cardinez, N.; Thornalley, P.J. High fractional excretion of glycation adducts is associated with subsequent early decline in renal function in type 1 diabetes. Sci. Rep. 2020, 10, 12709. [Google Scholar] [CrossRef]
- Perkins, R.K.; Miranda, E.R.; Karstoft, K.; Beisswenger, P.J.; Solomon, T.P.J.; Haus, J.M. Experimental Hyperglycemia Alters Circulating Concentrations and Renal Clearance of Oxidative and Advanced Glycation End Products in Healthy Obese Humans. Nutrients 2019, 11, 532. [Google Scholar] [CrossRef] [Green Version]
- Scheijen, J.L.; Hanssen, N.M.; Van Greevenbroek, M.M.; Van Der Kallen, C.J.; Feskens, E.J.; Stehouwer, C.D.; Schalkwijk, C.G. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef]
- Wagner, Z.; Molnár, M.; Molnár, G.A.; Tamaskó, M.; Laczy, B.; Wagner, L.; Csiky, B.; Heidland, A.; Nagy, J.; Wittmann, I. Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am. J. Kidney Dis. 2006, 47, 294–300. [Google Scholar] [CrossRef]
- Hanssen, N.M.; Beulens, J.W.; van Dieren, S.; Scheijen, J.L.; van der A., D.L.; Spijkerman, A.M.; van der Schouw, Y.T.; Stehouwer, C.D.; Schalkwijk, C.G. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: A case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015, 64, 257–265. [Google Scholar] [CrossRef]
- Semba, R.D.; Bandinelli, S.; Sun, K.; Guralnik, J.M.; Ferrucci, L. Plasma carboxymethyl-lysine, an advanced glycation end product, and all-cause and cardiovascular disease mortality in older community-dwelling adults. J. Am. Geriatr. Soc. 2009, 57, 1874–1880. [Google Scholar] [CrossRef] [Green Version]
- Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. J. Geront. A Biol. Sci. Med. Sci. 2007, 62, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Gaens, K.H.; Ferreira, I.; van de Waarenburg, M.P.; van Greevenbroek, M.M.; van der Kallen, C.J.; Dekker, J.M.; Nijpels, G.; Rensen, S.S.; Stehouwer, C.D.; Schalkwijk, C.G. Protein-Bound Plasma Nε-(Carboxymethyl)lysine Is Inversely Associated with Central Obesity and Inflammation and Significantly Explain a Part of the Central Obesity-Related Increase in Inflammation: The Hoorn and CODAM Studies. Arter. Thromb. Vasc. Biol. 2015, 35, 2707–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindler, J.M.; Laing, E.M.; Liu, W.; Dain, J.A.; Lewis, R.D. Pentosidine Is Associated with Cortical Bone Geometry and Insulin Resistance in Otherwise Healthy Children. J. Bone Miner. Res. 2019, 34, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Mittendorfer, B. Sexual dimorphism in skeletal muscle protein turnover. J. Appl. Physiol 2016, 120, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazzana, N.; Santilli, F.; Cuccurullo, C.; Davì, G. Soluble forms of RAGE in internal medicine. Intern. Emerg. Med. 2009, 4, 389–401. [Google Scholar] [CrossRef]
- Xue, J.; Rai, V.; Singer, D.; Chabierski, S.; Xie, J.; Reverdatto, S.; Burz, D.S.; Schmidt, A.M.; Hoffmann, R.; Shekhtman, A. Advanced glycation end product recognition by the receptor for AGEs. Structure 2011, 19, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Koyama, H.; Yamamoto, H.; Nishizawa, Y. RAGE and soluble RAGE: Potential therapeutic targets for cardiovascular diseases. Mol. Med. 2007, 13, 625–635. [Google Scholar] [CrossRef]
- Di Pino, A.; Urbano, F.; Scicali, R.; Di Mauro, S.; Filippello, A.; Scamporrino, A.; Piro, S.; Purrello, F.; Rabuazzo, A.M. 1 h Postload Glycemia Is Associated with Low Endogenous Secretory Receptor for Advanced Glycation End Product Levels and Early Markers of Cardiovascular Disease. Cells 2019, 8, 910. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.R.; Somal, V.S.; Mey, J.T.; Blackburn, B.K.; Wang, E.; Farabi, S.; Karstoft, K.; Fealy, C.E.; Kashyap, S.; Kirwan, J.P.; et al. Circulating soluble RAGE isoforms are attenuated in obese, impaired-glucose-tolerant individuals and are associated with the development of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E631–E640. [Google Scholar] [CrossRef]
- Accacha, S.; Rosenfeld, W.; Jacobson, A.; Michel, L.; Schnurr, F.; Shelov, S.; Ten, S.; Boucher-Berry, C.; Carey, D.; Speiser, P.; et al. Plasma advanced glycation end products (AGEs), receptors for AGEs and their correlation with inflammatory markers in middle school-age children. Horm. Res. Paediatr. 2013, 80, 318–327. [Google Scholar] [CrossRef] [PubMed]
- He, C.T.; Lee, C.H.; Hsieh, C.H.; Hsiao, F.C. Soluble form of receptor for advanced glycation end products is associated with obesity and metabolic syndrome in adolescents. Int. J. Endocrinol. 2014, 2014, 657607. [Google Scholar] [CrossRef] [Green Version]
- Chiavaroli, V.; D’Adamo, E.; Giannini, C.; de Giorgis, T.; De Marco, S.; Chiarelli, F.; Mohn, A. Serum levels of receptors for advanced glycation end products in normal-weight and obese children born small and large for gestational age. Diabetes Care 2012, 35, 1361–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, J.K.; Wang, Y.; Shiu, S.W.; Wong, Y.; Betteridge, D.J.; Tan, K.C. Effect of insulin on the soluble receptor for advanced glycation end products (RAGE). Diabet. Med. 2013, 30, 702–709. [Google Scholar] [CrossRef]
- Lee, A.C.; Lam, J.K.; Shiu, S.W.; Wong, Y.; Betteridge, D.J.; Tan, K.C. Serum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin and Metalloproteinase 10 in Type 1 Diabetes. PLoS ONE 2015, 10, e0137330. [Google Scholar] [CrossRef] [PubMed]
Males (n = 162, 52.4%) | Females (n = 147, 47.6%) | Two-Factor ANOVA (p) | |||||
---|---|---|---|---|---|---|---|
IS (28.8%) | IR (23.6%) | IS (25.2%) | IR (22.3%) | Sex | IS/IR | Sex × IS/IR | |
n, % | 89 (54.9) | 73 (45.1) | 78 (53.1) | 69 (46.9) | 0.741 Chi | ||
Age, years | 18.1 ± 0.90 | 17.6 ± 0.7 | 17.4 ± 1.2 | 17.6 ± 1.4 | 0.001 | 0.323 | 0.010 |
Glucose, mmol/L | 4.8 ± 0.3 | 5.2 ± 0.5 | 4.6 ± 0.4 | 5.0 ± 0.5 | <0.001 | <0.001 | 0.080 |
FA, mmol/L | 1.7 ± 0.5 | 2.0 ± 0.6 | 1.6 ± 0.3 | 1.7 ± 0.4 | 0.001 | 0.001 | 0.080 |
Insulin, µIU/mL | 8.1 (5.6, 11.7) | 21.3 (14.5, 31.1) | 9.3 (6.5, 13.4) | 21.5 (14.6, 31.6) | 0.069 | <0.001 | 0.111 |
QUICKI | 0.353 ± 0.022 | 0.303 ± 0.015 | 0.347 ± 0.021 | 0.305 ± 0.015 | 0.366 | <0.001 | 0.090 |
BMI, kg/m2 | 24.8 ± 3.6 | 26.0 ± 3.8 | 24.5 ± 4.1 | 26.0 ± 6.9 | 0.791 | 0.013 | 0.775 |
WHtR | 0.48 ± 0.05 | 0.48 ± 0.05 | 0.49 ± 0.09 | 0.49 ± 0.09 | 0.301 | 0.766 | 0.611 |
TBF, % | 21.1 ± 7.1 | 23.5 ± 7.4 | 34.7 ± 7.0 | 35.7 ± 8.8 | <0.001 | 0.066 | 0.373 |
SBP, mmHg | 125 ± 11 | 126 ± 13 | 110 ± 11 | 110 ± 10 | <0.001 | 0.899 | 0.551 |
DBP, mmHg | 74 ± 7 | 76 ± 9 | 72 ± 8 | 73 ± 9 | 0.008 | 0.381 | 0.680 |
HDL-C, mmol/L | 1.27 ± 0.23 | 1.16 ± 0.23 | 1.46 ± 0.30 | 1.48 ± 0.34 | <0.001 | 0.129 | 0.039 |
nonHDL-C, mmol/L | 2.75 ± 0.72 | 3.13 ± 0.91 | 2.79 ± 0.58 | 2.95 ± 0.81 | 0.417 | 0.002 | 0.220 |
TAG, mmol/L | 0.85 (0.55, 1.30) | 1.25 (0.75, 2.07) | 0.81 (0.59, 1.12) | 1.08 (0.67, 1.72) | 0.060 | <0.001 | 0.267 |
cMSS | 2.09 ± 0.44 | 2.58 ± 0.74 | 2.00 ± 0.38 | 2.44 ± 0.51 | 0.001 | <0.001 | 0.044 |
cMSS4 | 1.23 ± 0.43 | 1.64 ± 0.75 | 1.17 ± 0.38 | 1.35 ± 0.50 | 0.005 | <0.001 | 0.057 |
Albumin, g/L | 48.5 ± 2.0 | 48.2 ± 2.2 | 47.4 ± 2.2 | 46.8 ± 2.6 | <0.001 | 0.074 | 0.566 |
CRP, mg/L | 0.5 (0.2, 1.7) | 0.7 (0.2, 1.9) | 0.8 (0.2, 2.6) | 1.4 (0.3, 5.2) | <0.001 | 0.007 | 0.232 |
Uric acid, mmol/L | 360 ± 56 | 376 ± 65 | 263 ± 50 | 275 ± 58 | <0.001 | 0.029 | 0.777 |
eGFR, ml/min/1.73 m2 | 104 ± 12 | 102 ± 13 | 107 ± 15 | 109 ± 14 | 0.001 | 0.969 | 0.281 |
u-ACR, mg/mmoL | 0.4 (0.2, 0.9) | 0.3 (0.1, 0.6) | 0.5 (0.2, 1.3) | 0.5 (0.2, 1.7) | <0.001 | 0.096 | 0.200 |
TBARS, µmol/L | 1.60 (0.32, 3.16) | 1.38 (0.30, 2.44) | 1.17 (0.33, 2.54) | 1.42 (0.30, 3.18) | 0.089 | 0.752 | 0.038 |
Males (n = 162, 52.4%) | Females (n = 147, 47.6%) | Two-Factor ANOVA | |||||
---|---|---|---|---|---|---|---|
IS (n = 89) | IR (n = 73) | IS (n = 78) | IR (n = 69) | Sex | IS/IR | Sex × IS/IR | |
Methylglyoxal, nmol/L | 520 (406, 666) | 512 (387, 676) | 335 (256, 437) | 364 (290, 457) | <0.001 | 0.244 | 0.089 |
Glyoxal, nmol/L | 1871 ± 479 | 1818 ± 526 | 1188 ± 233 | 1329 ± 309 | <0.001 | 0.348 | 0.039 |
3-DG, nmol/L | 1492 ± 127 | 1666 ± 183 | 1128 ± 140 | 1305 ± 198 | <0.001 | <0.001 | 0.004 |
free MG-H1, nmol/L | 105 (69, 160) | 126 (72.4, 223) | 85 (49, 146) | 115 (64, 209) | 0.010 | <0.001 | 0.291 |
free CML, nmol/L | 101 (74, 139) | 94 (65, 134) | 76 (56, 101) | 78 (56, 107) | <0.001 | 0.468 | 0.140 |
free CEL, nmol/L | 52.2 ± 16.0 | 57.7 ± 24.5 | 45.3 ± 13.8 | 51.6 ± 17.4 | 0.002 | 0.005 | 0.864 |
pb-pentosidine, nmol/mmol lys | 0.39 (0.33, 0.45) | 0.41 (0.35, 0.49) | 0.41 (0.33, 0.51) | 0.42 (0.34, 0.52) | 0.061 | 0.040 | 0.381 |
pb-MGH1, nmol/mmol lys | 320 ± 58 | 277 ± 42 | 308 ± 50 | 320 ± 49 | 0.007 | 0.010 | <0.001 |
pb-CML, nmol/mmol lys | 71.9 (58.5, 88.4) | 66.2 (53.4, 82.0) | 75.8 (60.2, 95.4) | 76.2 (60.2, 95.4) | <0.001 | 0.128 | 0.082 |
pb-CEL, nmol/mmol lys | 8.6 (6.7, 11.0) | 8.2 (6.2, 10.9) | 13.2 (9.0, 19.2) | 18.8 (13.2, 26.9) | <0.001 | <0.001 | <0.001 |
sRAGE, pg/mL | 1437 ± 470 | 1619 ± 573 | 1527 ± 495 | 1379 ± 421 | 0.184 | 0.765 | 0.004 |
esRAGE, pg/mL | 333 ± 157 | 334 ± 169 | 308 ± 113 | 281 ± 101 | 0.014 | 0.434 | 0.384 |
cRAGE, pg/mL | 1104 ± 363 | 1284 ± 441 | 1219 ± 406 | 1097 ± 357 | 0.435 | 0.514 | 0.001 |
cRAGE/esRAGE | 3.50 (2.32, 5.27) | 4.08 (2.96, 5.63) | 4.02 (3.09, 5.22) | 3.98 (2.91, 5.42) | 0.142 | 0.063 | 0.033 |
sVAP-1, ng/mL | 322 (246, 421) | 349 (231, 529) | 342 (242, 483) | 387 (217, 688) | 0.082 | 0.027 | 0.660 |
n = 87 | n = 72 | n = 70 | n = 61 | ||||
u-MGH1, nmol/mmol crea | 2050 (1269, 3310) | 2290 (1417, 3703) | 2320 (1257, 4284) | 3006 (1609, 5616) | 0.002 | 0.005 | 0.255 |
u-CML, nmol/mmol crea | 1028 (763, 1384) | 1115 (754, 1648) | 1153 (745, 1784) | 1246 (791, 1965) | 0.016 | 0.086 | 0.973 |
u-CEL, nmol/mmol crea | 507 (369, 697) | 536 (379, 759) | 560 (401, 777) | 641 (458, 897) | <0.001 | 0.016 | 0.312 |
FEMGH-1 | 1.50 (1.07, 2.10) | 1.40 (1.01, 1.93) | 1.63 (1.06, 2.51) | 1.58 (1.01, 2.49) | 0.023 | 0.258 | 0.628 |
FECML | 0.78 (0.54, 1.13) | 0.93 (0.71, 1.21) | 0.90 (0.67, 1.20) | 0.97 (0.66, 1.42) | 0.010 | 0.002 | 0.235 |
FECEL | 0.81 (0.66, 1.01) | 0.77 (0.69, 0.94) | 0.77 (0.59, 1.01) | 0.78 (0.59, 1.02) | 0.787 | 0.819 | 0.573 |
n = 62 | n = 48 | n = 52 | n = 40 | ||||
u-D-lactate, µmol/mmol crea | 4.2 (1.8, 9.6) | 3.6 (1.7, 7.5) | 6.3 (3.0, 13.0) | 7.1 (3.7, 13.4) | <0.001 | 0.948 | 0.166 |
Pearson Correlation | OPLS (VIP) | |||||
---|---|---|---|---|---|---|
Males (n = 162) | p | Females (n = 147) | p | Males | Females | |
CMSS4 | −0.308 | <0.001 | −0.359 | <0.001 | 1.44 | 1.39 |
Fructosamine | −0.259 | 0.001 | −0.070 | 0.401 | 1.22 | 0.29 |
Total body fat | −0.179 | <0.001 | −0.255 | 0.002 | 1.15 | 1.09 |
Non-HDL-C | −0.204 | 0.009 | −0.154 | 0.062 | 1.12 | 0.85 |
Log C-reactive protein | −0.187 | 0.024 | −0.198 | 0.016 | 0.69 | 0.94 |
Uric acid | −0.075 | 0.345 | −0.120 | 0.147 | NI | NI |
EGFR | −0.032 | 0.690 | −0.010 | 0.224 | NI | NI |
Log ACR | 0.162 | 0.059 | −0.078 | 0.383 | NI | NI |
Log TBARS | 0.095 | 0.233 | −0.163 | 0.051 | 0.77 | 0.76 |
Log methylglyoxal | −0.015 | 0.849 | −0.208 | 0.011 | 0.90 | 0.98 |
Glyoxal | 0.026 | 0.741 | −0.198 | 0.016 | 0.92 | 1.08 |
3-DG | −0.553 | <0.001 | −0.546 | <0.001 | 1.86 | 1.99 |
Log free MG-H1 | −0.165 | 0.036 | −0.310 | <0.001 | 0.73 | 1.18 |
Log free CML | 0.115 | 0.144 | −0.064 | 0.443 | 0.73 | 0.96 |
Free CEL | −0.110 | 0.163 | −0.165 | 0.045 | 0.71 | 1.11 |
Log pb-pentosidine | −0.066 | 0.403 | 0.059 | 0.479 | 0.57 | 0.19 |
Pb-MGH1 | 0.354 | <0.001 | 0.012 | 0.884 | 1.50 | 0.13 |
Log pb-CML | 0.167 | 0.033 | 0.111 | 0.181 | 0.90 | 0.58 |
Log pb-CEL | 0.115 | 0.144 | −0.348 | <0.001 | 0.87 | 1.20 |
SRAGE, | −0.146 | 0.064 | 0.165 | 0.046 | NI | NI |
EsRAGE | −0.015 | 0.853 | 0.067 | 0.418 | NI | NI |
CRAGE, | −0.182 | 0.021 | 0.179 | 0.030 | 1.04 | 0.77 |
Log cRAGE/esRAGE | −0.153 | 0.051 | 0.123 | 0.137 | NI | NI |
Log sVAP-1 | −0.140 | 0.075 | −0.073 | 0.378 | 0.76 | 0.39 |
Log u-MGH1 | −0.104 | 0.191 | −0.218 | 0.012 | 0.73 | 1.23 |
Log u-CML | −0.092 | 0.248 | −0.122 | 0.166 | 0.58 | 0.97 |
Log u-CEL | −0.090 | 0.257 | −0.196 | 0.025 | 0.66 | 0.99 |
Log FEMGH-1 | 0.180 | 0.176 | 0.040 | 0.651 | NI | NI |
Log FECML | −0.204 | 0.010 | −0.082 | 0.353 | NI | NI |
Log FECEL | 0.049 | 0.536 | −0.063 | 0.472 | NI | NI |
n = 110 | n = 92 | |||||
Log u-D-lactate | 0.090 | 0.349 | −0.192 | 0.066 | NI | NI |
R2 | - | - | - | - | 0.46 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csongová, M.; Scheijen, J.L.J.M.; van de Waarenburg, M.P.H.; Gurecká, R.; Koborová, I.; Tábi, T.; Szökö, É.; Schalkwijk, C.G.; Šebeková, K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients 2022, 14, 4929. https://doi.org/10.3390/nu14224929
Csongová M, Scheijen JLJM, van de Waarenburg MPH, Gurecká R, Koborová I, Tábi T, Szökö É, Schalkwijk CG, Šebeková K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients. 2022; 14(22):4929. https://doi.org/10.3390/nu14224929
Chicago/Turabian StyleCsongová, Melinda, Jean L. J. M. Scheijen, Marjo P. H. van de Waarenburg, Radana Gurecká, Ivana Koborová, Tamás Tábi, Éva Szökö, Casper G. Schalkwijk, and Katarína Šebeková. 2022. "Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study" Nutrients 14, no. 22: 4929. https://doi.org/10.3390/nu14224929
APA StyleCsongová, M., Scheijen, J. L. J. M., van de Waarenburg, M. P. H., Gurecká, R., Koborová, I., Tábi, T., Szökö, É., Schalkwijk, C. G., & Šebeková, K. (2022). Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients, 14(22), 4929. https://doi.org/10.3390/nu14224929